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Some regularity results for plasticity problems.

The setup

notation

Ω ⊂ Rn, (preferably n = 3, Ω solid body)
f density of the body forces
p external loading
t (time-like) loading parameter

x 7→ x + u(x , t) displacement field

state of the deformed material: u, σ
small deformations, balance of forces

− div σ = f

Boundary conditions

clamped part: u|Γ = 0, Γ ⊂ ∂Ω,

external loading: σ · n = p on ∂Ω \ Γ
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Some regularity results for plasticity problems.

The setup

notation

Yield condition involves hardening variables ξ

F (σ, ξ) ≤ 0, F : convex function

von Mises: σD = σ − tr σ
n I (Deviatoric part)

F (σ, ξ) =

{
|σD | − (ξ + κ) isotropic hardening

|σD − ξD | − κ kinematic hardening

Relation between the stress-rate σ̇ and the strain rate ε̇:
involves the compliance tensor A (symmetric rank 4 tensor)
flow rule for ξ:
involves the hardening tensor H ∈ Rm×m

A,H positive definite
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Some regularity results for plasticity problems.

Mathematical formulation as a variational inequality

Admissible stresses and hardening variables

K(t): set of all pairs (τ, η) with

τ ∈ L2(Ω;Rn×n
sym ), η ∈ L2(Ω,Rm) (1)

τ fulfills the balance of forces in the weak form:

(τ,∇ϕ)Ω = (f , ϕ)Ω +

∫
∂Ω

pϕ do for all ϕ ∈ H1
Γ(Ω). (BF)

For isotropic hardening: m = 1,

η ∈ L2(Ω;R), |τD | − η ≤ κ, (YCI)

for kinematic hardening: m = n(n + 1)/2

η ∈ L2(Ω;Rn×n
sym ), |τD − ηD | ≤ κ. (YCK)



Some regularity results for plasticity problems.

Mathematical formulation as a variational inequality

Admissible stresses and hardening variables

Given:

f , ḟ ∈ L∞(0,T ; L∞(Ω)), f̈ ∈ L1(0,T ; L2),

p, ṗ ∈ L∞(0,T ; L∞(∂Ω)), p̈ ∈ L1(0,T ; L2(∂Ω)),

(σ0, 0) ∈ K(0)

Find σ ∈ L∞(L2), ξ ∈ L∞(L2) such that

σ̇ ∈ L2(L2), ξ̇ ∈ L2(L2)

(σ(t), ξ(t)) ∈ K(t), t ∈ [0,T ]

σ(0) = σ0, ξ(0) = 0

(Aσ̇, σ − τ) + (H ξ̇, ξ − η) ≤ 0 a.e. in [0,T ]

for all (τ, η) ∈ K(t).
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Some regularity results for plasticity problems.

Mathematical formulation as a variational inequality

The safe load condition

Definition (Safe load condition)

Exist σ̂ ∈ L∞(L2), ξ̂ ∈ L∞(L2):

˙̂σ ∈ L∞(L2), ¨̂σ ∈ L1(L2), ˙̂
ξ ∈ L∞(L2)

(σ̂(0), 0) ∈ K(0), ξ̂|t=0 = 0

(σ̂(t, .), ξ̂(t, .)) ∈ K(t),

and exists δ > 0:

|σ̂D | − ξ ≤ κ− δ or |σ̂D − ξ̂D | ≤ κ− δ, respectively.



Some regularity results for plasticity problems.

