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Non-homogeneous Navier-Stokes Equations (NNSE)
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Non-homogeneous Navier-Stokes Equations (NNSE)

—Au+u-Vu+Vp =f in (0,7)xQ
V-uw =k in (0,T)xQ
w =g on (0.7)xD (NNSE)
u(0) = up in Q
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Non-homogeneous Navier-Stokes Equations (NNSE)

—Au+u-Vu+Vp =f in (0,7)xQ
V-uw =k in (0,T)xQ

uw =g¢g on (0,T)x9

u(0) = up in Q

/k(t)dx:/ o(t)-Ndo, te(0,T)
Q o0

(NNSE)
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Non-homogeneous Navier-Stokes Equations (NNSE)

—Au+u-Vu+Vp =f in (0,T)x
Veuw =%k in (0,T)x

uw =g¢g on (0,T)x BQ (NNSE)
u(0) = up in Q

/k(t)dac:/ o(t)-Ndo, te(0,T)
Q o0

Here: o0 e !

0< T <o
Q C R3 bounded
o0 e %1
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(NNSE) = (LSE) + (PNSE)




(NNSE) = (LSE) + (PNSE)

E (with pressure h) solves the Linear Stokes Equations

~AE+Vh =
V-E =

E =

E(0)

S m» O

in
in
on
in

0,7
0, T
0,T

0 (LSE)

) %
) X
)x&Q
Q
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(NNSE) = (LSE) + (PNSE)

E (with pressure h) solves the Linear Stokes Equations

—AE+Vh =0 in (0,T)x
V-E =k in (0,7)x

E =g on (0,7)x 89 (LSE)
E(0) =0 in Q

/ k(t) do = / g(t)- Ndo, te€(0,7)
Q 00
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(NNSE) = (LSE) + (PNSE)

E (with pressure h) solves the Linear Stokes Equations

—AE+Vh =0 in (0,7)x
V-E =%k in (0,T)x
E =g on (0,7)x 8(2 (LSE)
E(0) =0 in Q
/ k(t) do = / g(t)- Ndo, te€(0,7)
Q oQ
v (with pressure p) solves the Perturbed Navier-Stokes Equations
—Av+(v+E)-Vw+E)+VDp = f in  (0,7T) %
Vv =0 in (0,7) x
v =0 on (0,T)x 89
v(0) = v =uy in Q
(PNSE)
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(NNSE) = (LSE) + (PNSE)

E (with pressure h) solves the Linear Stokes Equations

—AE+Vh =0 in (0,7)x
V-E =%k in (0,T)x
E =g on (0,7)x 8(2 (LSE)
E(0) =0 in Q
/ k(t) do = / g(t)- Ndo, te€(0,7)
Q oQ
v (with pressure p) solves the Perturbed Navier-Stokes Equations
—Av+(v+E)-Vw+E)+VDp = f in  (0,7T) %
Vv =0 in (0,7) x
v =0 on (0,T)x 89
v(0) = v =uy in Q
(PNSE)

Then u = v+ E (with pressure p = p + h) solves (NNSE)
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Function Spaces




Function Spaces

o Test spaces:
o C(Q)
o C55(9) = {P € C*(Q)|V- @ =0}
o C5%(Q) := {® € C5% (R?) | = 0 on 00}

ON LOCAL STRONG SOLUTIONS OF THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS ‘Werner Varnhorn



Function Spaces

o Test spaces:
o C5° ()
o C55(Q) == {® € C(Q) V- @ = 0}
o 55 (Q) :={® e C5% (R?) |® = 0 on 99}

e Lebesgue spaces:
o L) with norm ||-|,, 1<g<oo

o LI(Q) = Coo (@), 1< g <o
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Function Spaces

@ Sobolev spaces:
o WH(Q) with norm ||-|;,,, 1<g<oo, keNo
o WEHQ) = Cr@)

o WEIQ) = Cgo (@) e
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Function Spaces

@ Sobolev spaces:

o WH(Q) with norm ||-|;,,, 1<g<oo, keNo
o WU(Q) = @)

o W(f’f(ﬁ) — —Cgfa(Q)H'Hk;q

@ Sobolev trace spaces:
o W51(9Q) with norm [lg,: 1<g<oo, 0<B<1
° WﬁB’q’(GQ) = (Wﬁ‘q(BQ)),, % + % = 1 with norm

ap gl

o |lll_p,y = 3
fra 0£DE WH4(8Q) 11ls54
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Function Spaces

@ Bochner spaces (1 < ¢,s < 00):
e L*(0, T; LY(2)) with norm

T Ys
O Mgwr = ([ ) . 1<s<o

o |[lly 00,7 =esssup |- (D), , s=o0
0<t<T
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Function Spaces

@ Bochner spaces (1 < ¢,s < 00):
e L*(0, T; LY(2)) with norm

T Ys
o |lllgqr = 15 dt )] 1<s<oo
9,83 0 q

o |[lly 00,7 =esssup |- (D), , s=o0
0<t<T

ON LOCAL STRONG SOLUTIONS OF THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS ‘Werner Varnhorn



