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Setting of the problem

I Ω ⊂ Rn — bounded Lipschitz domain,

I ρ ∈ L1(Ω) — weight,

I p(·) : Ω→ R+ — measurable exponent,

1 < α < p(x) < β <∞,

I Lp(·)(Ω, ρdx) — variable exponent Lebesgue space with the
Luxemburg norm

‖f ‖p(·), ρ dx = inf

{
λ > 0 :

∫
|λ−1f |p(x)ρdx ≤ 1

}
.

This space is a reflexive separable Banach space, its dual is
Lp
′(·)(Ω, ρdx), p′(x) = p(x)

p(x)−1 .



I W — Sobolev-Orlicz space

W =

{
u ∈W 1,1

0 (Ω) :

∫
Ω
|∇u|p(x)ρ dx <∞

}
,

‖u‖W := ‖∇u‖p(·), ρ dx .

From now on we additionally assume that

ρ−1/p ∈ Lp
′
(Ω; dx), where p′(x) =

p(x)

p(x)− 1
.

Then, the space W is complete due to the generalized Hölder
inequality:∫

Ω
|∇u| dx ≤ 2‖∇u‖Lp(Ω, ρ dx)‖ρ−1/p‖Lp′ (Ω, dx).

I H — the closure of C∞0 (Ω) in W .



The Key Problem

whether smooth functions are
dense in the Sobolev space, or

H=W ?



Why important - Lavrentiev’s phenomenon.

Minimize the integral functional

J[u] =

∫
|∇u|pρdx , u = ϕ on ∂Ω.

If H 6= W , we can take inf over H or over W . This can give two
different values:

inf
u∈W

J[u] < inf
u∈H

J[u].

Which one we get? Or an intermediate value? (if codimension of
H in W is greater than 1)



p = const, the classics.

I ρ ≡ 1 — N. Meyers and J. Serrin, 1964, H = W . Density of
C∞(Ω) in W k,p(Ω). No smoothness of ∂Ω is required.

I ρ ≡ 1 — Under mild additional assumptions on the structure
of ∂Ω we also have density of C∞(Ω̄) in the classical Sobolev
spaces W k,p(Ω).

I ρ ∈ Ap (Muckenhoupt classes) — Meyers-Serrin result still
holds, C∞(Ω) is dense in W k,p(Ω, ρdx). The proof repeats
the proof of Meyers and Serrin and is based on the uniform
boundedness of the classical smoothing operators

Tεf (x) = f ∗ ϕε(x) =

∫
f (y)ρε(x − y)dy

in Lp(Ω, ρdx).



Natural limit of the classical method.

By classical results from the theory of the Muckenhoupt
spaces, the uniform boundedness of Tε in Lp(Ω, ρ dx) is
equivalent to ρ ∈ Ap.

Thus, using the classical averaging we cannot go
beyond the Muckenhoupt classes Ap. The need for a
new technique arises.



Lipschitz truncations.

Step 1. For u ∈W 1,1
0 (Ω) the following two estimates are valid:

|u(x)− u(y)| ≤ C {M(∇u)(x) + M(∇u)(y)} |x − y |, a.e. x , y ∈ Ω,

|u(x)| ≤ Cd(x)M(∇u)(x), u ∈W 1,1
0 (Ω), a.e. x ∈ Ω.

Here d(x) = dist(x , ∂Ω) and Mf is the Hardy-Littlewood maximal
function:

Mf (x) = sup
x∈B

1

|B|

∫
B
|f | dy , for f ∈ L1

loc(Rn),

the supremum is over all open balls which contain x .
Step 2. Combining the above estimates,

|u(x)− u(y)| ≤ Cλ|x − y | for x , y ∈ {M(∇u) ≤ λ} ∪ (Rn \Ω).



Step 3. McShane extension theorem: we extend the restriction of
u from the set {M(∇u) ≤ λ} ∪ (Rn \ Ω) to the whole space Rn.

Result. We have obtained uλ — a Lipschitz function which
coincides with u on the set {M(∇u) ≤ λ} and vanishes outside Ω.
It is called the Lipschitz trunction of the original function. As λ
increases, uλ gets closer and closer to u as the set {M(∇u) =∞}
has Lebesgue measure zero.



Zhikov’s theorem

Recently, V.V. Zhikov proved the following interesting theorem:

Theorem
Let p = 2, ρ = ωω0, where ω0 ∈ A2 and

lim inf
t→∞

(∫
Ω ω

tω0 dx
)1/t ·

(∫
Ω ω
−tω0 dx

)1/t

t2
<∞.

Then H = W.

