A Remark on Transport Equation with $b \in BV$ and $\text{div}_{\times} b \in BMO$.

Paweł Subko
University of Warsaw, Institute of Applied Mathematics and
Mechanics
advisor: dr Agnieszka Świerczewska-Gwiazda

May 2, 2014

EUROPEAN REGIONAL DEVELOPMENT FUND

Investigate:

$$\begin{cases} \partial_t u(t,x) + \boldsymbol{b}(t,x) \cdot \nabla u(t,x) = 0, \\ u(0,x) = \bar{u}(x), \end{cases}$$

where $\boldsymbol{b}(t,x): \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}^d$ and $\bar{u}(x): \mathbb{R}^d \mapsto \mathbb{R}^d$ are given and $u(t,x): \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}$ is unknown.

Problem: What regularity of **b** guarantees uniqueness of the solution $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d)$?

Investigate:

$$\begin{cases} \partial_t u(t,x) + \boldsymbol{b}(t,x) \cdot \nabla u(t,x) = 0, \\ u(0,x) = \bar{u}(x), \end{cases}$$

where $\boldsymbol{b}(t,x): \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}^d$ and $\bar{u}(x): \mathbb{R}^d \mapsto \mathbb{R}^d$ are given and $u(t,x): \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}$ is unknown.

Problem: What regularity of **b** guarantees uniqueness of the solution $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d)$?

Remark: Do not be concerned with \bar{u} . Usually $\bar{u}(x) \in L^{\infty}(\mathbb{R}^d)$.

Problem

Investigate:

$$\begin{cases} \partial_t u(t,x) + \boldsymbol{b}(t,x) \cdot \nabla u(t,x) = 0, \\ u(0,x) = \bar{u}(x), \end{cases}$$

where $\boldsymbol{b}(t,x): \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}^d$ and $\bar{u}(x): \mathbb{R}^d \mapsto \mathbb{R}^d$ are given and $u(t,x): \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}$ is unknown.

Problem: What regularity of **b** guarantees uniqueness of the solution $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d)$?

Remark: Do not be concerned with \bar{u} . Usually $\bar{u}(x) \in L^{\infty}(\mathbb{R}^d)$.

Assume: b - smooth, \bar{u} - smooth.

Associated flow: $x_0 \mapsto X(t; x_0)$ - diffeomorphism,

$$\begin{cases} \dot{X}(t; x_0) = \boldsymbol{b}(t, X(t; x_0)) \\ X(0; x_0) = x_0 \quad \forall_{x_0 \in \mathbb{R}} \forall_{t \in \mathbb{R}_+} \end{cases}$$

Assume: b - smooth, \bar{u} - smooth.

Associated flow: $x_0 \mapsto X(t; x_0)$ - diffeomorphism,

$$\begin{cases} \dot{X}(t; x_0) = \boldsymbol{b}(t, X(t; x_0)) \\ X(0; x_0) = x_0 \quad \forall_{x_0 \in \mathbb{R}} \forall_{t \in \mathbb{R}_+} \end{cases}$$

Method of characteristics: $u(t, X(t; x_0)) = \bar{u}(x_0)$.

Assume: b - smooth, \bar{u} - smooth.

Associated flow: $x_0 \mapsto X(t; x_0)$ - diffeomorphism,

$$\begin{cases} \dot{X}(t; x_0) = \boldsymbol{b}(t, X(t; x_0)) \\ X(0; x_0) = x_0 \quad \forall_{x_0 \in \mathbb{R}} \forall_{t \in \mathbb{R}_+} \end{cases}$$

Method of characteristics: $u(t, X(t; x_0)) = \bar{u}(x_0)$.

Uniqueness: If b - Lipschitz then Cauchy-Lipschitz theorem implies uniqueness to the flow \Rightarrow transport equation.

Assume: b - smooth, \bar{u} - smooth.

Associated flow: $x_0 \mapsto X(t; x_0)$ - diffeomorphism,

$$\begin{cases} \dot{X}(t; x_0) = \boldsymbol{b}(t, X(t; x_0)) \\ X(0; x_0) = x_0 \quad \forall_{x_0 \in \mathbb{R}} \forall_{t \in \mathbb{R}_+} \end{cases}$$

Method of characteristics: $u(t, X(t; x_0)) = \bar{u}(x_0)$.

Uniqueness: If b - Lipschitz then Cauchy-Lipschitz theorem implies uniqueness to the flow \Rightarrow transport equation.

Assume: b - smooth, \bar{u} - smooth.

Associated flow: $x_0 \mapsto X(t; x_0)$ - diffeomorphism,

$$\begin{cases} \dot{X}(t; x_0) = \boldsymbol{b}(t, X(t; x_0)) \\ X(0; x_0) = x_0 \quad \forall_{x_0 \in \mathbb{R}} \forall_{t \in \mathbb{R}_+} \end{cases}$$

Method of characteristics: $u(t, X(t; x_0)) = \bar{u}(x_0)$.

Uniqueness: If b - Lipschitz then Cauchy-Lipschitz theorem implies uniqueness to the flow \Rightarrow transport equation.

Irregular transport

Motivation: Shock waves.

Weak formulation: Let $\bar{u} \in L^{\infty}((0,T) \times \mathbb{R}^d)$, $\boldsymbol{b}, \operatorname{div} \boldsymbol{b} \in L^1_{loc}(0,T; L^1_{loc}(\mathbb{R}^d))$. We say that $u \in L^{\infty}((0,T) \times \mathbb{R}^d)$ is a weak solution to transport equation iff the following integral identity holds

$$\int_0^T \int_{\mathbb{R}^d} u \{ \partial_t \varphi + \boldsymbol{b} \cdot D_x \varphi + \varphi \operatorname{div}_x \boldsymbol{b} \} dt dx = - \int_{\mathbb{R}^d} \bar{u}(x) \varphi(0, x) dx$$

for each $\varphi \in C^{\infty}([0,T]; C_0^{\infty}(\mathbb{R}^d))$ such that $\varphi|_{t=T}=0$.

