Motion of elastic thin films by anisotropic surface diffusion with curvature regularization (work in collaboration with I. Fonseca, G. Leoni and M. Morini)

Nicola Fusco

contact angle =zero

$$
h: \mathbb{R}^2 \to [0, \infty) \quad Q\text{-periodic, Lipschitz}
$$
\n
$$
\Omega_h = \left\{ (x, y) \in Q \times \mathbb{R} \colon 0 < y < h(x) \right\}
$$
\n
$$
\Gamma_h = \partial \Omega_h \cap \left\{ y > 0 \right\}
$$
\n
$$
Q = [0, 1] \times [0, 1]
$$

$$
h: \mathbb{R}^2 \to [0, \infty) \quad Q\text{-periodic, Lipschitz}
$$

\n
$$
\Omega_h = \{(x, y) \in Q \times \mathbb{R} \colon 0 < y < h(x)\}
$$

\n
$$
\Gamma_h = \partial \Omega_h \cap \{y > 0\}
$$

\n
$$
Q = [0, 1] \times [0, 1]
$$

 Γ_h = free profile of the film

$$
h: \mathbb{R}^2 \to [0, \infty) \quad Q\text{-periodic, Lipschitz}
$$
\n
$$
\Omega_h = \{(x, y) \in Q \times \mathbb{R} \colon 0 < y < h(x)\}
$$
\n
$$
\Gamma_h = \partial \Omega_h \cap \{y > 0\}
$$
\n
$$
Q = [0, 1] \times [0, 1]
$$

 \blacksquare Γ_h = free profile of the film

 Ω_h = reference configuration of the film, $|\Omega_h| = d$, d given

$$
h: \mathbb{R}^2 \to [0, \infty) \quad Q\text{-periodic, Lipschitz}
$$

$$
\Omega_h = \{(x, y) \in Q \times \mathbb{R} \colon 0 < y < h(x)\}
$$

$$
\Gamma_h = \partial \Omega_h \cap \{y > 0\}
$$

$$
Q = [0, 1] \times [0, 1]
$$

 $\Gamma_h =$ free profile of the film

- $\triangleright \Omega_h$ = reference configuration of the film, $|\Omega_h| = d$, d given
- $\triangleright u : \Omega_h \mapsto \mathbb{R}^3 =$ displacement of the film

$$
h: \mathbb{R}^2 \to [0, \infty) \quad Q\text{-periodic, Lipschitz}
$$
\n
$$
\Omega_h = \{(x, y) \in Q \times \mathbb{R} \colon 0 < y < h(x)\}
$$
\n
$$
\Gamma_h = \partial \Omega_h \cap \{y > 0\}
$$
\n
$$
Q = [0, 1] \times [0, 1]
$$

- Γ_h = free profile of the film
- $\triangleright \Omega_h$ = reference configuration of the film, $|\Omega_h| = d$, d given
- $\blacktriangleright u : \Omega_h \mapsto \mathbb{R}^3 =$ displacement of the film
- $u(x, 0) = e_0(x, 0)$, $Du(\cdot, t)$ is Q-periodic

$$
h: \mathbb{R}^2 \to [0, \infty) \quad Q\text{-periodic, Lipschitz}
$$
\n
$$
\Omega_h = \{(x, y) \in Q \times \mathbb{R} \colon 0 < y < h(x)\}
$$
\n
$$
\Gamma_h = \partial \Omega_h \cap \{y > 0\}
$$
\n
$$
Q = [0, 1] \times [0, 1]
$$

- $\Gamma_h =$ free profile of the film
- $\triangleright \Omega_h$ = reference configuration of the film, $|\Omega_h| = d$, d given
- $\triangleright u : \Omega_h \mapsto \mathbb{R}^3 =$ displacement of the film
- $\blacktriangleright u(x, 0) = e_0(x, 0), \quad Du(\cdot, t)$ is Q-periodic
- $\geq e_0 > 0$ measure the mismatch between the two lattices

$$
\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},
$$

$$
\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},
$$

 $W(E) = \mu |E|^2 + \frac{\lambda}{2} \text{trace}(E^2)$ $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

where

$$
\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},
$$

 $W(E) = \mu |E|^2 + \frac{\lambda}{2} \text{trace}(E^2)$ $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

 $\blacktriangleright \psi =$ (anisotropic) surface energy density

$$
\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},
$$

 $W(E) = \mu |E|^2 + \frac{\lambda}{2} \text{trace}(E^2)$ $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

 $\blacktriangleright \psi =$ (anisotropic) surface energy density

inf $\{F(h, u): (h, u)$ admissible, $|\Omega_h| = d\}$

$$
\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},
$$

 $W(E) = \mu |E|^2 + \frac{\lambda}{2} \text{trace}(E^2)$ $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

 $\blacktriangleright \psi =$ (anisotropic) surface energy density

inf $\{F(h, u): (h, u)$ admissible, $|\Omega_h| = d\}$

$$
\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},
$$

 $W(E) = \mu |E|^2 + \frac{\lambda}{2} \text{trace}(E^2)$ $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

 $\bullet \psi =$ (anisotropic) surface energy density

inf $\{F(h, u): (h, u)$ admissible, $|\Omega_h| = d\}$

 \triangleright Grinfeld (1993): instability analysis based on the free-energy

$$
\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},
$$

 $W(E) = \mu |E|^2 + \frac{\lambda}{2} \text{trace}(E^2)$ $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