Function Spaces

@ Bochner spaces (1 < ¢,s < 00):

e L*(0, T; LY(2)) with norm

T Ys
O Mgwr = ([ ) . 1<s<o

o |[lly 00,7 =esssup |- (D), , s=o0
0<t<T

° LS(O, T; Wﬁ’q(BQ)) with norm (0 < |8] < 1)
1/

T
° llg,q5r = (/O I-(Oll3,q dt) , 1<s<oo

o | .p +=esssup || (2)|] s=00
Byq,00;T 0<i<T Bia ’
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Stokes operator A,




Stokes operator A,

Let 1 < g < o0

e P, : L) — Li(Q?) Helmholtz projection (P := P,)
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Stokes operator A,

Let 1 < g < o0
e P, : L) — Li(Q?) Helmholtz projection (P := P,)

o A, =—P;A : D(A,) = LI(Q) Stokes operator (A := A,)
o D(4,) = W21(Q) N WEU(Q) N LI(Q)
° R(Aq) = L3 ()
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Stokes operator A,

Let 1 < g < o0
e P, : L) — Li(Q?) Helmholtz projection (P := P,)

o A, =—P;A : D(A,) = LI(Q) Stokes operator (A := A,)
o D(A,) = W>UQ) N Wy'(Q) N LL(Q)
o R(A,) = L3(Q)

o Semigroup e~*4 ¢ > 0 generated by A, in LI(€2)
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Fractional Powers Aﬁ;




Fractional Powers Af]‘

Let 1< g<oo, -1<a<:

o AY : D(AY) — LZ(Q) fractional power of A,
o D(Ag) C LL(Q)

o R(A7) =Li(Q), 0<a<l1
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Fractional Powers Af]‘

Let 1< g<oo, -1<a<:

o AY : D(AY) — LZ(Q) fractional power of A,

q
o D(47) C LL()
o R(A7) =Li(Q), 0<a<l1

Moreover:
o (4) " =470

o (A,) =A, with % + % =
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Very weak solutions for (LSE) and (NNSE)

Amann (2002, 2003)

Berselli — Galdi (2004)

Galdi — Simader — Sohr (2005)

Farwig — Galdi — Sohr (2005, 2006)

Farwig — Kozono — Sohr (2007, 2011)
Schumacher (2008)

Kim (2009)

Amrouche — Necasova — Raudin (2009)
Farwig — Sohr — V. (2009, 2011, 2012, 2013)
Amrouche — Rodriguez-Bellido (2010, 2010, 2010)
Maremonti (2011)

Amrouche — Meslameni (2013)
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Very weak solutions for (LSE) and (NNSE)




Very weak solutions for (LSE) and (NNSE)

Definition 1
Let 1<s<oo, 1<g<oo, Y¢<1r<1/qg41/3
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Very weak solutions for (LSE) and (NNSE)

Definition 1
Let l1<s<oo, 1l<g<oo, Yq<lr<1/lg4+1/3

Let ke L*(0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a.tel0,T)
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Very weak solutions for (LSE) and (NNSE)

Definition 1
Let l1<s<oo, 1l<g<oo, Yq<lr<1/lg4+1/3

Let ke L*(0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a.tel0,T)

Then:
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Very weak solutions for (LSE) and (NNSE)

Definition 1
Let l1<s<oo, l1<g<oo, Y¢<lr<l1/g+1/3

Let ke L*(0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a.tel0,T)

Then:
E € L*(0, T; LY(Q)) is called a very weak solution (v.w.s.) of (LSE) if
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Very weak solutions for (LSE) and (NNSE)

Definition 1
Let l1<s<oo, l1<g<oo, Y¢<lr<l1/g+1/3

Let ke L*(0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a.tel0,T)

Then:
E € L*(0, T; LY(Q)) is called a very weak solution (v.w.s.) of (LSE) if

o —(E,®4)q r—(E,A®)q 1 +_<9’ (N-V)®)pq,r =0
for all @ € Cg° ([0, T); Cg3, ()
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Very weak solutions for (LSE) and (NNSE)

Definition 1
Let l1<s<oo, l1<g<oo, Y¢<lr<l1/g+1/3

Let ke L*(0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a.tel0,T)

Then:
E € L*(0, T; LY(Q)) is called a very weak solution (v.w.s.) of (LSE) if

° —(E,®4)q p—(E,AP)q ¢+ (9, (N - V)®)yq ¢ =0
for all @ € Cg° ([0, T); Cg3, ()

o divE(t) = k(t), N-E(t)loa=N-g(t) fora.a t€]0,T)
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Very weak solutions for (LSE) and (NNSE)

Definition 1
Let l1<s<oo, l1<g<oo, Y¢<lr<l1/g+1/3

Let ke L*(0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a.tel0,T)