Irregular transport

Motivation: Shock waves.

Weak formulation: Let $\bar{u} \in L^{\infty}((0,T) \times \mathbb{R}^d)$, $\boldsymbol{b}, \operatorname{div} \boldsymbol{b} \in L^1_{loc}(0,T; L^1_{loc}(\mathbb{R}^d))$. We say that $u \in L^{\infty}((0,T) \times \mathbb{R}^d)$ is a weak solution to transport equation iff the following integral identity holds

$$\int_0^T \int_{\mathbb{R}^d} u \{ \partial_t \varphi + \boldsymbol{b} \cdot D_x \varphi + \varphi \operatorname{div}_x \boldsymbol{b} \} dt dx = - \int_{\mathbb{R}^d} \bar{u}(x) \varphi(0, x) dx$$

for each $\varphi \in C^{\infty}([0,T];C_0^{\infty}(\mathbb{R}^d))$ such that $\varphi|_{t=T}=0$.

Question: How can we deal with irregular **b**?

Irregular transport

Motivation: Shock waves.

Weak formulation: Let $\bar{u} \in L^{\infty}((0,T) \times \mathbb{R}^d)$, $\boldsymbol{b}, \operatorname{div} \boldsymbol{b} \in L^1_{loc}(0,T; L^1_{loc}(\mathbb{R}^d))$. We say that $u \in L^{\infty}((0,T) \times \mathbb{R}^d)$ is a weak solution to transport equation iff the following integral identity holds

$$\int_0^T \int_{\mathbb{R}^d} u \{ \partial_t \varphi + \boldsymbol{b} \cdot D_x \varphi + \varphi \operatorname{div}_x \boldsymbol{b} \} dt dx = - \int_{\mathbb{R}^d} \bar{u}(x) \varphi(0, x) dx$$

for each $\varphi \in C^{\infty}([0,T];C_0^{\infty}(\mathbb{R}^d))$ such that $\varphi|_{t=T}=0$.

Question: How can we deal with irregular b?

- 1. Renormalization concept (chain rule)
- **2.** Renormalization \Rightarrow Uniqueness

- 1. Renormalization concept (chain rule)
- 2. Renormalization ⇒ Uniqueness
- 1. R. J. DiPerna and P.-L. Lions, *Ordinary differential equations, transport theory and Sobolev spaces*, Invent. Math. 98 (1989), no. 3, 511-547.

- 1. Renormalization concept (chain rule)
- **2.** Renormalization \Rightarrow Uniqueness
- 1. R. J. DiPerna and P.-L. Lions, *Ordinary differential equations, transport theory and Sobolev spaces*, Invent. Math. 98 (1989), no. 3, 511-547.
- 2. L. Ambrosio, *Transport equation and Cauchy problem for BV vector fields*, Invent. Math. 158 (2004), no. 2, 227-260.

- 1. Renormalization concept (chain rule)
- **2.** Renormalization \Rightarrow Uniqueness
- 1. R. J. DiPerna and P.-L. Lions, *Ordinary differential equations, transport theory and Sobolev spaces*, Invent. Math. 98 (1989), no. 3, 511-547.
- 2. L. Ambrosio, *Transport equation and Cauchy problem for BV vector fields*, Invent. Math. 158 (2004), no. 2, 227-260.
- 3. P. B. Mucha, *Transport equation: extension of classical results* for div $b \in BMO$, J. Differential Equations 249 (2010), no. 8, 1871-1883.

- 1. Renormalization concept (chain rule)
- **2.** Renormalization \Rightarrow Uniqueness
- 1. R. J. DiPerna and P.-L. Lions, *Ordinary differential equations, transport theory and Sobolev spaces*, Invent. Math. 98 (1989), no. 3, 511-547.
- 2. L. Ambrosio, *Transport equation and Cauchy problem for BV vector fields*, Invent. Math. 158 (2004), no. 2, 227-260.
- 3. P. B. Mucha, *Transport equation: extension of classical results* for div $b \in BMO$, J. Differential Equations 249 (2010), no. 8, 1871-1883.

Assume u is a smooth solution to

$$\partial_t u + \boldsymbol{b} \cdot \nabla u = 0,$$

$$\beta'(u)\partial_t u + \beta'(u)\boldsymbol{b} \cdot \nabla u = 0,$$

Assume u is a smooth solution to

$$\partial_t u + \boldsymbol{b} \cdot \nabla u = 0,$$

$$\beta'(u)\partial_t u + \beta'(u)\boldsymbol{b} \cdot \nabla u = 0,$$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot \nabla \beta(u) = 0.$$

Assume u is a smooth solution to

$$\partial_t u + \boldsymbol{b} \cdot \nabla u = 0,$$

$$\beta'(u)\partial_t u + \beta'(u)\boldsymbol{b} \cdot \nabla u = 0,$$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot \nabla \beta(u) = 0.$$

Renormalized solution: We say the solution u is renormalized iff for every $\beta(y) \in C^1(\mathbb{R}; \mathbb{R})$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot \nabla \beta(u) = 0.$$

Assume u is a smooth solution to

$$\partial_t u + \boldsymbol{b} \cdot \nabla u = 0,$$

$$\beta'(u)\partial_t u + \beta'(u)\boldsymbol{b} \cdot \nabla u = 0,$$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot \nabla \beta(u) = 0.$$