This theorem has a nice corollary: if

∃t0 : exp(t0ω), exp(t0ω
−1) ∈ L1(Ω, ω0 dx)

then H = W .



Example 1. Integrability to any power of ρ and ρ−1 is not enough.
In Ω = {|x | < 1/2} take

ρα(x) =


(

ln 1
|x |

)α
, x1x2 > 0,(

ln 1
|x |

)−α
, x1x2 < 0.

This weight is regular (H = W ) for α ≤ 1 and irregular for α > 1.
It is not hard to see that for α > 1 there holds

lim
t→∞

(∫
Ω ρ

t
α dx

)1/t ·
(∫

Ω ρ
−t
α dx

)1/t

t2α
<∞,

lim
t→∞

(∫
Ω ρ

t
α dx

)1/t ·
(∫

Ω ρ
−t
α dx

)1/t

t2
=∞.



Here it is useful to keep in mind that

lim
n→∞

1

n

[∫ 1/2

0
r

(
ln

1

r

)n

dr

] 1
n

=
1

2e
.

More general examples of this type are built as follows:

ρ(x) =

{
a(|x |), x1x2 > 0,

(a(|x |))−1, x1x2 < 0,

∫ 1

0

a(r) dr

r
<∞,

a(r), a−1(r) ≥ c(ε) > 0, r > ε.

Then it is possible to show that the function

u(x) =


1, x1 > 0, x2 > 0,

sin θ, x1 < 0, x2 > 0,

0, x1 < 0, x2 < 0,

cos θ, x1 > 0, x2 < 0

belongs to W but not to H.



Indeed, take

ũ = u(−x2, x1), g =

{
− ∂ũ
∂x2

,
∂ũ

∂x1

}
.

If uε ∈ C∞(Ω) approximates u in the norm of W , then∫
Ω
∇uε · g dx =

∫
∂Ω

uεg · ndσ = −
∫
∂Ω

uε
∂ũ

∂θ
dσ

→
∫
∂Ω

u
∂ũ

∂θ
dσ = −

∫ π/2

0
sin θ dθ = 1.

On the other hand,∫
Ω
∇uε · g dx →

∫
Ω
∇u · g dx = 0.



Example 2. If the weight ρ is degenerate only on a set closed F of
zero measure and zero capacity

cap(F , ρ) = inf

∫
Ω
|∇u|2ρ dx , u ∈ C∞0 (Ω),

u = 1 in the neighbourhood of F ,

then ρ is regular. (Cut-off functions...)
In the ball {|x | < 1/2} take ρ satisfying

1 ≤ ρ ≤ C

(
ln

1

|x |

)α
, 0 < α ≤ 2.

Then Zhikov’s theorem gives H = W , i.e. C∞0 (Ω) is dense in W .
On the other hand, one can check that cap({0}, ρ) > 0, i.e.
C∞0 (Ω \ {0}) is not dense in W .



A related result says that ρ is regular if

capF = 0, ρ(x) ≤ const

capFε
,

Fε = {x ∈ Ω : dist(x ,F ) ≤ ε}.

In particular, if capF = |F | = 0, then boundedness of ρ implies
regularity.
For the one-point set F = {0} this turns into

sup
|x |≥ε

ρ(x) ≤

{
ln 1

ε , n = 2,
1

εn−2 , n > 2.



Using the same technique, Zhikov’s theorem can be extended to
the case of any constant p > 1:

Theorem
Let p = const > 1, ρ = ωω0, where ω0 ∈ Ap and

lim inf
t→∞

(∫
Ω ω

tω0 dx
)1/t ·

(∫
Ω ω
−tω0 dx

)1/t

tp
<∞.

Then H = W.



Our goal is to obtain a similar result for the case of the
variable exponent. To this end, we have to understand first
the limitations on the exponent p(x) and second what an
analogue of the classical Muckenhoupt class for the variable
exponent can be.



Proof for p = const.

The proof is by contradiction. If H 6= W there exists a nontrivial
f ∈W ∗ such that < f , ϕ >= 0 for any ϕ ∈ H.
Step 1. Solve the problem

div
(
ρ|∇u|p−2∇u

)
= f , u ∈W ,

which means that∫
|∇u|p−2∇u∇ϕρdx =< f , ϕ > ∀ϕ ∈W .

By the choice of f , we have∫
|∇u|p−2∇u∇ϕρdx = 0 ∀ϕ ∈ H.



Step 2. Denote

ρ dx = ω dµ, dµ = ω0 dx ,

g(x) = max

{
M(∇u)(x),

|u(x)|
d(x)

}
, A =

(∫
|∇u|pρ dx

)1/p

.