Then:
E € L*(0, T; LY(Q)) is called a very weak solution (v.w.s.) of (LSE) if

° —(E,®4)q p—(E,AP)q ¢+ (9,(N-V)®)yq ¢ =0
for all @ € Cg° ([0, T); Cg3, ()

o divE(t) = k(t), N-E(t)loa=N-g(t) fora.a t€]0,T)
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Very weak solutions for (LSE) and (NNSE)

Definition 1
Let l1<s<oo, l1<g<oo, Y¢<lr<l1/g+1/3

Let ke L*(0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a.tel0,T)

Then:
E € L*(0, T; LY(Q)) is called a very weak solution (v.w.s.) of (LSE) if

° —(E,®4)q p—(E,AP)q ¢+ (9,(N-V)®)yq ¢ =0
for all @ € Cg° ([0, T); Cg3, ()

o divE(t) = k(t), N-E(t)loa=N-g(t) fora.a t€]0,T)

<_AE’(I>>Q = <VE7V(I>>Q = (E, _A®>Q + (B, (N - v)(I)>GQ
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Very weak solutions for (LSE) and (NNSE)




Very weak solutions for (LSE) and (NNSE)

Proposition 1 (Farwig-Galdi-Sohr 2006)
Let 1<s<oo, 1<g<oo, 1Y¢<1r<1/q41/3
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Very weak solutions for (LSE) and (NNSE)

Proposition 1 (Farwig-Galdi-Sohr 2006)
Let 1<s<oo, 1<qg<oo, 1Y¢<1r<1/g+1/3

Let ke L0, T;L"(Q), geL*(0,T; W=+4(09))
with [i, k(t) dz = (g(t), N),q, for a. a. t € [0, T)
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Very weak solutions for (LSE) and (NNSE)
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Very weak solutions for (LSE) and (NNSE)

Proposition 1 (Farwig-Galdi-Sohr 2006)
Let 1<s<oo, 1<qg<oo, 1Y¢<1r<1/g+1/3

Let ke L0, T;L"(Q), geL*(0,T; W=+4(09))
with [i, k(t) dz = (g(t), N),q, for a. a. t € [0, T)

Then:

There exists unique v.w.s. E = Ej, 4 € L* (0, T; LY(Q2)) of (LSE) with
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Very weak solutions for (LSE) and (NNSE)

Proposition 1 (Farwig-Galdi-Sohr 2006)
Let 1<s<oo, l<g<oo, 1g<lr<1l/qg+1/3

Let ke L0, T;L"(Q), geL*(0,T; W=+4(09))
with [i, k(t) dz = (g(t), N),q, for a. a. t € [0, T)

Then:

There exists unique v.w.s. E = Ej, 4 € L* (0, T; LY(Q2)) of (LSE) with

o (A71PE), € L%(0, T; Li(2)),
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Very weak solutions for (LSE) and (NNSE)

Proposition 1 (Farwig-Galdi-Sohr 2006)
Let 1<s<oo, l<g<oo, Y¢<lr<1/g+1/3

Let ke L0, T;L"(Q), geL*(0,T; W=+4(09))
with [i, k(t) dz = (g(t), N),q, for a. a. t € [0, T)

Then:

There exists unique v.w.s. E = Ej, 4 € L* (0, T; LY(Q2)) of (LSE) with
o (A~'PE), € I*(0, T; L4(%2)),

o A~1PE € C([0, T); Li(£2)), A~ PE|—g =0,
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Very weak solutions for (LSE) and (NNSE)

Proposition 1 (Farwig-Galdi-Sohr 2006)
Let 1<s<oo, l<g<oo, Y¢<lr<1/g+1/3

Let ke L0, T;L"(Q), geL*(0,T; W=+4(09))
with [i, k(t) dz = (g(t), N),q, for a. a. t € [0, T)

Then:

There exists unique v.w.s. E = Ej, 4 € L* (0, T; LY(Q2)) of (LSE) with
o (A~'PE), € I*(0, T; L4(%2)),
o A~'PE € O([0, T); L&(£2)), A PE|,_o =0,

° ”(A_lPE)th,s,T + HEHq,s,T < C(”kllr,s,T + ||g||71/q,q’s,T)
with C = C(£2, q,r,s) > 0.
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Very weak solutions for (LSE) and (NNSE)




Very weak solutions for (LSE) and (NNSE)

Definition 2
Let 2<s<oo, 3<q<oo, 2s+3/g=1, Yr=1/g+1/3
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Very weak solutions for (LSE) and (NNSE)

Definition 2
Let 2<s<00, 3<qg<oo, 2s+3q=1, Yr=1/q+1/3

Let ke L0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a. tel0,T)
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Very weak solutions for (LSE) and (NNSE)

Definition 2
Let 2<s<00, 3<qg<oo, 2s+3q=1, Yr=1/q+1/3

Let ke L0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a. tel0,T)

Let FelL0,T;L"(), wup € J25(Q)
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Very weak solutions for (LSE) and (NNSE)

