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Equations

Incompressible generalized Stokes equations with perfect
slip boundary conditions

We investigate properties of the weak solution u : Ω→ Rn and
π : Ω→ R solving:

Stokesp.slip

− divS(Du) +∇π = div F in Ω, (1)

div u = 0 in Ω, (2)

u · ν = 0, [S(Du)ν] · τ = 0 on ∂Ω, (3)

where u is velocity, Du symmetric part of velocity gradient, div F density
of volume forces, π kinematic pressure and Cauchy stress tensor T has
the form T = −πI + S.
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Assumptions

N-functions

Definition

A real function Φ : R+ → R+ is called N-function if there exists the
derivative Φ′ which is right continuous for s ≥ 0, positive for s > 0,
non-decreasing and satisfies Φ′(0) = 0 and lims→∞Φ′(s) =∞.

By (Φ′)−1 : R+ → R+ we denote the function

(Φ′)−1(s) := sup{t ∈ R+ : Φ′(t) ≤ s}.

The complementary function of Φ (which is again an N-function) is
defined as

Φ∗(s) :=

∫ s

0

(Φ′)−1(t)dt.

Definition

N-function Φ is said to satisfy the ∆2−condition, denoted Φ ∈ ∆2, if
there exists a positive constant C , such that Φ(2s) ≤ C Φ(s) for s > 0.
By ∆2(Φ) we denote the smallest such constant C.
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Assumptions

Assumptions

We can construct Φ : [0,∞) 7→ [0,∞) to S, i.e.

Sij(A) = ∂ijΦ(|A|) = Φ′(|A|) Aij

|A|
∀A ∈ Rn×n

sym .

Assumption 1

We suppose that Φ ∈ C1,1(0,∞) ∩ C1[0,∞) is N-function, Φ ∈ ∆2,
Φ∗ ∈ ∆2 and Φ′(s) ∼ sΦ′′(s) holds for all s > 0, i.e. there exist
constants C , c > 0 such that, for s > 0

C Φ′(s) ≤ sΦ′′(s) ≤ cΦ′(s).

Some results will be valid for almost monotone Φ′′(s), i.e. either
Φ′′(s) ≤ C Φ′′(t) ∀0 < s ≤ t (almost increasing) or
Φ′′(s) ≥ C Φ′′(t) ∀0 < s ≤ t (almost decreasing).
Define V (A) =

√
Φ′(|A|)|A| A|A| . It holds |V (A)|2 ∼ Φ(|A|).
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Examples

Examples

We can consider models with a great deal of disparity, for example
power-law models

S(Du) = µ0(1 + |Du|2)
p−2

2 Du, Φ(|Du|) = µ0

∫ |Du|

0

(1 + s2)
p−2

2 s ds,

S(Du) = µ0(1 + |Du|)p−2Du, Φ(|Du|) = µ0

∫ |Du|

0

(1 + s)p−2s ds,

µ0 ∈ R+, p ∈ (1,∞). Also the singular case

µ(Du) = µ0|Du|p−2Du, Φ(|Du|) = µ0

∫ |Du|

0

sp−1 ds

is included.
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Formulation

Main result

Theorem

Let Ω ⊂ Rn be a C2,1 domain, ΩQ = Ω∩Q. Let Assumption 1 be fulfilled
and u be a weak solution to (1)–(3). Then the following implication holds

Φ∗(|F |) ∈ Lq(Ω8Q)⇒ Φ(|Du|) ∈ Lq(Ω 1
2 Q

),

provided q ∈ (1,∞) for n = 2 and q ∈
(

1, n
n−2

)
, resp. q ∈

(
1, n

n−2 + δ
)

for n > 2 and some δ > 0 in case Φ′′ is almost monotone.
Moreover, it holds

−
∫

Ω 1
2
Q

Φ(|Du|)q dx ≤ c

(
−
∫

Ω8Q

Φ∗(|F |)q dx +−
∫

Ω8Q

Φ (|u|)q dx

)

+c

(
−
∫

Ω8Q

Φ(|Du|)dx

)q

. (4)
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Remarks

Remarks

Our goal is the regularity up to the boundary for perfect slip
boundary conditions, since the interior regularity was proven in

L. Diening, P. Kaplický: 2013

Lq theory for a generalized Stokes system, Manuscripta Mathematica

Key parts of the proof: comparison with the homogeneous system,
flattening boundary, extension solution beyond flat boundary.