The notation ‖ · ‖q stands for the norm in Lq(Ω, dµ).
By the maximal function estimate, Hardy’s inequality and the
Hölder for any small positive ε′ we obtain

‖g‖p−ε′ ≤ C‖∇u‖p−ε′

≤ ‖ω1/p∇u‖p · ‖ω−1/p‖p(p−ε′)/ε′

= CA‖ω−1‖1/p
p−ε′
ε′
.



Step 3. Use uλ — the Lipschitz truncation of u as a test function
in the integral identity defining a solution:∫

Ω
|∇u|p−2∇u∇uλ ρdx = 0.

Introducing Fλ = Ω ∩ {g ≤ λ} and breaking the integral into two
parts, we have∫

Fλ

|∇u|p ρdx = −
∫

Ω\Fλ
|∇u|p−2∇u∇uλ ρdx

≤ Cλ

∫
Ω\Fλ

|∇u|p−1 ρdx .



Step 4. By Fubini’s theorem,∫
f (g)|∇u|pρdx = −

∫ ∞
0

f ′(λ)

∫
Fλ

|∇u|pρ dx dλ,∫
Φ(g)|∇u|p−1ρdx =

∫ ∞
0

Φ′(λ)

∫
Ω\Fλ

|∇u|p−1ρ dx dλ.

So, multiplying the formula we obtained by f ′(λ) and integrating
over (0,∞) we arrive at∫

f (g)|∇u|pρ dx ≤ C

∫
Φ(g)|∇u|p−1ρ dx ,

where Φ′(λ) = −λf ′(λ). By Hölder’s inequality∫
f (g)|∇u|pρdx ≤ CAp−1

(∫
Φp(g)ρ dx

)1/p

.



Choosing f (λ) = λ−ε for ε′ ∈ (0, pε)∫
g−ε|∇u|pρdx ≤ CAp−1 ε

1− ε

(∫
gp(1−ε)ρdx

)1/p

≤ CAp−1ε

(∫
gp−ε′ dµ

) 1−ε
p−ε′

(∫
ω

p−ε′
pε−ε′ dµ

) pε−ε′
p(p−ε′)

≤ CAp−ε
(
εp‖ω−1‖1−ε

p−ε′
ε′
‖ω‖1/p

p−ε′
pε−ε′

)1/p

.



Step 5. Let ε = τε′, where τ > 1/p, and t = p−ε′
pε−ε′ . Passing to

the limit,

Ap ≤ CAp

lim inf
t→∞

‖ω−1‖1−ε(t)
(pτ−1)t‖ω‖t
tp

1/p

,

where ε(t) =
pτ

(pτ − 1)t + 1
.

If the limit here is small enough, A = 0 which is what we want.
Taking τ = 2/p, we obtain the symmetric form of the condition

lim inf
t→∞

‖ω−1‖1−ε(t)
t ‖ω‖t
tp

< C0, ε(t) =
2

t + 1
.



Step 6. The smallness condition on the limit can be easily
removed: indeed, take

ρδ = ω0ωδ, ωδ =


δω, ω > 1/δ,

ω, δ ≤ ω ≤ 1/δ,

ω/δ, ω < δ.

It is easy that

‖ωδ‖t ≤ µ(Ω)1/t + δ‖ω‖t , ‖ω−1
δ ‖t ≤ µ(Ω)1/t + δ‖ω−1‖t ,

hence for ωδ the limit above can be made as small as we wish by
the choice of δ.



Basics on Sobolev spaces with variable exponent.
I For the variable exponent the classical example by V.V. Zhikov

p(x) =

{
α > 2, x1x2 > 0,

β < 2, x1x2 < 0

shows that in the absence of continuity of p(x) some strange
phenomena may arise. In this example smooth functions are
not dense in the Sobolev space.

I Around middle of 1990s V.V. Zhikov and X.L. Fan introduced
the famous log-condition

|p(x)− p(y)| ≤ k0

ln 1
|x−y |

, |x − y | < 1,

which guarantees the uniform boundedness of the family of
smoothing operators Tε and thus density of smooth functions
in Sobolev spaces.

I Log-condition is also sufficient and in some sense almost
necessary for other important properties, like boundedness of
the maximal function on Lp(·)(Rn), etc.



Advanced results on density

I Thus, if one wants to prove density of smooth functions by
mollifications, the Log-condition for p(·) is the natural
boundary.

I However, if one is interested in density of smooth functions
the Log-condition can be relaxed (V.V. Zhikov): let r(t) be
the modulus of continuity of p(·). Then C∞(Rn) is dense in
W 1,p(·)(Rn) provided that∫ 1

0
t−1+ r(t)n

α dt =∞.