Definition 2
Let 2<s<00, 3<qg<oo, 2s+3q=1, Yr=1/q+1/3

Let ke L0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a. tel0,T)

Let FelL0,T;L"(), wup € J25(Q)

Then:
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Very weak solutions for (LSE) and (NNSE)

Definition 2
Let 2<s<00, 3<qg<oo, 2s+3q=1, Yr=1/q+1/3

Let ke L0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a. tel0,T)

Let FelL0,T;L"(), wup € J25(Q)

Then:
u € L5(0, T; L1()) is called a very weak solution (v.w.s.) of (NNSE) if
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Very weak solutions for (LSE) and (NNSE)

Definition 2
Let 2<s<00, 3<qg<oo, 2s+3q=1, Yr=1/q+1/3

Let k € L*(0, T L’“(Q)), g€ L0, T; W/29(0Q))
with [, k(t) dz = (g(t), N)y, fora.a. tel0,T)

Let FeL0,T;L"(2), wupe€ J%(Q)

Then:
u € L5(0, T; L1()) is called a very weak solution (v.w.s.) of (NNSE) if

o —(u, Py, , — (u, A®),
= (uo, 2(0)),, — (F,V
0,

>T <97 (N V) >6Q,T - <uu7 V(I)>Q,T - <ku7 (I)>Q,T
for all ® € C§° ([0, T); C5% ()
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Very weak solutions for (LSE) and (NNSE)

Definition 2
Let 2<s<00, 3<qg<oo, 2s+3q=1, Yr=1/q+1/3

Let ke L0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a. tel0,T)

Let  Fe L0, T;L"()), up € J4(Q)

Then:
u € L5(0, T; L1()) is called a very weak solution (v.w.s.) of (NNSE) if
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Very weak solutions for (LSE) and (NNSE)

Definition 2
Let 2<s<00, 3<qg<oo, 2s+3q=1, Yr=1/q+1/3

Let ke L0, T; L"(Q)), g€ L*(0,T; W=/»9(5Q))
with [, k(t) dz = (g(t), N)y, fora.a. tel0,T)

Let  Fe L0, T;L"()), up € J4(Q)

Then:
u € L5(0, T; L1()) is called a very weak solution (v.w.s.) of (NNSE) if
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Very weak solutions for (LSE) and (NNSE)

Definition 2
Let 2<s<00, 3<qg<oo, 2s+3q=1, Yr=1/q+1/3

Let k € L*(0, T L’“(Q)), g€ L0, T; W/29(0Q))
with [, k(t) dz = (g(t), N)y, fora.a. tel0,T)

Let  Fe L0, T;L"()), up € J4(Q)

Then:
u € L5(0, T; L1()) is called a very weak solution (v.w.s.) of (NNSE) if

o —(u, ®r), , — (u, AD),
= (ug, ®(0)),, — (F,V
0,

>T <97 (N V) >6Q,T — <U,’LL, v¢>Q,T — <ku’ cI)>Q,T
for all ® € C§° ([0, T); C5% ()

o divu(t) = k(t), N-u(t)loo=N-g(t) fora.a. tel0,T)

(u-Vu, @) = ((u- N)u, ®)yq — (uu, VO) o — ((V - u)u, ),
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Very weak solutions for (LSE) and (NNSE)




Very weak solutions for (LSE) and (NNSE)

Proposition 2 (Farwig-Galdi-Sohr 2006)
Let 2<s<00, 3<q<o0, 2s+3q=1 1Yr=1/9+1/3
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Very weak solutions for (LSE) and (NNSE)

Proposition 2 (Farwig-Galdi-Sohr 2006)
Let 2<s<00, 3<q<o0, 2s+3q=1 1Yr=1/9+1/3

Let ke L0, T; L"(Q), g€ L*(0,T; W="4(09))
with [, k(t) dz = (g(t), N),q, for a. a. t € [0, T)
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Very weak solutions for (LSE) and (NNSE)

Proposition 2 (Farwig-Galdi-Sohr 2006)
Let 2<s<00, 3<q<o0, 2s+3q=1 1Yr=1/9+1/3

Let ke L0, T; L"(Q), g€ L*(0,T; W="4(09))
with [, k(t) dz = (g(t), N),q, for a. a. t € [0, T)

Let  FeL30, T;L7(), u € J¥5(Q)
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Very weak solutions for (LSE) and (NNSE)

Proposition 2 (Farwig-Galdi-Sohr 2006)
Let 2<s<00, 3<q<o0, 2s+3q=1 1Yr=1/9+1/3

Let ke L0, T; L"(Q), g€ L*(0,T; W="4(09))
with [, k(t) dz = (g(t), N),q, for a. a. t € [0, T)

Let  FeL30, T;L7(), u € J¥5(Q)

Then:
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Very weak solutions for (LSE) and (NNSE)

Proposition 2 (Farwig-Galdi-Sohr 2006)
Let 2<s<00, 3<q<o0, 2s+3q=1 1Yr=1/9+1/3

Let ke L0, T; L"(Q), g€ L*(0,T; W="4(09))
with [, k(t) dz = (g(t), N),q, for a. a. t € [0, T)