Mathematical formulation as a variational inequality

Existence

Johnson 78: Exists u ∈ L∞(H1
Γ) with u̇ ∈ L∞(H1

Γ),

and a multiplier λ̇ ∈ L∞(0,T ; L2(Ω,R)) (Frehse & Loebach 08)

s.t. for isotropic hardening:

1

2
(∇u̇ +∇u̇) = Aσ̇ + λ̇σD |σD |−1

0 = H ξ̇ − λ̇

where λ̇ ≥ 0 a.e. and λ̇(|σD | − ξ − κ) = 0,
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Γ) with u̇ ∈ L∞(H1

Γ),
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Mathematical formulation as a variational inequality

Existence

1

2
(∇u̇ +∇u̇) = Aσ̇ + λ̇(σD − ξD)|σD − ξD |

0 = H ξ̇ − λ̇(σD − ξD)|σD − ξD |.

strain=elastic strain + plastic strain

ε̇ = λ̇
∂

∂σ
F (σ, ξ), where ε̇pl = 0, if F < 0,

H ξ̇ = −λ̇ ∂
∂ξ

F (σ, ξ)
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Regularity results

Known results: displacement, stresses and strains

Johnson 78 ∇u̇ ∈ L∞(L2)

Seregin 94 σ, ξ ∈ L∞(H1
loc)

∇(ε) ∈ L∞(C ∗loc) isotropic hard.

Alber & Nessenenko ’09 σ, ξ ∈ L∞(H
1
3
−δ) kinematic hard

Knees 08 σ, ξ ∈ L∞(H
1
2
−δ) kinematic hard

Frehse & Löbach ’09 σ, ξ ∈ L∞(H
1
2
−δ) kinem. & isotr. hard

Löbach ’09 σ, ξ ∈ L∞(H
1
2

+δ) kinem. & isot. hard

Frehse & Löbach ’11 ∇u̇, σ̇, ξ̇ ∈ L∞(L2+2δ) kinem. & isotr. hard



Some regularity results for plasticity problems.

Regularity results

Regularity for the velocities

∆s
tw(t, x) = w(t + h, x)− w(t, x),

∆s
i w(t, x) = w(t, x + sei )− w(t, x).

Theorem (Regularity in time, Frehse & Sp. 2012)

h−2

h∫
0

T−h∫
0

∫
Ω

[
|∆s

t σ̇|2 + |∆s
t ξ̇|2

]
≤ C

uniformly for 0 < h < h0.
⇒ for kinematic hardening:

h−2

T−h∫
0

h∫
0

∫
Ω

|∆s
t∇u̇|2 ≤ C
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Regularity for the velocities
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0

∫
Ω

[
|∆s

t σ̇|2 + |∆s
t ξ̇|2

]
≤ C

uniformly for 0 < h < h0.

Comment: Even prolongation in time: σ : [−T ,T ]→ Rn×n
sym

periodic,

σ =
∞∑

m=−∞
cm(x) exp(

imπ

2T
t) ⇒

∞∑
m=−∞

m1−δ
∫
Ω

|cm(x)|2dy ≤ Cδ for all δ > 0.



Some regularity results for plasticity problems.

Regularity results

Regularity for the velocities

∆s
tw(t, x) = w(t + h, x)− w(t, x),

∆s
i w(t, x) = w(t, x + sei )− w(t, x).

h−2

h∫
0

T−h∫
0

∫
Ω

[
|∆s

t σ̇|2 + |∆s
t ξ̇|2

]
≤ C

uniformly for 0 < h < h0.
Comment: Even prolongation in time: σ : [−T ,T ]→ Rn×n

sym

periodic,

σ =
∞∑

m=−∞
cm(x) exp(

imπ

2T
t) ⇒

∞∑
m=−∞

m1−δ
∫
Ω

|cm(x)|2dy ≤ Cδ for all δ > 0.



Some regularity results for plasticity problems.

Regularity results

Regularity for the velocities

Theorem (Local regularity in space)

sup
0≤h≤h0

h−1

T−h∫
0

∫
Ω0

|∆h
i σ̇|2 + |∆h

i ξ̇|2 ≤ C , i = 1, . . . , n

for any domain Ω0 such that Ω0 ⊂ Ω and h0 ≤ dist(∂Ω, ∂Ω0).



Some regularity results for plasticity problems.