I This condition is closed to optimal: for r(t) =
k ln ln 1

t

ln 1
t

with

0 < k ≤ α/n the integral diverges and thus C∞(Rn) is dense
in W 1,p(·)(Rn), and if k is large enough one can show that
H 6= W .



Zhikov’s H 6= W example.

Let A(1) − A(4) be four nonintersecting open sections of the unit
disk taken in counterclockwise dicrection. Assume that
simultaneously∫

A(1)∪A(3)

|x |−p′(x) dx <∞,
∫
A(2)∪A(4)

|x |−p(x) dx <∞.

Then H 6= W .



The idea of this example is based on the following simple
Hardy-like estimate:∣∣∣∣ 1

|Γ1|

∫
Γ1

(u(R, ϕ)− u(0))dϕ

∣∣∣∣ ≤ 1

|Γ1|

∫
A(1)∩BR

r−1|∇u|dx

≤ 1

|Γ1|

(∫
A(1)∩BR

r−p
′(x) dx +

∫
BR

|∇u|p(x) dx

)
,

valid for u ∈ Lip0(B1). The same also holds for the sector A(3).
Hence, ∣∣∣∣ 1

|Γ1|

∫
Γ1

u(R, ϕ) dϕ− 1

|Γ3|

∫
Γ3

u(R, ϕ) dϕ

∣∣∣∣
≤ C

(∫
AR

(1)
∪AR

(3)

r−p
′(x) dx +

∫
BR

|∇u|p(x) dx

)
.

By closure, the same is also valid for u ∈ H.



Therefore, for any u ∈ H the difference

1

|Γ1|

∫
Γ1

u(R, ϕ) dϕ− 1

|Γ3|

∫
Γ3

u(R, ϕ) dϕ

tends to zero as R goes to zero.
On the other hand, take uex = (1− r2)f (ϕ), where f has values
between 0 and 1, f = 0 on Γ1, f = 1 on Γ3 and the support of f ′ is
contained in Γ2 ∪ Γ3. It is easy that∫

|∇uex |p(x) dx <∞,

hence uex ∈W . At the same time,

1

|Γ1|

∫
Γ1

u(R, ϕ) dϕ ≡ 0, lim
R→0

1

|Γ3|

∫
Γ3

u(R, ϕ)dϕ = 1,

which contradicts what was proved for functions from H.



Standard Muckenhoupt classes.

We remind that a weight w belongs to the Muckenhoupt class Ap,
p > 1, if

sup
1

|Q|

∫
Q
w dx

(
1

|Q|

∫
Q
w

1
1−p dx

)p−1

<∞

where the supremum is taken over all cubes Q ⊂ Rn with faces
parallel to the coordinate hyperplanes.

What to do if p is variable?



Muckenhopt classes with variable exponent.

Definition. We say that a nonnegative L1
loc function (weight)

ω ∈ Ap(·)(Ω), if

sup
x∈Q⊂Ω

(∫
Q
ω dy

)1/p(x) ‖ω−1/p‖Lp′ (Q)

|Q|
<∞,

where the supremum is taken over all cubes Q ⊂ Ω with faces
parallel to the coordinate hyperplanes.



Properties of Ap(·)(Ω).

I Ap(·)(Ω) ⊂ A∞(Ω), i.e.

γ

(
|E |
|Q|

)β
<
ω(E )

ω(Q)
< γ1

(
|E |
|Q|

)β1

.

for any cube Q ⊂ Ω and measurable E ⊂ Q.

I If q(·) is Log-continuous and ω ∈ Ap(·)(Ω) then ∃C > 0 s.t.

ω(Q)q(x)−q(y) ≤ C for all cubes Q ⊂ Ω and x , y ∈ Q.

I If ω ∈ Ap(·)(Ω) and p(·) satisfies the Log-condition then

ω−p
′/p ∈ Ap′(·)(Ω).

I If p(·), q(·) satisfy the Log-condition and p ≤ q, then
Ap(·)(Ω) ⊂ Aq(·)(Ω).



Open-endedness

Theorem
Let ω ∈ Ap(·)(Ω) and p(·) satisfy the Log-condition. Then ∃ε > 0
s.t. ω ∈ Ap(·)−ε(Ω). As a consequence, for any cube or ball Q ⊂ Ω
there holds

1

|Q|

∫
Q
|f | dx ≥ 1⇒ 1

ω(Q)

∫
Q
|f |p(x)−εω dx ≥ γ

with some γ, ε > 0.



Main Result.

Theorem
Let p(·) satisfy the Log-condition and ρ = ωω0, where
ω0 ∈ Ap(·)(Ω) and

lim inf
t→∞

(∫
Ω
ω−tω0 dx

)1/t (∫
Ω

(
t−p(x)ω

)t
ω0 dx

)1/t

<∞.