Let Fe L0, T;L"(Q)), wup € J?3(Q)
Then:

There exists some T" = T'(F, k, g, up) with 0 < T’ < T and a uniquely
determined v.w.s. u € L* (0, T”; LY(Q)) of (NNSE) with
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Very weak solutions for (LSE) and (NNSE)

Proposition 2 (Farwig-Galdi-Sohr 2006)
Let 2<s<00, 3<q<o0, 2s+3q=1 1Yr=1/9+1/3

Let ke L0, T; L"(Q), g€ L*(0,T; W="4(09))
with [, k(t) dz = (g(t), N),q, for a. a. t € [0, T)

Let Fe L0, T;L"(Q)), wup € J?3(Q)
Then:

There exists some T" = T'(F, k, g, up) with 0 < T’ < T and a uniquely
determined v.w.s. u € L* (0, T”; LY(Q)) of (NNSE) with

o (A-1Pu), € L72(0, T'; L&(2)),
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Very weak solutions for (LSE) and (NNSE)

Proposition 2 (Farwig-Galdi-Sohr 2006)
Let 2<s<00, 3<q<o0, 2s+3q=1 1Yr=1/9+1/3

Let ke L0, T; L"(Q), g€ L*(0,T; W="4(09))
with [, k(t) dz = (g(t), N),q, for a. a. t € [0, T)

Let Fe L0, T;L"(Q)), wup € J?3(Q)
Then:

There exists some T" = T'(F, k, g, up) with 0 < T’ < T and a uniquely
determined v.w.s. u € L* (0, T”; LY(Q)) of (NNSE) with

o (A-1Pu), € L72(0, T'; L&(2)),

o A~'Pu e C([0, T); LE(£2)), A~ Puli_g = A~ Pu,
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Data assumptions for (NNSE)

uw—Au+u-Vu+Vp = f in (0,T)xQ
V-ou =k in (0,T)xQ
u =9 on (0,T)x 090 (NNSE)
w(0) = w=1wv in Q
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Data assumptions for (NNSE)

uw—Au+u-Vu+Vp = f in (0,T)xQ
V-ou =k in (0,T)xQ
u =9 on (0,T)x 090

w(0) = w=1wv in Q

Assumption (k)
Let 4<s, 4<gq, 2/s+3/q=1

(NNSE)
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Data assumptions for (NNSE)

uw—Au+u-Vu+Vp = f in (0,T)xQ
V-ou =k in (0,T)xQ
u =9 on (0,T)x 090

w(0) = w=1wv in Q

Assumption (k)
Let 4<s, 4<gq, 2/s+3/q=1

() f=divF, Fe L%, T;LY*())

(NNSE)
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Data assumptions for (NNSE)

uw—Au+u-Vu+Vp = f in (0,T)xQ
V-ou =k in (0,7T)x%Q
u =9 on (0,T)x 090 (NNSE)
w(0) = w=1wv in Q

Assumption (k)
Let 4<s, 4<gq, 2/s+3/q=1
() f=divF, Fe L%, T;LY*())

S

T 1/s
(i) 0 € L2(Q), lluollpyecey = ( / e uoll; d) " < o,
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Data assumptions for (NNSE)

w—Au+u-Vu+Vp = f in (0,T)xQ
V-ou =k in (0,T)xQ
u =9 on (0,T)x 090 (NNSE)
w(0) = w=1wv in Q

Assumption ()
Let 4<s, 4<gq, 2/s+3/q=1

() f=divF, Fe L%, T;LY*())

- 2 a1 1s

(i) 0 € L2(Q), lluollpyecey = ( / e uoll; d) " < o,
(iii) ke L°(0, T; LY()), g € L°(0, T; W~ +9(9Q))

with / k(t) de = (g9(t), N)y, fora.a.tel0,T).
Q
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Weak solutions for (PNSE) and (NNSE)




Weak solutions for (PNSE) and (NNSE)

Definition 3
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = g¢.
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Weak solutions for (PNSE) and (NNSE)

Definition 3
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = g¢.

Then:
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Weak solutions for (PNSE) and (NNSE)

Definition 3
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = g¢.

Then:

v ist called a weak solution of (PNSE) and
u:= v+ E is a weak solution of (NNSE), if
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Weak solutions for (PNSE) and (NNSE)

Definition 3
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = g¢.

Then:

v ist called a weak solution of (PNSE) and
u:= v+ E is a weak solution of (NNSE), if

D) v e L0, T); L3(£2)) N Lo (10, T); Wy *(92)),
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Weak solutions for (PNSE) and (NNSE)

Definition 3
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = g¢.

Then:

v ist called a weak solution of (PNSE) and
u:= v+ E is a weak solution of (NNSE), if

D) v e L0, T); L3(£2)) N Lo (10, T); Wy *(92)),

(i) w:[0,T) — L2(£2) is weakly continuous and v|;—¢ = vp,
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Weak solutions for (PNSE) and (NNSE)

Definition 3
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = g¢.