Renormalized solution: We say the solution u is renormalized iff for every $\beta(y) \in C^1(\mathbb{R}; \mathbb{R})$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot \nabla \beta(u) = 0.$$

Renormalization property of b: We say b has the renormalization property iff for every $\beta(y) \in C^1(\mathbb{R}; \mathbb{R})$, for every solution u

$$\partial_t \beta(u) + \boldsymbol{b} \cdot \nabla \beta(u) = 0.$$

Assume u is a smooth solution to

$$\partial_t u + \boldsymbol{b} \cdot \nabla u = 0,$$

$$\beta'(u)\partial_t u + \beta'(u)\boldsymbol{b} \cdot \nabla u = 0,$$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot \nabla \beta(u) = 0.$$

Renormalized solution: We say the solution u is renormalized iff for every $\beta(y) \in C^1(\mathbb{R}; \mathbb{R})$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot \nabla \beta(u) = 0.$$

Renormalization property of b: We say b has the renormalization property iff for every $\beta(y) \in C^1(\mathbb{R}; \mathbb{R})$, for every solution u

$$\partial_t \beta(u) + \boldsymbol{b} \cdot \nabla \beta(u) = 0.$$

Assume: b has the renormalization property. Formally:

$$\begin{cases} \partial_t u^2 + \operatorname{div}(\boldsymbol{b}u^2) = u^2 \operatorname{div} \boldsymbol{b}, \\ u^2(0, \cdot) = 0, \end{cases}$$

Assume: b has the renormalization property. **Formally:**

$$\begin{cases} \partial_t u^2 + \operatorname{div}(\boldsymbol{b}u^2) = u^2 \operatorname{div} \boldsymbol{b}, \\ u^2(0, \cdot) = 0, \end{cases}$$

Energy estimates:

$$\partial_t \int_{\mathbb{R}^d} u^2 dx = \int_{\mathbb{R}^d} u^2 \mathrm{div} \, \boldsymbol{b} \, dx \leq \ldots$$
?

Assume: b has the renormalization property. **Formally:**

$$\begin{cases} \partial_t u^2 + \operatorname{div}(\boldsymbol{b}u^2) = u^2 \operatorname{div} \boldsymbol{b}, \\ u^2(0,\cdot) = 0, \end{cases}$$

Energy estimates:

$$\partial_t \int_{\mathbb{R}^d} u^2 dx = \int_{\mathbb{R}^d} u^2 \mathrm{div} \, \boldsymbol{b} \, dx \leq \ldots$$
?

 $u^2 \equiv 0 \Rightarrow Uniqueness$

Assume: b has the renormalization property. **Formally:**

$$\begin{cases} \partial_t u^2 + \operatorname{div}(\boldsymbol{b}u^2) = u^2 \operatorname{div} \boldsymbol{b}, \\ u^2(0, \cdot) = 0, \end{cases}$$

Energy estimates:

$$\partial_t \int_{\mathbb{R}^d} u^2 dx = \int_{\mathbb{R}^d} u^2 \mathrm{div} \, \boldsymbol{b} \, dx \leq \ldots$$
?

 $u^2 \equiv 0 \Rightarrow Uniqueness$

1. When does **b** have the renormalization property?

DiPerna & Lions	Ambrosio	Mucha
$\boldsymbol{b} \in W^{1,1}, \operatorname{div} \boldsymbol{b} \in L^1$	$oldsymbol{b} \in BV$, div $oldsymbol{b} \ll \mathcal{L}^d$	$\boldsymbol{b} \in W^{1,1}, \operatorname{div} \boldsymbol{b} \in L^1$

1. When does **b** have the renormalization property?

DiPerna & Lions	Ambrosio	Mucha
$m{b} \in W^{1,1}, \operatorname{div} m{b} \in L^1$	$m{b} \in BV$, div $m{b} \ll \mathcal{L}^d$	$\boldsymbol{b} \in W^{1,1}, \operatorname{div} \boldsymbol{b} \in L^1$

2. What assumptions on **b** guarantee uniqueness?

1. When does **b** have the renormalization property?

DiPerna & Lions	Ambrosio	Mucha
$\boldsymbol{b} \in W^{1,1}, \operatorname{div} \boldsymbol{b} \in L^1$	$m{b} \in BV$, div $m{b} \ll \mathcal{L}^d$	$\boldsymbol{b} \in W^{1,1}, \operatorname{div} \boldsymbol{b} \in L^1$

2. What assumptions on **b** guarantee uniqueness?

DiPerna & Lions	Ambrosio	Mucha
$div oldsymbol{b} \in L^\infty$	$div oldsymbol{b} \in L^\infty$	div b ∈ BMO

1. When does **b** have the renormalization property?

DiPerna & Lions	Ambrosio	Mucha
$m{b} \in W^{1,1}, \operatorname{div} m{b} \in L^1$	$m{b} \in BV$, $\operatorname{div} m{b} \ll \mathcal{L}^d$	$\boldsymbol{b} \in W^{1,1}, \operatorname{div} \boldsymbol{b} \in L^1$

2. What assumptions on **b** guarantee uniqueness?

DiPerna & Lions	Ambrosio	Mucha
$div oldsymbol{b} \in L^\infty$	$div \boldsymbol{b} \in L^\infty$	$div oldsymbol{b} \in BMO$

3. P. S., A remark on transport equation with $\mathbf{b} \in BV$ and $\operatorname{div} \mathbf{b} \in BMO$ Coll. Math. (accepted)

1. When does **b** have the renormalization property?

DiPerna & Lions	Ambrosio	Mucha
$\boldsymbol{b} \in W^{1,1}, \operatorname{div} \boldsymbol{b} \in L^1$	$oldsymbol{b} \in BV$, div $oldsymbol{b} \ll \mathcal{L}^d$	$m{b} \in W^{1,1}, \operatorname{div} m{b} \in L^1$

2. What assumptions on **b** guarantee uniqueness?

DiPerna & Lions	Ambrosio	Mucha
$div oldsymbol{b} \in L^\infty$	$div oldsymbol{b} \in L^\infty$	$div oldsymbol{b} \in BMO$

3. P. S., A remark on transport equation with $\mathbf{b} \in BV$ and $\operatorname{div} \mathbf{b} \in BMO$ Coll. Math. (accepted)

Theorem (Ambrosio): Let $\boldsymbol{b} \in L^1_{loc}(0,T;BV_{loc}(\mathbb{R}^d))$, $\operatorname{div} \boldsymbol{b} \ll \mathcal{L}^d$. Then \boldsymbol{b} has the renormalization property.

