Compactness of higher-order Sobolev embeddings

Lenka Slavíková

May 1, 2014

Sobolev embeddings and isoperimetric inequalities

Sobolev embeddings and isoperimetric inequalities

Maz'ya (1960):

* isoperimetric inequalities imply first-order Sobolev embeddings

Sobolev embeddings and isoperimetric inequalities

Maz'ya (1960):

* isoperimetric inequalities imply first-order Sobolev embeddings

Cianchi, Pick, S. (2013, submitted):

* isoperimetric inequalities imply also (optimal) higher-order Sobolev embeddings

Sobolev embeddings and isoperimetric inequalities

Maz'ya (1960):

* isoperimetric inequalities imply first-order Sobolev embeddings

Cianchi, Pick, S. (2013, submitted):

* isoperimetric inequalities imply also (optimal) higher-order Sobolev embeddings

Our goal: to prove a result in the spirit of the previous one, concerning compact Sobolev embeddings

Let $\Omega \subseteq \mathbb{R}^n$ be a domain endowed with a probability measure ν .

Let $\Omega \subseteq \mathbb{R}^n$ be a domain endowed with a probability measure ν . We shall assume that

$$d\nu(x) = \omega(x) dx,$$

where ω is a Borel function fulfilling that for a.e. $x \in \Omega$ there is a ball $B_x \subseteq \Omega$ centered in x for which

$$\operatorname{ess\,inf}_{B_{\mathsf{x}}} \omega > 0.$$

Let $\Omega \subseteq \mathbb{R}^n$ be a domain endowed with a probability measure ν . We shall assume that

$$d\nu(x) = \omega(x) dx$$

where ω is a Borel function fulfilling that for a.e. $x \in \Omega$ there is a ball $B_x \subseteq \Omega$ centered in x for which

ess
$$\inf_{B_x} \omega > 0$$
.

The *perimeter* of a measurable set $E \subseteq \Omega$ is

$$P_{\nu}(E,\Omega) = \int_{\Omega \cap \partial^{M} E} \omega(x) \, d\mathcal{H}^{n-1}(x),$$

where $\partial^M E$ denotes the essential boundary of E.

The *isoperimetric function* of (Ω, ν) is defined by

$$I_{\Omega,
u}(s) = \inf \left\{ P_{
u}(E,\Omega) : E \subseteq \Omega, \ s \le
u(E) \le \frac{1}{2}
ight\}$$

if $s \in [0,1/2]$ and by $l_{(\Omega,\nu)}(s) = l_{(\Omega,\nu)}(1-s)$ if $s \in (1/2,1]$.

The *isoperimetric function* of (Ω, ν) is defined by

$$I_{\Omega,
u}(s)=\inf\left\{P_{
u}(E,\Omega):E\subseteq\Omega,\ s\le
u(E)\lerac{1}{2}
ight\}$$

if
$$s \in [0, 1/2]$$
 and by $l_{(\Omega, \nu)}(s) = l_{(\Omega, \nu)}(1 - s)$ if $s \in (1/2, 1]$.

We have the isoperimetric inequality

$$P_{\nu}(E,\Omega) \geq I_{\Omega,\nu}(\nu(E))$$

for every measurable subset $E \subseteq \Omega$.

* Usually hard to count

- * Usually hard to count
- * We are interested only in its asymptotic behaviour at 0

- * Usually hard to count
- * We are interested only in its asymptotic behaviour at 0 ... this is known for quite a wide class of domains

- * Usually hard to count
- * We are interested only in its asymptotic behaviour at 0 ... this is known for quite a wide class of domains
- * We always have $\mathit{l}_{\Omega, \nu}(s) \leq \mathit{Cs}^{1-\frac{1}{n}}$, $s \in [0, \frac{1}{2}]$

- * Usually hard to count
- * We are interested only in its asymptotic behaviour at 0 ... this is known for quite a wide class of domains
- * We always have $I_{\Omega,
 u}(s) \leq \mathit{Cs}^{1-\frac{1}{n}}$, $s \in [0, \frac{1}{2}]$
- * We will assume that $\mathit{l}_{\Omega, \nu}(s) \geq \mathit{Cs}$, $s \in [0, \frac{1}{2}]$

- * Usually hard to count
- * We are interested only in its asymptotic behaviour at 0 ... this is known for quite a wide class of domains
- * We always have $\mathit{I}_{\Omega, \nu}(s) \leq \mathit{Cs}^{1-\frac{1}{n}}$, $s \in [0, \frac{1}{2}]$
- * We will assume that $I_{\Omega,\nu}(s) \geq Cs$, $s \in [0,\frac{1}{2}]$... this excludes "too bad domains"