Then:

v ist called a weak solution of (PNSE) and
u:= v+ E is a weak solution of (NNSE), if

() e L((0, T); L3(2)) 0 Lioe ([0, T); Wy (42),
(i) w:[0,T) — L2(£2) is weakly continuous and v|;—¢ = vp,
(i) — (v, w)gp+(Vo,Vw)g o —((v+ E)(v+ E),Vu),
—(k(v+ E),w) g p = (00, w(0)) — (F,Vw)g r
for each w € C5°([0, T); G5 (£2)),
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Weak solutions for (PNSE) and (NNSE)

Definition 3
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = g¢.

Then:

v ist called a weak solution of (PNSE) and
u:= v+ E is a weak solution of (NNSE), if

() e L((0, T); L3(2)) 0 Lioe ([0, T); Wy (42),
(i) w:[0,T) — L2(£2) is weakly continuous and v|;—¢ = vp,
(i) —(v,w)gp+(Vo,Vw)g o —((v+ E)(v+ E),Vu),
—(k(v+ E),w) g p = (00, w(0)) g — (F,Vw) g 1
for each w € C5°([0, T); G5 (£2)),
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Weak solutions for (PNSE) and (NNSE)

Definition 3
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = g¢.

Then:

v ist called a weak solution of (PNSE) and
u:= v+ E is a weak solution of (NNSE), if

() e L((0, T); L3(2)) 0 Lioe ([0, T); Wy (42),
(i) w:[0,T) — L2(£2) is weakly continuous and v|;—¢ = vp,
(iii) —A(v,w) g+ (Vo,Vw)y ¢ —((v+ E)(v+ E),Vw), 1
—(k(v+ E),w) g p = (00, w(0)) g — (F,Vw) g 1
for each w € C5°([0, T); G5 (£2)),

<a - Vb, C>Q = <(a ) N)b7 C)GQ - <ab’ VC>Q - <(V ) a’)b7 C>Q

ON LOCAL STRONG SOLUTIONS OF THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS ‘Werner Varnhorn




Weak solutions for (PNSE) and (NNSE)

1 k 1 i
@) IO+ [ 193 dr < Glwlg = [ (P V0), dar

—l—/o ((v—l—E)E,Vv)QdT—f—%/O (k(v+2E),v), dT

for each ¢ € [0, T).
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Weak solutions for (PNSE) and (NNSE)

1 k 1 i
@) IO+ [ 193 dr < Glwlg = [ (P V0), dar

—l—/o ((v—l—E)EVv)QdT—l—%/O (k(v+2E),v), dr

for each ¢t € [0, T').
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Weak solutions for (PNSE) and (NNSE)

1 k 1 i
@) IO+ [ 193 dr < Glwlg = [ (P V0), dar

t 11t
—l—/o ((U+E)E7Vv)9d7'+§/0 (k(v+2E),v), dr

for each ¢t € [0, T').

From (iii) : -+ ((v+ E)(v+ E),Vw) g p+ (k(v+ E),w) g 1. ..
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Weak solutions for (PNSE) and (NNSE)

1 k 1 i
@) IO+ [ 193 dr < Glwlg = [ (P V0), dar

t 1 rt
—l—/o ((U+E)E7Vv)gd7'+§/0 (k(v+2E),v), dr

for each ¢ € [0, T).

From (iii) : -+ ((v+ E)(v+ E),Vw) g p+ (k(v+ E),w) g 1. ..

o (v+E)(v+E),Vv),, = ((v+ E)v,Vuv)g + ((v+ E)E, V)
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Weak solutions for (PNSE) and (NNSE)

1 k 1 i
@) IO+ [ 193 dr < Glwlg = [ (P V0), dar

t 1 rt
—l—/o ((U+E)E7Vv)gd7'+§/0 (k(v+2E),v), dr

for each ¢ € [0, T).

From (iii) : -+ ((v+ E)(v+ E),Vw) g p+ (k(v+ E),w) g 1. ..

o (v+E)(v+E),Vv)g = ((v+ E)v,Vv)g + ((v+ E)E, V),
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Weak solutions for (PNSE) and (NNSE)

1 k 1 i
) I+ [ 1vol3ar < Sl — [ (7. Vo), ar

t 1 rt
—l—/o ((U+E)E7Vv)nd7'+§/0 (k(v+2E),v), dr

for each ¢ € [0, T).

From (iii) : -+ ((v+ E)(v+ E),Vw) g p+ (k(v+ E),w) g 1. ..

o (v+ E)(v+E),Vuv)g ={(v+ E)v,Vv)g + ((v+ E)E, V),
(v+ E)v,Vv)g = (v, V), + (Ev, Vo), = (Ev, V)

ON LOCAL STRONG SOLUTIONS OF THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS ‘Werner Varnhorn




Weak solutions for (PNSE) and (NNSE)

1 k 1 i
) I+ [ 1vol3ar < Sl — [ (7. Vo), ar

t 1 rt
—l—/o ((v—l—E)E,Vv)QdT—i—i/o (k(v+2E),v), dr

for each ¢ € [0, T).