Sketch of the proof: Mollify transport equation to obtain

$$\partial_t u_{\epsilon} + \boldsymbol{b} \cdot \nabla u_{\epsilon} = \boldsymbol{R}_{\epsilon},$$

Theorem (Ambrosio): Let $\mathbf{b} \in L^1_{loc}(0, T; BV_{loc}(\mathbb{R}^d))$, $\operatorname{div} \mathbf{b} \ll \mathcal{L}^d$. Then \mathbf{b} has the renormalization property.

Sketch of the proof: Mollify transport equation to obtain

$$\partial_{t} u_{\epsilon} + \boldsymbol{b} \cdot \nabla u_{\epsilon} = \boldsymbol{R}_{\epsilon},$$
$$\partial_{t} \beta(u_{\epsilon}) + \boldsymbol{b} \cdot \nabla \beta(u_{\epsilon}) = \beta'(u_{\epsilon}) \boldsymbol{R}_{\epsilon},$$

Theorem (Ambrosio): Let $\boldsymbol{b} \in L^1_{loc}(0, T; BV_{loc}(\mathbb{R}^d))$, $\operatorname{div} \boldsymbol{b} \ll \mathcal{L}^d$. Then \boldsymbol{b} has the renormalization property.

Sketch of the proof: Mollify transport equation to obtain

$$\partial_t u_{\epsilon} + \boldsymbol{b} \cdot \nabla u_{\epsilon} = \boldsymbol{R}_{\epsilon},$$
$$\partial_t \beta(u_{\epsilon}) + \boldsymbol{b} \cdot \nabla \beta(u_{\epsilon}) = \beta'(u_{\epsilon}) \boldsymbol{R}_{\epsilon},$$

where

$$R_{\epsilon}(t,x) = \int_{\mathbb{R}^d} u(x - \epsilon z) \left(\frac{b(t, x - \epsilon z) - b(t, x)}{\epsilon} \cdot \nabla \eta(z) \right) dz - (u \operatorname{div} b) * \eta^{\epsilon},$$

 η^{ϵ} - standard family of mollifiers

Theorem (Ambrosio): Let $\boldsymbol{b} \in L^1_{loc}(0, T; BV_{loc}(\mathbb{R}^d))$, $\operatorname{div} \boldsymbol{b} \ll \mathcal{L}^d$. Then \boldsymbol{b} has the renormalization property.

Sketch of the proof: Mollify transport equation to obtain

$$\partial_t u_{\epsilon} + \boldsymbol{b} \cdot \nabla u_{\epsilon} = \boldsymbol{R}_{\epsilon},$$
$$\partial_t \beta(u_{\epsilon}) + \boldsymbol{b} \cdot \nabla \beta(u_{\epsilon}) = \beta'(u_{\epsilon}) \boldsymbol{R}_{\epsilon},$$

where

$$R_{\epsilon}(t,x) = \int_{\mathbb{R}^d} u(x - \epsilon z) \left(\frac{\boldsymbol{b}(t,x - \epsilon z) - \boldsymbol{b}(t,x)}{\epsilon} \cdot \nabla \eta(z) \right) dz - (u \operatorname{div} \boldsymbol{b}) * \eta^{\epsilon},$$

 η^{ϵ} - standard family of mollifiers

Difference quotients decomposition

For $B \in BV(\mathbb{R}^d)$ we have $DB = D^aB + D^sB$ and $D^aB = \nabla B\mathcal{L}^d$.

Decomposition Lemma Let $B \in BV_{loc}(\mathbb{R}^d, \mathbb{R}^m)$ and $z \in \mathbb{R}^d$. Then there exists a decomposition

$$\frac{B(x+\epsilon z)-B(x)}{\epsilon}=B_z^{1,\epsilon}(x)+B_z^{2,\epsilon}(x),$$

Difference quotients decomposition

For $B \in BV(\mathbb{R}^d)$ we have $DB = D^aB + D^sB$ and $D^aB = \nabla B\mathcal{L}^d$.

Decomposition Lemma Let $B \in BV_{loc}(\mathbb{R}^d, \mathbb{R}^m)$ and $z \in \mathbb{R}^d$. Then there exists a decomposition

$$\frac{B(x+\epsilon z)-B(x)}{\epsilon}=B_z^{1,\epsilon}(x)+B_z^{2,\epsilon}(x),$$

and the following holds:

$$B_z^{1,\epsilon}(x) \xrightarrow[\epsilon \to 0]{} \nabla B(x) \cdot z$$
 strongly in $L^1_{loc}(\mathbb{R}^d, \mathbb{R}^m)$.

Difference quotients decomposition

For $B \in BV(\mathbb{R}^d)$ we have $DB = D^aB + D^sB$ and $D^aB = \nabla B\mathcal{L}^d$.