* $\Omega = {\rm a}$ domain having a Lipschitz boundary, $\nu = {\rm the}$ Lebesgue measure

$$I_{\Omega,
u}(s)pprox s^{1-rac{1}{n}}, \quad s\in[0,rac{1}{2}]$$

* $\Omega=$ a domain having a Lipschitz boundary, $\nu=$ the Lebesgue measure

$$I_{\Omega,
u}(s)pprox s^{1-rac{1}{n}}, \quad s\in[0,rac{1}{2}]$$

... this is fulfilled also for more general domains (so called *John domains*)

* $\Omega=$ a domain having a Lipschitz boundary, $\nu=$ the Lebesgue measure

$$I_{\Omega,
u}(s)pprox s^{1-rac{1}{n}}, \quad s\in[0,rac{1}{2}]$$

... this is fulfilled also for more general domains (so called *John domains*)

* $\Omega = \mathbb{R}^n$, $\nu =$ the Gauss measure

$$I_{\Omega,\nu}(s) pprox s \sqrt{\log rac{2}{s}}, \quad s \in [0,rac{1}{2}]$$

 $X(\Omega, \nu)$ is a rearrangement-invariant space if

 $X(\Omega, \nu)$ is a rearrangement-invariant space if

* it is a Banach space consisting of u-measurable functions on Ω

- $X(\Omega, \nu)$ is a rearrangement-invariant space if
- * it is a Banach space consisting of u-measurable functions on Ω
- * whenever $f \in X(\Omega, \nu)$ and g is a u-measurable function satisfying

$$\nu(\{x\in\Omega:|f(x)|>\lambda\})=\nu(\{x\in\Omega:|g(x)|>\lambda\}),\ \ \, \lambda\geq0,$$
 then $g\in X(\Omega,\nu)$ and $\|f\|_{X(\Omega,\nu)}=\|g\|_{X(\Omega,\nu)}$

- $X(\Omega, \nu)$ is a rearrangement-invariant space if
- * it is a Banach space consisting of u-measurable functions on Ω
- * whenever $f \in X(\Omega, \nu)$ and g is a ν -measurable function satisfying

$$\nu(\{x \in \Omega : |f(x)| > \lambda\}) = \nu(\{x \in \Omega : |g(x)| > \lambda\}), \quad \lambda \ge 0,$$

then $g \in X(\Omega, \nu)$ and $||f||_{X(\Omega, \nu)} = ||g||_{X(\Omega, \nu)}$

Examples:

- $X(\Omega, \nu)$ is a rearrangement-invariant space if
- * it is a Banach space consisting of u-measurable functions on Ω
- * whenever $f \in X(\Omega, \nu)$ and g is a ν -measurable function satisfying

$$\nu(\{x \in \Omega : |f(x)| > \lambda\}) = \nu(\{x \in \Omega : |g(x)| > \lambda\}), \quad \lambda \ge 0,$$

then $g \in X(\Omega, \nu)$ and $\|f\|_{X(\Omega, \nu)} = \|g\|_{X(\Omega, \nu)}$

Examples:

* Lebesgue spaces $L^p(\Omega, \nu)$

- $X(\Omega, \nu)$ is a rearrangement-invariant space if
- * it is a Banach space consisting of u-measurable functions on Ω
- * whenever $f \in X(\Omega, \nu)$ and g is a ν -measurable function satisfying

$$\nu\big(\{x\in\Omega:|f(x)|>\lambda\}\big)=\nu\big(\{x\in\Omega:|g(x)|>\lambda\}\big),\ \ \, \lambda\geq0,$$
 then $g\in X(\Omega,\nu)$ and $\|f\|_{X(\Omega,\nu)}=\|g\|_{X(\Omega,\nu)}$

Examples:

- * Lebesgue spaces $L^p(\Omega, \nu)$
- * Lorentz spaces $L^{p,q}(\Omega,\nu)$

- $X(\Omega, \nu)$ is a rearrangement-invariant space if
- * it is a Banach space consisting of u-measurable functions on Ω
- * whenever $f \in X(\Omega, \nu)$ and g is a ν -measurable function satisfying

$$\nu\big(\{x\in\Omega:|f(x)|>\lambda\}\big)=\nu\big(\{x\in\Omega:|g(x)|>\lambda\}\big),\ \ \, \lambda\geq0,$$
 then $g\in X(\Omega,\nu)$ and $\|f\|_{X(\Omega,\nu)}=\|g\|_{X(\Omega,\nu)}$