Main ingredients of the proof

The penalty problem

Penalty potential

Gµ(σ, ξ) =
1

2µ
[F (σ, ξ)]2+ ⇒

∇Gµ =


1
µ [F ]+

(
σD |σD |−1

−1

)
isotr. h.

1
µ [F ]+

σD−ξD
|σD−ξD |

(
1

−1

)
kinem. h.

|∂ξGµ| = |∂σGµ|

∂ξGµ = −∂σGµ
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Some regularity results for plasticity problems.

Main ingredients of the proof

The penalty problem

Find σµ, ξµ ∈ L∞(L2) with σ̇µ, ξ̇µ ∈ L∞(L2),

(σµ, ξµ)|t=0 = (σ0, 0) (IC)

(σµ,∇ϕ)Ω = (f , ϕ)Ω +

∫
∂Ω

pϕ do for all ϕ ∈ H1
Γ(Ω). (Bof)

0 = (Aσ̇µ + ∂σGµ, τ)Ω (P1)

for all symmetric τ ∈ {∇ϕ : ϕ ∈ H1
Γ}⊥

0 = H ξ̇µ + ∂ξGµ (P2)

Well known: Problem has a unique solution, along with a sequence
of handy priori estimates independent on µ.
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Main ingredients of the proof

Basic ideas for the time regularity

For the time regularity

0 = (Aσ̇µ + ∂σGµ, τ)Ω (P1)

0 = H ξ̇µ + ∂ξGµ (P2)

I test (P1) with
h∫
0

∆s
t σ̇µds and (P2) with

h∫
0

∆s
t ξ̇µds

I use the elementary relation

Aτ : ∆s
tτ = −1

2
A∆s

tτ : ∆s
tτ +

1

2
∆s

t (Aτ : τ),
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Main ingredients of the proof

Basic ideas for the time regularity

Arrive at

t2−h∫
t1

h∫
0

(A∆s
t σ̇µ,∆

s
t σ̇µ)Ω + (H∆s

t ξ̇µ,∆
s
t ξ̇µ)Ω

=

t2−h∫
t1

h∫
0

∫
Ω

∆s
t (Aσ̇µ : σ̇µ) + ∆s

t (H ξ̇µ : ξ̇µ)

+ term with Gµ − 2

t2−h∫
t1

h∫
0

(∇u̇µ,∆s
t σ̇µ)Ω
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Main ingredients of the proof

Basic ideas for the time regularity

In the limit µ→ 0, t1 → 0 t2 → T :

I {. . . } ≥ C
h∫
0

T−h∫
0

∫
Ω

|∆s
t σ̇µ|2 + |∆s

t ξ̇µ|2

I {. . .} ≤ C (‖σ̇µ‖L∞(L2) + ‖ξ̇µ‖L∞(L2))h2

I lim sup {. . . } ≤ 0 (use the convexity of the the penalty
potential and the following convergence result

T∫
0

∫
Ω

Gµ(σµ, ξµ)→ 0 as µ→ 0,

I {. . . } ≤ Ch2 (use the safe load and bounds for ‖∇u‖L∞(L2))
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Main ingredients of the proof

Local regularity in space

Local regularity in space

Test (P1), (P2) with
ζ2(E s

t E
h
i − I )σ̇µ = σ̇µ(t + s, x + hei )− σ̇µ(t, x), ζ2 . . . ξ̇µ

ζ: Localization function
In principle the arguments are similar, but in detail even more
tricky as for the time direction.

In case you wonder:

|(E s
t E

h
i − I )σ̇|2 = |(E s

t E
h
i − Eh

i + Eh
i − I )σ̇|2

≥ 7

8
|∆h

i σ̇|2 −
1

8
|∆s

tE
h
i σ̇|2

i.e. for the space regularity one has to use the estimates in time
also.
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Main ingredients of the proof

Local regularity in space

Estimates up to the boundary:

I W. l. o. g.: Boundary flat,

I tangential derivatives like in the interior case

I use integrated embedding theorems

I ... still work in progress!

Thank you!
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