Decomposition Lemma Let $B \in BV_{loc}(\mathbb{R}^d, \mathbb{R}^m)$ and $z \in \mathbb{R}^d$. Then there exists a decomposition

$$\frac{B(x+\epsilon z)-B(x)}{\epsilon}=B_z^{1,\epsilon}(x)+B_z^{2,\epsilon}(x),$$

and the following holds:

$$B_z^{1,\epsilon}(x) \xrightarrow[\epsilon \to 0]{} \nabla B(x) \cdot z$$
 strongly in $L^1_{loc}(\mathbb{R}^d, \mathbb{R}^m)$.

Additionally we have

$$\limsup_{\epsilon \to 0} \int_{K} |B_{z}^{2,\epsilon}(x)| dx \le |D^{s}B \cdot z|(K)$$

for each compact $K \subset \mathbb{R}^d$.

Difference quotients decomposition

For $B \in BV(\mathbb{R}^d)$ we have $DB = D^aB + D^sB$ and $D^aB = \nabla B\mathcal{L}^d$.

Decomposition Lemma Let $B \in BV_{loc}(\mathbb{R}^d, \mathbb{R}^m)$ and $z \in \mathbb{R}^d$.

Then there exists a decomposition

$$\frac{B(x+\epsilon z)-B(x)}{\epsilon}=B_z^{1,\epsilon}(x)+B_z^{2,\epsilon}(x),$$

and the following holds:

$$B_z^{1,\epsilon}(x) \xrightarrow[\epsilon \to 0]{} \nabla B(x) \cdot z$$
 strongly in $L^1_{loc}(\mathbb{R}^d, \mathbb{R}^m)$.

Additionally we have

$$\limsup_{\epsilon \to 0} \int_{K} |B_{z}^{2,\epsilon}(x)| dx \le |D^{s}B \cdot z|(K)$$

for each compact $K \subset \mathbb{R}^d$.

$$R_{\epsilon}(t,x) = \dots \frac{\boldsymbol{b}(t,x-\epsilon z) - \boldsymbol{b}(t,x)}{\epsilon} \dots,$$

$$R_{\epsilon}(t,x) = \dots (B_z^{1,\epsilon}(x) + B_z^{2,\epsilon}(x)) \dots,$$

$$R_{\epsilon}(t,x) = \dots \frac{\boldsymbol{b}(t,x-\epsilon z) - \boldsymbol{b}(t,x)}{\epsilon} \dots,$$

$$R_{\epsilon}(t,x) = \dots (B_z^{1,\epsilon}(x) + B_z^{2,\epsilon}(x)) \dots,$$

$$R_{\epsilon} = R_{\epsilon}^{1} + R_{\epsilon}^{2},$$

$$R_{\epsilon}(t,x) = \dots \frac{\boldsymbol{b}(t,x-\epsilon z) - \boldsymbol{b}(t,x)}{\epsilon} \dots,$$

$$R_{\epsilon}(t,x) = \dots (B_z^{1,\epsilon}(x) + B_z^{2,\epsilon}(x)) \dots,$$

 $R_{\epsilon} = R_{\epsilon}^{1} + R_{\epsilon}^{2},$
 $R_{\epsilon}^{1} \to 0 \quad \text{in} \quad L^{1}(0,T;L^{1}(\mathbb{R}^{d}))$

$$R_{\epsilon}(t,x) = \dots \frac{\boldsymbol{b}(t,x-\epsilon z) - \boldsymbol{b}(t,x)}{\epsilon} \dots,$$

$$R_{\epsilon}(t,x) = \dots (B_{z}^{1,\epsilon}(x) + B_{z}^{2,\epsilon}(x)) \dots,$$

$$R_{\epsilon} = R_{\epsilon}^{1} + R_{\epsilon}^{2},$$

$$R_{\epsilon}^{1} \to 0 \quad \text{in} \quad L^{1}(0,T;L^{1}(\mathbb{R}^{d}))$$

Using the identity $D^s \boldsymbol{b}(t,\cdot) = M(t,x)|D^s \boldsymbol{b}(t,\cdot)|$ (where $M(t,x): I \times \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d$ is the Radon-Nikodym derivative of $D^s \boldsymbol{b}(t,\cdot)$ with respect to $|D^s \boldsymbol{b}(t,\cdot)|$).

$$R_{\epsilon}(t,x) = \dots \frac{\boldsymbol{b}(t,x-\epsilon z) - \boldsymbol{b}(t,x)}{\epsilon} \dots,$$

$$R_{\epsilon}(t,x) = \dots (B_{z}^{1,\epsilon}(x) + B_{z}^{2,\epsilon}(x)) \dots,$$

$$R_{\epsilon} = R_{\epsilon}^{1} + R_{\epsilon}^{2},$$

$$R_{\epsilon}^{1} \to 0 \quad \text{in} \quad L^{1}(0,T;L^{1}(\mathbb{R}^{d}))$$

Using the identity $D^s \boldsymbol{b}(t,\cdot) = M(t,x)|D^s \boldsymbol{b}(t,\cdot)|$ (where $M(t,x): I \times \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d$ is the Radon-Nikodym derivative of $D^s \boldsymbol{b}(t,\cdot)$ with respect to $|D^s \boldsymbol{b}(t,\cdot)|$). Estimate

$$\begin{split} &\limsup_{\epsilon \to 0} \int_{I} \int_{K} |R_{\epsilon}^{2}(x)| dx dt \\ &\leq ||u||_{L^{\infty}} \int_{\mathbb{R}^{d}} |\nabla \eta(z) \cdot M(t,x) \cdot z| dz \ |D^{s} \pmb{b}| (I \times K). \end{split}$$

$$R_{\epsilon}(t,x) = \dots \frac{\boldsymbol{b}(t,x-\epsilon z) - \boldsymbol{b}(t,x)}{\epsilon} \dots,$$

$$R_{\epsilon}(t,x) = \dots (B_{z}^{1,\epsilon}(x) + B_{z}^{2,\epsilon}(x)) \dots,$$

$$R_{\epsilon} = R_{\epsilon}^{1} + R_{\epsilon}^{2},$$

$$R_{\epsilon}^{1} \to 0 \quad \text{in} \quad L^{1}(0,T;L^{1}(\mathbb{R}^{d}))$$