From (iii) : -+ ((v+ E)(v+ E),Vw) g p+ (k(v+ E),w) g 1. ..

o (v+ E)(v+ E),Vv), = ((v+ E)v,Vv), + ((v+ E)E, V),

(v+ E)v,Vv)g = (v, V), + (Ev, Vo), = (Ev, V)
= % <|U|2E, N>6(2 - % <(V : E)U, U>Q

= _% <kva U)Q
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Weak solutions for (PNSE) and (NNSE)

1 k 1 i
) I+ [ 1vol3ar < Sl — [ (7. Vo), ar

t 1 rt
—l—/o ((U+E)E,Vv>9d7+§/0 (k(v+2E),v), dr

for each ¢ € [0, T).

From (iii) : -+ ((v+ E)(v+ E),Vw) g p+ (k(v+ E),w) g 1. ..

o (v+ E)(v+ E),Vv), = ((v+ E)v,Vv), + ((v+ E)E, V),

(v+ E)v,Vv)g = (v, V), + (Ev, Vo), = (Ev, V)
= % <|v|2E7 N>SQ - % <(V : E)U, U>Q

= _% (kv, U)Q

o (k(v+E),v)g — % (kv,v) = % (k(v+2E),v)q
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Weak solutions for (PNSE) and (NNSE)

1 k 1 i
) I+ [ 1vol3ar < Sl — [ (7. Vo), ar

t 1 rt
—l—/o ((v—l—E)E,Vv)QdT—i—i/o (k(v+2E),v), dr

for each ¢ € [0, T).

From (iii) : -+ ((v+ E)(v+ E),Vw) g p+ (k(v+ E),w) g 1. ..

o (v+ E)(v+ E),Vv), = ((v+ E)v,Vv), + ((v+ E)E, V),

(v+ E)v,Vv)g = (v, V), + (Ev, Vo), = (Ev, V)
= % <|U|2E, N>6(2 - % <(V : E)U, U>Q

= _% <kva U)Q

o (k(v+ E),v)q — & (kv, v)g = & (k(v+2E), ),
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Strong solutions for (PNSE) and (NNSE)




Strong solutions for (PNSE) and (NNSE)

Definition 4
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.
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Strong solutions for (PNSE) and (NNSE)

Definition 4
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Let v be a weak solution of (PNSE) and
u = v+ Ej 4 a weak solution of (NNSE).
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Strong solutions for (PNSE) and (NNSE)

Definition 4
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Let v be a weak solution of (PNSE) and
u = v+ Ej 4 a weak solution of (NNSE).

If, in addition,
v e L0, T; LY(Q)),

then v is called a strong solution of (PNSE)
and u = v + Fj 4 a strong solution of (NNSE).
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Main result: Existence of strong solutions




Main result: Existence of strong solutions

Theorem 1 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.
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Main result: Existence of strong solutions

Theorem 1 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Define the data norm b(7') in [0, T') by

b(T) := llwll g (2) + 1Fllg, 5,7+ kllgsm + llgll-1 46,7

2°2 q
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Main result: Existence of strong solutions

Theorem 1 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Define the data norm b(7') in [0, T') by

b(T) := llwll g (2) + 1Fllg, 5,7+ kllgsm + llgll-1 46,7

2°2 q

Then:
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Main result: Existence of strong solutions

Theorem 1 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Define the data norm b(7') in [0, T') by

b(T) := llwll g (2) + 1Fllg, 5,7+ kllgsm + llgll-1 46,7

2°2 q

Then:
There is a constant e* = £*(£2, ¢) > 0 with the following property:
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Main result: Existence of strong solutions

Theorem 1 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Define the data norm b(7') in [0, T') by

b(T) := llwll g (2) + 1Fllg, 5,7+ kllgsm + llgll-1 46,7

2°2 q

Then:
There is a constant e* = £*(£2, ¢) > 0 with the following property: If

b(T) <e",

then there exist in [0, T') uniquely determined strong solutions v of (PNSE)
and u = v+ E of (NNSE), respectively.
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Main result: Regularity of strong solutions




Main result: Regularity of strong solutions

Theorem 2 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

y
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Main result: Regularity of strong solutions

Theorem 2 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Assume, in addition

v
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Main result: Regularity of strong solutions

Theorem 2 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Assume, in addition

F e L*0, T; Whi(2)), u = v € W»9(92),

W
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Main result: Regularity of strong solutions

Theorem 2 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Assume, in addition

F e L0, T; Wh(R2)), uwo = w € W>(02),
k€ L3(0, T; Wh9(92)), k; € L*(0, T; L(12)), k(0) =0,

W
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Main result: Regularity of strong solutions

Theorem 2 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Assume, in addition