Examples:

- * Lebesgue spaces $L^p(\Omega, \nu)$
- * Lorentz spaces $L^{p,q}(\Omega,\nu)$
- * Orlicz spaces
- *

X(0,1) is the *representation space* of the space $X(\Omega,\nu)$ if

```
X(0,1) is the representation space of the space X(\Omega,\nu) if * it is a rearrangement-invariant space over (0,1) endowed with the Lebesgue measure |\cdot|
```

- X(0,1) is the *representation space* of the space $X(\Omega,\nu)$ if
- * it is a rearrangement-invariant space over (0,1) endowed with the Lebesgue measure $|\cdot|$
- * whenever $f \in X(\Omega, \nu)$ and g is a measurable function on (0,1) satisfying

$$\nu(\{x \in \Omega : |f(x)| > \lambda\}) = |\{t \in (0,1) : |g(t)| > \lambda\}|, \ \lambda \ge 0,$$

then $g\in X(0,1)$ and $\|f\|_{X(\Omega,\nu)}=\|g\|_{X(0,1)}$


```
\Omega = {
m domain\ in\ } \mathbb{R}^n {
m \ fulfilling\ } |\Omega| = 1 
u = {
m the\ Lebesgue\ measure}
```

$$\begin{split} \Omega &= \text{domain in } \mathbb{R}^n \text{ fulfilling } |\Omega| = 1 \\ \nu &= \text{the Lebesgue measure} \end{split}$$

If $1 \leq p < \infty$ and

$$\|f\|_{X(\Omega,\nu)} = \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}},$$

$$\begin{split} \Omega &= \text{domain in } \mathbb{R}^n \text{ fulfilling } |\Omega| = 1 \\ \nu &= \text{the Lebesgue measure} \end{split}$$

If $1 \leq p < \infty$ and

$$||f||_{X(\Omega,\nu)} = \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}},$$

then

$$||g||_{X(0,1)} = \left(\int_0^1 |g(t)|^p dt\right)^{\frac{1}{p}}.$$

Let $X(\Omega, \nu)$ be a rearrangement-invariant space.

Let $X(\Omega, \nu)$ be a rearrangement-invariant space. For $m \in \mathbb{N}$ consider the *Sobolev space*

 $V^m X(\Omega, \nu) = \{u : u \text{ is } m\text{-times weakly differentiable in } \Omega$ and its weak derivatives of order m belong to $X(\Omega, \nu)\}$

Let $X(\Omega, \nu)$ be a rearrangement-invariant space. For $m \in \mathbb{N}$ consider the *Sobolev space*

$$V^m X(\Omega, \nu) = \{u : u \text{ is } m\text{-times weakly differentiable in } \Omega$$
 and its weak derivatives of order m belong to $X(\Omega, \nu)\}$

equipped with the norm

$$||u||_{V^mX(\Omega,\nu)} = \sum_{k=0}^{m-1} |||\nabla^k u|||_{L^1(\Omega,\nu)} + |||\nabla^m u|||_{X(\Omega,\nu)},$$

where $\nabla^k u$ denotes the vector of all k-th order weak derivatives of u (if $k=1,2,\ldots,m$) and $\nabla^0 u=u$.

Let $X(\Omega, \nu)$ be a rearrangement-invariant space. For $m \in \mathbb{N}$ consider the Sobolev space

$$V^m X(\Omega, \nu) = \{u : u \text{ is } m\text{-times weakly differentiable in } \Omega$$
 and its weak derivatives of order m belong to $X(\Omega, \nu)\}$

equipped with the norm

$$||u||_{V^mX(\Omega,\nu)} = \sum_{k=0}^{m-1} |||\nabla^k u|||_{L^1(\Omega,\nu)} + |||\nabla^m u|||_{X(\Omega,\nu)},$$

where $\nabla^k u$ denotes the vector of all k-th order weak derivatives of u (if k = 1, 2, ..., m) and $\nabla^0 u = u$.

Then $V^mX(\Omega,\nu)$ is a normed linear space.

Let $X(\Omega, \nu)$ and $Y(\Omega, \nu)$ be rearrangement-invariant spaces.