Using the identity $D^s \boldsymbol{b}(t,\cdot) = M(t,x)|D^s \boldsymbol{b}(t,\cdot)|$ (where $M(t,x): I \times \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d$ is the Radon-Nikodym derivative of $D^s \boldsymbol{b}(t,\cdot)$ with respect to $|D^s \boldsymbol{b}(t,\cdot)|$). Estimate

$$\begin{aligned} \limsup_{\epsilon \to 0} \int_{I} \int_{K} |R_{\epsilon}^{2}(x)| dx dt \\ \leq ||u||_{L^{\infty}} \int_{\mathbb{R}^{d}} |\nabla \eta(z) \cdot M(t,x) \cdot z| dz \ |D^{s}\boldsymbol{b}|(I \times K). \end{aligned}$$

$$\partial_t \beta(u_{\epsilon}) + \boldsymbol{b} \cdot \nabla \beta(u_{\epsilon}) = \beta'(u_{\epsilon}) R_{\epsilon},$$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot D_{\times} \beta(u) = \sigma,$$

where σ is the defect measure.

$$\partial_t \beta(u_{\epsilon}) + \boldsymbol{b} \cdot \nabla \beta(u_{\epsilon}) = \beta'(u_{\epsilon}) \mathbf{R}_{\epsilon},$$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot D_{\mathsf{x}} \beta(u) = \boldsymbol{\sigma},$$

where σ is the defect measure.

$$|\sigma| \leq ||\beta'||_{L^{\infty}} ||u||_{L^{\infty}} \int_{\mathbb{R}^d} |\nabla \eta(z) \cdot M(t,x) \cdot z| dz |D^s b|$$

in the sense of measures on $I \times \mathbb{R}^d$.

$$\partial_t \beta(u_\epsilon) + \boldsymbol{b} \cdot \nabla \beta(u_\epsilon) = \beta'(u_\epsilon) R_\epsilon, \partial_t \beta(u) + \boldsymbol{b} \cdot D_x \beta(u) = \sigma,$$

where σ is the defect measure.

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} ||u||_{L^{\infty}} \int_{\mathbb{R}^d} |\nabla \eta(z) \cdot M(t,x) \cdot z| dz |D^s b|$$

in the sense of measures on $I \times \mathbb{R}^d$.

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} \|u\|_{L^{\infty}} \Lambda(M, \eta) |D^{s}| b|,$$

where

$$\Lambda(M,\eta) := \int_{\mathbb{D}^d} |\nabla \eta(z) \cdot M \cdot z| dz.$$

$$\partial_t \beta(u_{\epsilon}) + \boldsymbol{b} \cdot \nabla \beta(u_{\epsilon}) = \beta'(u_{\epsilon}) R_{\epsilon},$$

$$\partial_t \beta(u) + \boldsymbol{b} \cdot D_{\mathsf{x}} \beta(u) = \boldsymbol{\sigma},$$

where σ is the defect measure.

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} ||u||_{L^{\infty}} \int_{\mathbb{R}^d} |\nabla \eta(z) \cdot M(t,x) \cdot z| dz |D^s b|$$

in the sense of measures on $I \times \mathbb{R}^d$.

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} \|u\|_{L^{\infty}} \Lambda(M, \eta) |D^{s}| b|,$$

where

$$\Lambda(M,\eta) := \int_{\mathbb{D}^d} |\nabla \eta(z) \cdot M \cdot z| dz.$$

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} \|u\|_{L^{\infty}} \Lambda(M,\eta) |D^{s}| \boldsymbol{b}|$$

Lemma (Alberti): For

$$\mathcal{K}:=\bigg\{\eta\in C_c^\infty(B_1(0)): \eta\geq 0 \ \text{ even and } \int_{B_1(0)}\eta=1\bigg\},$$

and any matrix $M \in \mathbb{R}^d imes \mathbb{R}^d$ the following holds

$$\inf_{\eta \in \mathcal{K}} \Lambda(M, \eta) = |\mathrm{tr} M|.$$

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} \|u\|_{L^{\infty}} \Lambda(M,\eta) |D^{s}| b|$$

Lemma (Alberti): For

$$\mathcal{K}:=\bigg\{\eta\in C_c^\infty(B_1(0)): \eta\geq 0 \ \text{ even and } \int_{B_1(0)}\eta=1\bigg\},$$

and any matrix $M \in \mathbb{R}^d imes \mathbb{R}^d$ the following holds

$$\inf_{\eta\in\mathcal{K}}\Lambda(M,\eta)=|\mathrm{tr}M|.$$

Since $\sigma = f(t, x)|D^s b|$, hence

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} \|u\|_{L^{\infty}} \Lambda(M,\eta) |D^{s}| \boldsymbol{b}|$$

Lemma (Alberti): For

$$\mathcal{K}:=\bigg\{\eta\in C_c^\infty(B_1(0)): \eta\geq 0 \ \text{ even and } \int_{B_1(0)}\eta=1\bigg\},$$

and any matrix $M \in \mathbb{R}^d imes \mathbb{R}^d$ the following holds

$$\inf_{\eta\in\mathcal{K}}\Lambda(M,\eta)=|\mathrm{tr}M|.$$

Since $\sigma = f(t,x)|D^s b|$, hence

$$|f(t,x)| \leq \|\beta'\|_{L^{\infty}} \|u\|_{L^{\infty}} |\operatorname{tr} M| \quad |D^{s}b| - a.e.$$