Structure of the proof: similar as in the paper by L. Diening and
P. Kaplický. It is based on the approach published in

L. A. Caffarelli, I. Peral: 1998

On W 1,p estimates of elliptic equation in divergence form,
Comm. Pure and Appl. Math.
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Calderón-Zygmund theory

Lemma

Let 1 ≤ p < q < s <∞, f ∈ Lq/p((4Q)+), g ∈ Lq/p((4Q)+) and
w ∈ Lp((4Q)+)n, where (4Q)+ = 4Q ∩ Rn

+. Let Qk be dyadic cubes

obtained from Q with predecessor Q̃k . If ∃ε ∈ (0, ε0) ∀Qk ⊂ Q
∃wa ∈ Lp((4Q̃k)+)n with following properties:(

−
∫

(2Q̃k )+

|wa|s dx

) 1
s

≤ C

2

(
−
∫

(4Q̃k )+

|wa|p dx

) 1
p

,

−
∫

(4Q̃k )+

|wa|p dx ≤ C−
∫

(4Q̃k )+

|w |p dx+C−
∫

(4Q̃k )+

|g |dx ,

−
∫

(4Q̃k )+

|w − wa|p dx ≤ ε−
∫

(4Q̃k )+

|w |p dx+C−
∫

(4Q̃k )+

|f |dx ,

then w ∈ Lq(Q)n. Furthermore,

−
∫
Q

|w |q dx ≤ c

−∫
(4Q)+

|f |
q
p dx +−

∫
(4Q)+

|g |
q
p dx +

(
−
∫

(4Q)+

|w |p dx

) q
p

 .
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Calderón-Zygmund theory

Lemma

Let 1 ≤ p < q < s <∞, f ∈ Lq/p((4Q)+), g ∈ Lq/p((4Q)+) and
w ∈ Lp((4Q)+)n, where (4Q)+ = 4Q ∩ Rn

+. Let Qk be dyadic cubes

obtained from Q with predecessor Q̃k . If ∃ε ∈ (0, ε0) ∀Qk ⊂ Q
∃wa ∈ Lp((4Q̃k)+)n with following properties:(

−
∫

(2Q̃k )+

|wa|s dx

) 1
s

≤ C

2

(
−
∫

(4Q̃k )+

|wa|p dx

) 1
p

,

−
∫

(4Q̃k )+

|wa|p dx ≤ C−
∫

(4Q̃k )+

|w |p dx+C−
∫

(4Q̃k )+

|g |dx ,

−
∫

(4Q̃k )+

|w − wa|p dx ≤ ε−
∫

(4Q̃k )+

|w |p dx+C−
∫

(4Q̃k )+

|f |dx ,

then w ∈ Lq(Q)n. Furthermore,

−
∫
Q

|w |q dx ≤ c

−∫
(4Q)+

|f |
q
p dx +−

∫
(4Q)+

|g |
q
p dx +

(
−
∫

(4Q)+

|w |p dx

) q
p

 .
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Approximative system on a flat boundary

Consider the homogeneous system

− divS(Dv) +∇p = 0 in (2Q)+,

div v = 0 in (2Q)+,

v · ν = 0, [S(Dv)ν] · τ = 0 on Γ(2Q)+ .