Let $X(\Omega, \nu)$ and $Y(\Omega, \nu)$ be rearrangement-invariant spaces. We are going to find a sufficient condition for

$$V^m X(\Omega, \nu) \hookrightarrow \hookrightarrow Y(\Omega, \nu).$$

Let $X(\Omega, \nu)$ and $Y(\Omega, \nu)$ be rearrangement-invariant spaces. We are going to find a sufficient condition for

$$V^m X(\Omega, \nu) \hookrightarrow \hookrightarrow Y(\Omega, \nu).$$

* We first describe an asymptotic behaviour of $I_{\Omega,\nu}$ in terms of its lower bound:

Let $X(\Omega, \nu)$ and $Y(\Omega, \nu)$ be rearrangement-invariant spaces. We are going to find a sufficient condition for

$$V^m X(\Omega, \nu) \hookrightarrow \hookrightarrow Y(\Omega, \nu).$$

* We first describe an asymptotic behaviour of $I_{\Omega,\nu}$ in terms of its lower bound:

$$I_{\Omega,\nu}(s) \geq cI(cs), \quad s \in [0,\frac{1}{2}],$$

for some nondecreasing function I with $I(s) \ge c's$.

Let $X(\Omega, \nu)$ and $Y(\Omega, \nu)$ be rearrangement-invariant spaces. We are going to find a sufficient condition for

$$V^m X(\Omega, \nu) \hookrightarrow \hookrightarrow Y(\Omega, \nu).$$

* We first describe an asymptotic behaviour of $I_{\Omega,\nu}$ in terms of its lower bound:

$$I_{\Omega,\nu}(s) \geq cI(cs), \quad s \in [0,\frac{1}{2}],$$

for some nondecreasing function I with $I(s) \ge c's$.

* We then consider certain one-dimensional operator H_I^m depending on I and m.

Let $X(\Omega, \nu)$ and $Y(\Omega, \nu)$ be rearrangement-invariant spaces. We are going to find a sufficient condition for

$$V^m X(\Omega, \nu) \hookrightarrow \hookrightarrow Y(\Omega, \nu).$$

* We first describe an asymptotic behaviour of $I_{\Omega,\nu}$ in terms of its lower bound:

$$I_{\Omega,\nu}(s) \geq cI(cs), \quad s \in [0,\frac{1}{2}],$$

for some nondecreasing function I with $I(s) \ge c's$.

- * We then consider certain one-dimensional operator H_I^m depending on I and m.
- * The sufficient condition will be

$$H_{I}^{m}: X(0,1) \to Y(0,1).$$

Let $X(\Omega, \nu)$ and $Y(\Omega, \nu)$ be rearrangement-invariant spaces. We are going to find a sufficient condition for

$$V^m X(\Omega, \nu) \hookrightarrow \hookrightarrow Y(\Omega, \nu).$$

* We first describe an asymptotic behaviour of $I_{\Omega,\nu}$ in terms of its lower bound:

$$I_{\Omega,\nu}(s) \geq cI(cs), \quad s \in [0,\frac{1}{2}],$$

for some nondecreasing function I with $I(s) \ge c's$.

- * We then consider certain one-dimensional operator H_I^m depending on I and m.
- * The sufficient condition will be

$$H_{I}^{m}: X(0,1) \to Y(0,1).$$

... reduction to a one-dimensional problem

Let I be as above.

Let I be as above. Consider the operator

$$H_If(t)=\int_t^1rac{|f(s)|}{I(s)}\,ds, \ \ f$$
 measurable on $(0,1), \ \ t\in(0,1).$

Let I be as above. Consider the operator

$$H_If(t)=\int_t^1rac{|f(s)|}{I(s)}\,ds, \quad f ext{ measurable on } (0,1), \quad t\in (0,1).$$

For $m \in \mathbb{N}$ we define

$$H_I^m = \underbrace{H_I \circ \cdots \circ H_I}_{m-times}.$$

Let I be as above. Consider the operator

$$H_If(t)=\int_t^1rac{|f(s)|}{I(s)}\,ds, \quad f ext{ measurable on } (0,1), \quad t\in (0,1).$$

For $m \in \mathbb{N}$ we define

$$H_I^m = \underbrace{H_I \circ \cdots \circ H_I}_{m-\text{times}}.$$

Then

$$H_l^m f(t) = \frac{1}{(m-1)!} \int_t^1 \frac{|f(s)|}{l(s)} \left(\int_t^s \frac{dr}{l(r)} \right)^{m-1} ds.$$

* Cianchi, Pick, S. (2013, submitted):

* Cianchi, Pick, S. (2013, submitted):

If (Ω, ν) and I are as above, then

$$H_I^m: X(0,1) \to Y(0,1) \quad \Rightarrow \quad V^m X(\Omega,\nu) \hookrightarrow Y(\Omega,\nu)$$

* Cianchi, Pick, S. (2013, submitted):

If (Ω, ν) and I are as above, then

$$H_I^m: X(0,1) \to Y(0,1) \quad \Rightarrow \quad V^m X(\Omega,\nu) \hookrightarrow Y(\Omega,\nu)$$