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} \|u\|_{L^{\infty}} \Lambda(M,\eta) |D^{s}| b|$$

Lemma (Alberti): For

$$\mathcal{K}:=\bigg\{\eta\in C_c^\infty(B_1(0)): \eta\geq 0\ \text{ even and } \int_{B_1(0)}\eta=1\bigg\},$$

and any matrix $M \in \mathbb{R}^d imes \mathbb{R}^d$ the following holds

$$\inf_{\eta\in\mathcal{K}}\Lambda(M,\eta)=|\mathrm{tr}M|.$$

Since
$$\sigma = f(t, x)|D^s b|$$
, hence

$$|f(t,x)| \leq ||\beta'||_{L^{\infty}} ||u||_{L^{\infty}} |\operatorname{tr} M| \quad |D^{s} \boldsymbol{b}| - a.e.$$
$$|\sigma| \ll |D^{s} \cdot \boldsymbol{b}|.$$

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} \|u\|_{L^{\infty}} \Lambda(M,\eta) |D^{s}| b|$$

Lemma (Alberti): For

$$\mathcal{K}:=\bigg\{\eta\in C_c^\infty(B_1(0)): \eta\geq 0 \ \text{ even and } \int_{B_1(0)}\eta=1\bigg\},$$

and any matrix $M \in \mathbb{R}^d imes \mathbb{R}^d$ the following holds

$$\inf_{\eta\in\mathcal{K}}\Lambda(M,\eta)=|\mathrm{tr}M|.$$

Since $\sigma = f(t, x)|D^s b|$, hence

$$|f(t,x)| \le ||\beta'||_{L^{\infty}} ||u||_{L^{\infty}} |\operatorname{tr} M| \quad |D^{s} \boldsymbol{b}| - a.e.$$
$$|\sigma| \ll |D^{s} \cdot \boldsymbol{b}|.$$

But $\operatorname{div} \boldsymbol{b} \ll \mathcal{L}^d$.

$$|\sigma| \leq \|\beta'\|_{L^{\infty}} \|u\|_{L^{\infty}} \Lambda(M, \eta) |D^{s}| b|$$

Lemma (Alberti): For

$$\mathcal{K}:=\bigg\{\eta\in C_c^\infty(B_1(0)): \eta\geq 0\ \text{ even and } \int_{B_1(0)}\eta=1\bigg\},$$

and any matrix $M \in \mathbb{R}^d imes \mathbb{R}^d$ the following holds

$$\inf_{\eta\in\mathcal{K}}\Lambda(M,\eta)=|\mathrm{tr}M|.$$

Since $\sigma = f(t, x)|D^s b|$, hence

$$|f(t,x)| \le ||\beta'||_{L^{\infty}} ||u||_{L^{\infty}} |\operatorname{tr} M| \quad |D^{s} \boldsymbol{b}| - a.e.$$
$$|\sigma| \ll |D^{s} \cdot \boldsymbol{b}|.$$

But $\operatorname{div} \boldsymbol{b} \ll \mathcal{L}^d$.

Energy estimates

We had:

$$\partial_t \int_{\mathbb{R}^d} u^2 dx = \int_{\mathbb{R}^d} u^2 \mathrm{div} \boldsymbol{b} \ dx \leq \ldots$$
?

Since $\operatorname{div} \boldsymbol{b} \in BMO(\mathbb{R}^d)$

Energy estimates

We had:

$$\partial_t \int_{\mathbb{R}^d} u^2 dx = \int_{\mathbb{R}^d} u^2 \mathrm{div} \boldsymbol{b} \ dx \leq \ldots?$$

Since $\operatorname{div} \boldsymbol{b} \in BMO(\mathbb{R}^d)$ apply

Theorem (Mucha): Let $f \in BMO(\mathbb{R}^d)$, the support of f be bounded in \mathbb{R}^d and $g \in L^1(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$, then

$$\bigg| \int_{\mathbb{R}^d} f g dx \bigg| \leq C_0 \|f\|_{BMO(\mathbb{R}^d)} \|g\|_{L^1(\mathbb{R}^d)} \bigg[|\ln \|g\|_{L^1(\mathbb{R}^d)} |+ \ln (e + \|g\|_{L^{\infty}(\mathbb{R}^n)}) \bigg],$$

where C_0 depends on the diameter of support of f.

Energy estimates

We had:

$$\partial_t \int_{\mathbb{R}^d} u^2 dx = \int_{\mathbb{R}^d} u^2 \mathrm{div} \boldsymbol{b} \ dx \leq \ldots$$
?

Since $div \mathbf{b} \in BMO(\mathbb{R}^d)$ apply

Theorem (Mucha): Let $f \in BMO(\mathbb{R}^d)$, the support of f be bounded in \mathbb{R}^d and $g \in L^1(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$, then

$$\bigg| \int_{\mathbb{R}^d} f g dx \bigg| \leq C_0 \|f\|_{BMO(\mathbb{R}^d)} \|g\|_{L^1(\mathbb{R}^d)} \bigg[|\ln \|g\|_{L^1(\mathbb{R}^d)} | + \ln(e + \|g\|_{L^{\infty}(\mathbb{R}^n)}) \bigg],$$

where C_0 depends on the diameter of support of f.