(5)

Theorem

Let v ∈W 1,Φ((2Q)+)n be a local weak solution to (5). Then there exists
a constant C independent of v and R such that

(
−
∫
Q+

|V (Dv)|q dx

) 1
q

≤ C

(
−
∫

(2Q)+

|V (Dv)|2 dx

) 1
2

,

for q ∈
[
2, 2n

n−2

]
provided n > 2 and q ∈ [2,∞) for n = 2. In case Φ′′ is

almost monotone, n > 2, we can even allow q = rn
n−r for some r > 2.
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Approximative system on a flat boundary

Proof of the theorem 1/2

At first we extend the solution from (2Q)+ to 2Q. For α = 1, . . . , n − 1
define ṽ as follows

ṽα(x ′, xn) =

{
vα(x ′, xn) for xn > 0,
vα(x ′,−xn) for xn < 0,

ṽn(x ′, xn) =

{
vn(x ′, xn) for xn > 0,
−vn(x ′,−xn) for xn < 0.

Lemma

ṽ ∈W 1,Φ(2Q)n is a local weak solution to (5) extended to 2Q.

−
∫
Q

|∇V (Dṽ)|2 dx ≤ C

R2

(
−
∫

2Q

|V (Dṽ)|2 dx
)
. (6)

For almost monotone Φ′′ the estimate (6) can be improved to

−
∫
Q

|∇V (Dṽ)|2 dx ≤ C

R2

(
−
∫

2Q

|V (Dṽ)− 〈V (Dṽ)〉2Q |2 dx
)
. (7)



Formulation of the problem Main result Proof

Approximative system on a flat boundary

Proof of the lemma

By reflection we have the interior problem, which is proven in [DK].

We focus only to generalization from n = 3 to arbitrary n ∈ N \ {1}.
We can’t test the weak formulation (5) by ϕ = curl[ξ2(curl(ṽ − q))],
since curl : (v1, v2, v3)→ (∂2v3 − ∂3v2, ∂3v1 − ∂1v3, ∂1v2 − ∂2v1).

We test by ϕ =
(
? d [ξ2 ? d(ṽ − q)[]

)]
.

([ converts the vector field (ṽ − q) into a 1-form (ṽ − q)[. The
exterior derivative d computes something like a curl but expressed as
a 2-form d(ṽ − q)[. The Hodge map ? turns this 2-form into a
(n − 2)-form. After multiplication by ξ2 and application of the
derivative d we obtain (n − 1)−form and Hodge star ? create
1−form, which is by ] converted to the vector.

In components:

ϕ =
∑n

i,j=1

(
− ξ2∂2

i (ṽ)j + 2ξ∂iξ[−∂i (ṽ − q)j + ∂j(ṽ − q)i ]
)

ej ,
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Approximative system on a flat boundary

Proof of the theorem 2/2

Follows from the lemma by application of Sobolev-Poincaré
inequality (resp. Sobolev-Poincaré inequality and reverse Hölder
inequality).

ṽ → v and Q → Q+, resp. 2Q → (2Q)+.
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Approximative system on a flat boundary

Lemma

Let 1 ≤ p < q < s <∞, f ∈ Lq/p((4Q)+), g ∈ Lq/p((4Q)+) and
w ∈ Lp((4Q)+)n, where (4Q)+ = 4Q ∩ Rn

+. Let Qk be dyadic cubes

obtained from Q with predecessor Q̃k . If ∃ε ∈ (0, ε0) ∀Qk ⊂ Q
∃wa ∈ Lp((4Q̃k)+)n with following properties:(

−
∫

(2Q̃k )+

|wa|s dx

) 1
s

≤ C

2

(
−
∫

(4Q̃k )+

|wa|p dx

) 1
p

,

−
∫

(4Q̃k )+

|wa|p dx ≤ −
∫

(4Q̃k )+

|w |p dx + C−
∫

(4Q̃k )+

|g |dx ,

−
∫

(4Q̃k )+

|w − wa|p dx ≤ ε−
∫

(4Q̃k )+

|w |p dx + C−
∫

(4Q̃k )+

|f |dx ,

then w ∈ Lq(Q)n. Furthermore,

−
∫
Q

|w |q dx ≤ c

−∫
(4Q)+

|f |
q
p dx +−

∫
(4Q)+

|g |
q
p dx +

(
−
∫

(4Q)+

|w |p dx

) q
p

 .
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Flattening the boundary

Flattening the boundary

HR : Q+ 7→ ΩR := HR(Q+) ⊂ Ω .