F e L0, T; Wh9(£2)), ug = v € W>4(12),
ke L°(0, T; Wh9(2)), k, € L5(0, T; L(£2)), k(0) = 0,
g€ L0, T; W2~Y/29(90)), g, € L*(0, T; W~ +%(882)), ¢(0) =0,

v
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Main result: Regularity of strong solutions

Theorem 2 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Assume, in addition

F e L*0,T; Wh4(£2)), uo = w € W>9(12),
ke L°(0, T; Wh9(2)), k, € L5(0, T; L(£2)), k(0) = 0,
g€ L0, T; W2~Y/29(90)), g, € L*(0, T; W~ +%(882)), ¢(0) =0,

Assume v and u = v + E are strong solutions in [0, T') as in Theorem 1.

v
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Main result: Regularity of strong solutions

Theorem 2 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Assume, in addition

F e L*0,T; Wh4(£2)), uo = w € W>9(12),
ke L°(0, T; Wh9(2)), k, € L5(0, T; L(£2)), k(0) = 0,
g€ L0, T; W2~Y/29(90)), g, € L*(0, T; W~ +%(882)), ¢(0) =0,

Assume v and u = v + E are strong solutions in [0, T') as in Theorem 1.
Then:

v
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Main result: Regularity of strong solutions

Theorem 2 (Farwig-Sohr-V. 2013)
Assume () and E = Ej, 4 is the v.w.s. of (LSE) from Proposition 1 with r = ¢.

Assume, in addition
F e L0, T; Wh4(2)), u = vy € WH9(R),
ke L0, T; Wh9(82)), k. € L5(0, T; LY(£2)), k(0) =0,
g € L*(0, T; W2~1/249(90)), g, € L*(0, T; W~ 7%(82)), ¢(0) =0,

Assume v and u = v + E are strong solutions in [0, T') as in Theorem 1.
Then:

ve L. ([0, T); Wy *(2)) N L, ([0, T); W2(92)),
v € L ([0, T); L3(2)),

E € L*(0, T; W249(2)), E, € L*(0, T; LY(12)),

u € L}, ([0, T); W»%(92)), w € L. ([0, T); L*(£2)).
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Remarks

Since b(T) — 0 as T — 0, each [0, T*) with 0 < T* < T and b(T*) < e*,
defines an existence interval of uniquely determined strong solutions v of
(PNSE) and u = v+ E of (NNSE), with T replaced by T*.




Remarks

Remark 1

Since b(T) — 0 as T — 0, each [0, T*) with 0 < T* < T and b(T*) < &*,
defines an existence interval of uniquely determined strong solutions v of
(PNSE) and v = v+ E of (NNSE), with T replaced by T*.

Remark 2

Let u be a strong solution as in Theorem 1.

Then for smooth data f, k, g, v9 € C*° we obtain that v and v = v+ Ej 4
satisfy v,u € C°((0, T) x £2).
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Remarks

Remark 1

Since b(T) — 0 as T — 0, each [0, T*) with 0 < T* < T and b(T*) < &*,
defines an existence interval of uniquely determined strong solutions v of
(PNSE) and v = v+ E of (NNSE), with T replaced by T*.

Remark 2

Let u be a strong solution as in Theorem 1.

Then for smooth data f, k, g, v9 € C*° we obtain that v and v = v+ Ej 4
satisfy v,u € C°((0, T) x £2).

Remark 3
Let v be a strong solution of (PNSE) as in Definition 3.

Then we can replace the energy inequality (iv) by the corresponding energy
equality as in the known case £k =0, g = 0.

o’
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Remarks

Remark 4

Let D, be the data set from Assumption (*) under the restriction

T <oco, FelL0,T;LYQ)), v =0.
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Remarks

Remark 4

Let D, be the data set from Assumption () under the restriction
T <oco, FelL0,T;LYQ)), v =0.

Then D, is contained in the data set for the v.w.s. u of (NNSE) from
Proposition 2.
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Remarks

Remark 4

Let D, be the data set from Assumption () under the restriction
T <oco, FelL0,T;LYQ)), v =0.

Then D, is contained in the data set for the v.w.s. u of (NNSE) from
Proposition 2.

Hence there is some 0 < T* < T such that in [0, 7*) the solution set VD,. of
very weak solutions coincides with the solution set SD, of strong solutions:

VD, = SD, in [0, T*).
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Remarks

Remark 4

Let D, be the data set from Assumption (*) under the restriction
T <oco, FelL0,T;LYQ)), v =0.

Then D, is contained in the data set for the v.w.s. u of (NNSE) from
Proposition 2.

Hence there is some 0 < T* < T such that in [0, 7*) the solution set VD,. of
very weak solutions coincides with the solution set SD, of strong solutions:

VD, = SD, in [0, T*).

This shows, at least for slightly restricted data, that the solutions in VD, have
the same regularity as the solutions in SD,, and the notion “very weak” seems
to be no longer justified!

v
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Thank you very much

for your attention!