Then H = W.



Proof for the variable exponent case

The starting point is the same as before:∫
Fλ

|∇u|p ρ dx = −
∫

Ω\Fλ
|∇u|p−2∇u∇uλ ρdx

≤ Cλ

∫
Ω\Fλ

|∇u|p−1 ρdx .

Multiplying this by ελ−1−ε, integrating from K to ∞, using
Fubini’s theorem and the Young inequality we obtain∫

Ω
max(g ,K )−ε|∇u|pρ dx ≤ Cε

∫
Ω

(
g1−ε − K 1−ε)

+
|∇u|p−1ρdx

≤ 1

2

∫
Ω
|∇u|pρdx + C

∫
Ω
εp
(
g1−ε − K 1−ε)p

+
ρdx ,



Denoting the last integral by Iε, we estimate it as follows:

Iε :=

∫
Ω
εp
(
g1−ε − K 1−ε)p

+
ρdx

=

∫ ∞
K

∫
Ω∩{g>λ}

p(1− ε)
(
λ1−ε − K 1−ε)p−1

+
λ−εεpρdx dλ

≤ β
∫ ∞
K

∫
Ω∩{g>λ}

λp−1−pεεpρdx dλ.

Now, cover the set Eλ = Ω ∩ {g > λ} by a family of balls Bz ,
z ∈ Eλ such that

1

|Bz |

∫
Bz

|∇u| dx > λ.

Extract from this family the Besikovitch covering Bk,j(λ),
k = 1, . . . ,N.



Denoting B ′k,j(λ) = Ω ∩ Bk,j(λ), obtain

I2ε ≤ C

∫ ∞
K

N∑
k=1

∞∑
j=1

∫
B′k,j (λ)

λp−1−2pεεpρdx dλ.

It is also easy that

|Bk,j(λ)| ≤ 2

λ

∫
Bk,j (λ)∩{f>λ/2}

f dx

and

|Bk,j(λ)| ≤ 2

λ

(∫
Ω

f p(x)

p(x)
ρdx +

∫
Ω

ρ
1

1−p

p′(x)
dx

)
≤ C

λ
.



By the Log-condition,

λp(x)−p(y) ≤ exp

(
lnλ

C

lnλ1/n

)
≤ C , ∀x , y ∈ Bk,j(λ).

For dµ = ω0 dx we have∫
Bk,j (λ)∩{f>λ/2}

(
f

λ

)p(x)−δ
dµ ≥ Cµ(Bk,j(λ)).



Using the above facts and the Hölder inequality we obtain∫
B′k,j (λ)

λp−1−2pεεpρdx

≤ C

(∫
B′k,j (λ)∩{f>λ/2}

λp−1(f λ−1)(p−δ)(1+ε/2)ρdx

) 2−ε
2+ε

×

×

(∫
B′k,j (λ)∩{f>λ/2}

λ−αω−2/ε dµ

) ε(1−ε/2)
2+ε

(∫
B′k,j (λ)

λ−α (εpω)2/ε dµ

)ε/2

.



Now, we sum over all balls of the covering and use Hölders
inequality again:

N∑
k=1

∞∑
j=1

∫
B′k,j (λ)

λp−1−2pεεpρ dx

≤ C

(∫
{f>λ/2}

λp−1(f λ−1)(p−δ)(1+ε/2)ρ dx

) 2−ε
2+ε

×

×

(∫
{f>λ/2}

λ−αω−2/ε dµ

) ε(1−ε/2)
2+ε

(∫
Ω∩{g>λ}

λ−α (εpω)2/ε dµ

)ε/2

.



Integrating in λ from K to ∞ we obtain the estimate

I2ε ≤ C

(∫
Ω
|∇u|pρdx

) 2−ε
2+ε
(∫

Ω
ω−2/ε dµ

) ε(1−ε/2)
2+ε

(∫
Ω

(εpω)2/ε dµ

)ε/2

.

From this estimate it follows that∫
Ω
|∇u|pρdx = lim

ε→0+

∫
Ω

max(g ,K )−2ε|∇u|pρdx

≤ 1

2

∫
Ω
|∇u|pρdx + C lim

ε→0+
I2ε

≤
∫

Ω
|∇u|pρdx ·

·

1

2
+ C lim inf

ε→0+

(∫
Ω
ω−2/ε dµ

) ε(1−ε/2)
2+ε

(∫
Ω

(εpω)2/ε dµ

)ε/2
 .



To obtain the result of the theorem it remains to replace 2/ε by
t →∞.
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