It holds that HR(0) = x0 and ∇HR(0) = I .

∇HR(x)−∇HR(0) = Rω, ∇H−1
R (x)−∇H−1

R (0) = Rω.

For f : ΩR 7→ R we state f : Q+ 7→ R defined as
f (x) = f (HR(x)) = f (y).

2Dy f =
(
∇x f∇xH−1

R

)
+
(
∇x f∇xH−1

R

)T
= 2(Dx f + Zf ),

Zf =
1

2

(
∇x f (∇xH−1

R − I ) + (∇xH−1
R − I )T (∇x f )T

)
=

R

2

(
∇x f ω + (∇x f ω)T

)
,

divy f = Tr
(
∇x f∇xH−1

R

)
= divx f + Tr(∇x f (∇xH−1

R − I ))

= divx f + R Tr(∇x f ω).
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Flattening the boundary

Transformation of the weak formulation

We can transform the weak formulation∫
ΩR

S(Du) : Dϕdy −
∫

ΩR

π divϕdy =

∫
ΩR

F :Dϕdy , (8)

which holds for all ϕ ∈W 1,Φ(Ω)n, ϕ · ν = 0 on ∂Ω and ϕ = 0 on
∂ΩR \ ∂Ω into∫

Q+

S(Du + Zu) : (Dψ + Zψ + ω′ψ)(1 + Rω′′)dx

−
∫
Q+

π
(

divψ + R Tr(ω∇ψ) + Tr(ω′ψ)
)
(1 + Rω′′)dx

=

∫
Q+

F : (∇ψ + Rω∇ψ + ω′ψ)(1 + Rω′′)dx , (9)

which holds for all ψ ∈W 1,Φ(Q+), ψ · en = 0 on ΓQ+ and ψ = 0 on
∂Q+ \ ΓQ+ .
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Flattening the boundary

Decomposition of u

Since div u 6= 0 in Q+ and u · en 6= 0 on ΓQ+ , we define a function u2 as
a solution to

div u2 = −R Tr(∇uω) in Q+,

u2 · en = R(ωu) · en on ΓQ+ .

The boundary condition (10) comes from the fact that we want

u2 · en = u · en = (I − (∇HR)T )u · en + (∇HR)Tu · en = R(ωu) · en on ΓQ+ ,

To obtain estimates of u2 in terms of u we use

Lemma (Bogovskĭı)

∆2({Φ∗,Φ}) <∞, g ∈ LΦ(Q+), h ∈W 1,Φ(Q+)

div z = g in Q+, (10)

z · ν = h · ν on ΓQ+ , (11)∫
Q+

Φ(|∇z |)dx ≤ C

(∫
Q+

Φ(|g |)dx +

∫
Q+

Φ(|∇h|)dx

)
, (12)
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Flattening the boundary

Define u1 = u − u2.

u1 · en = 0 on ΓQ+ and div u1 = 0 in Q+.

Construct v in Q+ such that

v= u1 on ∂Q+ \ ΓQ+ ,

v · en = 0, [S(Dv)en] · eα= 0 on ΓQ+ ,

Test weak formulation of (5) and (9) by ϕ = u1 − v and obtain:
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Flattening the boundary

Lemma

∫
Q+

|V (Dv)|2 dx ≤ C

∫
Q+

|V (Du)|2 dx + CRα

∫
Q+

Φ (|u|) dx ,

for some α > 1 and θ ∈ (0, 1). Furthermore, for all δ there exists a
positive constant Cδ independent of v , u and Q+ such that∫

Q+

|V (Du)− V (Dv)|2 dx ≤ Cδ

∫
Q+

Φ∗(|F |)dx

+
(
δ + CRα

) ∫
Q+

|V (Du)|2 dx + C

∫
Q+

Φ (|u|) dx .
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Flattening the boundary

The End

Thank you for your attention.


	Formulation of the problem
	Equations
	Assumptions
	Examples

	Main result
	Formulation
	Remarks

	Proof
	Calderón-Zygmund theory
	Approximative system on a flat boundary
	Flattening the boundary