Steps of the proof

Steps of the proof of the logarithmic theorem: dual space to $\mathcal{H}^1(\mathbb{T}^d)$ is $BMO(\mathbb{T}^d)$, hence

$$\left| \int_{\mathbb{T}^d} f g dx \right| \leq \|f\|_{BMO(\mathbb{T}^d)} \|g\|_{\mathcal{H}^1(\mathbb{T}^d)}.$$

Riesz operators:

$$\|g\|_{\mathcal{H}^1(\mathbb{T}^d)} = \|g\|_{L^1(\mathbb{T}^d)} + \sum_{k=1}^d \|R_k g\|_{L^1(\mathbb{T}^d)},$$

where R_k are the Riesz operators.

Steps of the proof

Steps of the proof of the logarithmic theorem: dual space to $\mathcal{H}^1(\mathbb{T}^d)$ is $BMO(\mathbb{T}^d)$, hence

$$\left| \int_{\mathbb{T}^d} f g dx \right| \leq \|f\|_{BMO(\mathbb{T}^d)} \|g\|_{\mathcal{H}^1(\mathbb{T}^d)}.$$

Riesz operators:

$$\|g\|_{\mathcal{H}^1(\mathbb{T}^d)} = \|g\|_{L^1(\mathbb{T}^d)} + \sum_{k=1}^d \|R_k g\|_{L^1(\mathbb{T}^d)},$$

where R_k are the Riesz operators.

Zygmund's result:

$$||R_k h||_{L^1(\mathbb{T}^d)} \le C + C \int_{\mathbb{T}^d} |h| \ln^+ |h| dx$$

where $ln^+ a = max\{ln a, 0\}$.

Steps of the proof

Steps of the proof of the logarithmic theorem: dual space to $\mathcal{H}^1(\mathbb{T}^d)$ is $BMO(\mathbb{T}^d)$, hence

$$\left| \int_{\mathbb{T}^d} f g dx \right| \leq \|f\|_{BMO(\mathbb{T}^d)} \|g\|_{\mathcal{H}^1(\mathbb{T}^d)}.$$

Riesz operators:

$$\|g\|_{\mathcal{H}^1(\mathbb{T}^d)} = \|g\|_{L^1(\mathbb{T}^d)} + \sum_{k=1}^d \|R_k g\|_{L^1(\mathbb{T}^d)},$$

where R_k are the Riesz operators.

Zygmund's result:

$$||R_k h||_{L^1(\mathbb{T}^d)} \le C + C \int_{\mathbb{T}^d} |h| \ln^+ |h| dx$$

where $ln^+ a = max\{ln a, 0\}$.

Theorem: Let
$$T>0$$
, $\boldsymbol{b}\in L^1(0,T;BV_{loc}(\mathbb{R}^d))$, $\bar{u}\in L^\infty(\mathbb{R}^d)$, $\mathrm{div}\boldsymbol{b}\in L^1(0,T;BMO(\mathbb{R}^d))$, $\frac{\boldsymbol{b}}{1+|x|}\in L^1(0,T;L^1(\mathbb{R}^d))$, supp $\mathrm{div}_x\boldsymbol{b}(t,\cdot)\subset B_R(0)$, for a fixed $R>0$,

where $B_R(0)$ is the ball centered at the origin with radius R. Then there exists a unique, weak solution to transport equation.

Renormalization technique

To
$$0$$
, $\mathbf{b} \in L^1(0, T; BV_{loc}(\mathbb{R}^d))$, $\bar{u} \in L^{\infty}(\mathbb{R}^d)$, $\mathrm{div} \mathbf{b} \in L^1(0, T; BMO(\mathbb{R}^d))$, $\frac{\mathbf{b}}{1+|x|} \in L^1(0, T; L^1(\mathbb{R}^d))$, supp $\mathrm{div}_x \mathbf{b}(t, \cdot) \subset B_R(0)$, for a fixed $R > 0$,

- Renormalization technique
- BV quotients

Theorem: Let
$$T>0$$
, $\boldsymbol{b}\in L^1(0,T;BV_{loc}(\mathbb{R}^d))$, $\bar{u}\in L^\infty(\mathbb{R}^d)$, $\mathrm{div}\boldsymbol{b}\in L^1(0,T;BMO(\mathbb{R}^d))$, $\frac{\boldsymbol{b}}{1+|x|}\in L^1(0,T;L^1(\mathbb{R}^d))$, supp $\mathrm{div}_x\boldsymbol{b}(t,\cdot)\subset B_R(0)$, for a fixed $R>0$,

- Renormalization technique
- BV quotients
- BMO logarithmic type inequalities

Theorem. Let
$$T>0$$
, $\boldsymbol{b}\in L^1(0,T;BV_{loc}(\mathbb{R}^d))$, $\bar{u}\in L^\infty(\mathbb{R}^d)$, $\mathrm{div}\boldsymbol{b}\in L^1(0,T;BMO(\mathbb{R}^d))$, $\frac{\boldsymbol{b}}{1+|x|}\in L^1(0,T;L^1(\mathbb{R}^d))$, supp $\mathrm{div}_x\boldsymbol{b}(t,\cdot)\subset B_R(0)$, for a fixed $R>0$,

- Renormalization technique
- BV quotients
- BMO logarithmic type inequalities

Theorem. Let
$$T>0$$
, $\boldsymbol{b}\in L^1(0,T;BV_{loc}(\mathbb{R}^d))$, $\bar{u}\in L^\infty(\mathbb{R}^d)$, $\mathrm{div}\boldsymbol{b}\in L^1(0,T;BMO(\mathbb{R}^d))$, $\frac{\boldsymbol{b}}{1+|x|}\in L^1(0,T;L^1(\mathbb{R}^d))$, supp $\mathrm{div}_x\boldsymbol{b}(t,\cdot)\subset B_R(0)$, for a fixed $R>0$,

- Renormalization technique
- BV quotients
- BMO logarithmic type inequalities

Thank you!