* almost-compact embeddings

 (R,μ) ... a totally σ -finite measure space

 (R,μ) ... a totally σ -finite measure space

Definition. A rearrangement-invariant space $X(R, \mu)$ is almost-compactly embedded into a rearrangement-invariant space $Y(R, \mu)$, denoted $X(R, \mu) \stackrel{*}{\hookrightarrow} Y(R, \mu)$,

 (R, μ) ... a totally σ -finite measure space

Definition. A rearrangement-invariant space $X(R, \mu)$ is almost-compactly embedded into a rearrangement-invariant space $Y(R, \mu)$, denoted $X(R, \mu) \stackrel{*}{\hookrightarrow} Y(R, \mu)$, if

$$\lim_{n\to\infty}\sup_{\|f\|_{X(R,\mu)}\leq 1}\|f\chi_{E_n}\|_{Y(R,\mu)}=0$$

for every sequence $(E_n)_{n=1}^{\infty}$ of subsets of R such that $\chi_{E_n} \to 0$ μ -a.e.

 (R, μ) ... a totally σ -finite measure space

Definition. A rearrangement-invariant space $X(R, \mu)$ is almost-compactly embedded into a rearrangement-invariant space $Y(R, \mu)$, denoted $X(R, \mu) \stackrel{*}{\hookrightarrow} Y(R, \mu)$, if

$$\lim_{n\to\infty}\sup_{\|f\|_{X(R,\mu)}\leq 1}\|f\chi_{E_n}\|_{Y(R,\mu)}=0$$

for every sequence $(E_n)_{n=1}^{\infty}$ of subsets of R such that $\chi_{E_n} \to 0$ μ -a.e.

for us:
$$(R, \mu) = (\Omega, \nu)$$
 or $(R, \mu) = ((0, 1), |\cdot|)$

 (R, μ) ... a totally σ -finite measure space

Definition. A rearrangement-invariant space $X(R, \mu)$ is almost-compactly embedded into a rearrangement-invariant space $Y(R, \mu)$, denoted $X(R, \mu) \stackrel{*}{\hookrightarrow} Y(R, \mu)$, if

$$\lim_{n\to\infty}\sup_{\|f\|_{X(R,\mu)}\leq 1}\|f\chi_{E_n}\|_{Y(R,\mu)}=0$$

for every sequence $(E_n)_{n=1}^{\infty}$ of subsets of R such that $\chi_{E_n} \to 0$ μ -a.e.

for us:
$$(R, \mu) = (\Omega, \nu)$$
 or $(R, \mu) = ((0, 1), |\cdot|)$

Observation.
$$X(\Omega, \nu) \stackrel{*}{\hookrightarrow} Y(\Omega, \nu) \Leftrightarrow X(0, 1) \stackrel{*}{\hookrightarrow} Y(0, 1)$$

Suppose that X(0,1) and Y(0,1) are rearrangement-invariant spaces.

Suppose that X(0,1) and Y(0,1) are rearrangement-invariant spaces. We can characterize

$$H_I^m: X(0,1) \rightarrow \rightarrow Y(0,1)$$

by an almost-compact embedding in two different ways:

Suppose that X(0,1) and Y(0,1) are rearrangement-invariant spaces. We can characterize

$$H_I^m: X(0,1) \rightarrow \rightarrow Y(0,1)$$

by an almost-compact embedding in two different ways:

The first way: $X_{m,l}^r(0,1) \stackrel{*}{\hookrightarrow} Y(0,1)$, where $X_{m,l}^r(0,1)$ is the smallest rearrangement-invariant space for which

$$H_I^m: X(0,1) \to X_{m,I}^r(0,1).$$

Suppose that X(0,1) and Y(0,1) are rearrangement-invariant spaces. We can characterize

$$H_I^m: X(0,1) \longrightarrow Y(0,1)$$

by an almost-compact embedding in two different ways:

The first way: $X_{m,l}^r(0,1) \stackrel{*}{\hookrightarrow} Y(0,1)$,

where $X_{m,l}^{r}(0,1)$ is the smallest rearrangement-invariant space for which

$$H_I^m: X(0,1) \to X_{m,I}^r(0,1).$$

The second way: $X(0,1) \stackrel{*}{\hookrightarrow} Y^d_{m,l}(0,1)$,

where $Y_{m,l}^d(0,1)$ is the largest rearrangement-invariant space for which

$$H_I^m: Y_{m,I}^d(0,1) \to Y(0,1).$$

Thank you for your attention.