 $\bullet \psi =$ (anisotropic) surface energy density

inf $\{F(h, u): (h, u)$ admissible, $|\Omega_h| = d\}$

- \triangleright Grinfeld (1993): instability analysis based on the free-energy
- \triangleright Bonnettier-Chambolle (2002): variational formulation in two-dimensions

$$
\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},
$$

 $W(E) = \mu |E|^2 + \frac{\lambda}{2} \text{trace}(E^2)$ $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

 $\bullet \psi =$ (anisotropic) surface energy density

inf $\{F(h, u): (h, u)$ admissible, $|\Omega_h| = d\}$

- \triangleright Grinfeld (1993): instability analysis based on the free-energy
- **E** Bonnettier-Chambolle (2002): variational formulation in two-dimensions
- \triangleright Chambolle-Solci (2007): variational formulation in three-dimensions

Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation

 \triangleright Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation

 \triangleright Chambolle & Solci (2007): existence of minimizing configurations in 3D for a simplified model

 \triangleright Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation

 \triangleright Chambolle & Solci (2007): existence of minimizing configurations in 3D for a simplified model

 \triangleright Fonseca, F., Leoni, and Morini (2007): regularity of (locally) minimizing configurations

 \triangleright Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation

 \triangleright Chambolle & Solci (2007): existence of minimizing configurations in 3D for a simplified model

 \triangleright Fonseca, F., Leoni, and Morini (2007): regularity of (locally) minimizing configurations

 \triangleright F.-Morini (2012): 2Dqualitative properties and local minimality results in the case of an isotropic surface energy, via second variation,

 \triangleright Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation

 \triangleright Chambolle & Solci (2007): existence of minimizing configurations in 3D for a simplified model

 \triangleright Fonseca, F., Leoni, and Morini (2007): regularity of (locally) minimizing configurations

 \triangleright F.-Morini (2012): 2D qualitative properties and local minimality results in the case of an isotropic surface energy, via second variation,

 \blacktriangleright Bonacini (2013): the case of anisotropic surface energies in 2D and 3D.

Einstein-Nernst law:

Einstein-Nernst law: surface flux of atoms

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma} \mu$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma} \mu$

 μ = chemical potential

Einstein-Nernst law: surface flux of atoms $\propto \nabla \Gamma \mu$

 μ = chemical potential \rightarrow $V = c \times$ $\Delta_{\Gamma(t)} \mu$

Laplace-Beltrami operator

(volume preserving)
Morphology evolution: surface diffusion

Einstein-Nernst law: surface flux of atoms $\propto \nabla \Gamma \mu$

 μ = chemical potential \rightarrow $V = c \times$ $\Delta_{\Gamma(t)} \mu$

Laplace-Beltrami operator

(volume preserving)

 μ = first variation of energy = $div_{\Gamma}D\psi(\nu)$ + $W(E(u)) + \lambda$

anisotropic curvature

Morphology evolution: surface diffusion

Einstein-Nernst law: surface flux of atoms $\propto \nabla \Gamma \mu$

 μ = chemical potential \rightarrow $V = c \times$ $\Delta_{\Gamma(t)} \mu$

Laplace-Beltrami operator

(volume preserving)

 μ = first variation of energy = $div_{\Gamma}D\psi(\nu)$ + $W(E(u)) + \lambda$

anisotropic curvature

$$
V = \Delta_{\Gamma} \Big(\mathrm{div}_{\Gamma} D \psi(\nu) + W(E(u)) \Big)
$$

For highly anisotropic ψ it may happen

For highly anisotropic ψ it may happen

 $D^2\psi(\nu)[\tau,\tau] < 0 \quad \text{ for some } \tau \perp \nu$

For highly anisotropic ψ it may happen

 $D^2\psi(\nu)[\tau,\tau] < 0 \quad \text{ for some } \tau \perp \nu$ ⇓

For highly anisotropic ψ it may happen

 $D^2\psi(\nu)[\tau,\tau] < 0 \quad \text{ for some } \tau \perp \nu$

⇓ the evolution becomes backward parabolic

For highly anisotropic ψ it may happen

 $D^2\psi(\nu)[\tau,\tau] < 0$ for some $\tau \perp \nu$

⇓ the evolution becomes backward parabolic

For highly anisotropic ψ it may happen

 $D^2\psi(\nu)[\tau,\tau] < 0$ for some $\tau \perp \nu$

⇓ the evolution becomes backward parabolic

For highly anisotropic ψ it may happen

 $D^2\psi(\nu)[\tau,\tau] < 0$ for some $\tau \perp \nu$

⇓ the evolution becomes backward parabolic

$$
F(h, u) := \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \big(\psi(\nu) + \frac{\varepsilon}{p} |H|^p \big) d\sigma, \quad p > 2, \, \varepsilon > 0.
$$

For highly anisotropic ψ it may happen

 $D^2\psi(\nu)[\tau,\tau] < 0$ for some $\tau \perp \nu$

⇓ the evolution becomes backward parabolic

⇓

$$
F(h, u) := \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{p} |H|^p \right) d\sigma, \quad p > 2, \, \varepsilon > 0
$$

For highly anisotropic ψ it may happen

 $D^2\psi(\nu)[\tau,\tau] < 0$ for some $\tau \perp \nu$

⇓ the evolution becomes backward parabolic

Remedy: add a curvature regularization

$$
F(h, u) := \int_{\Omega_h} W(E(u)) \, dx \, dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{p} |H|^p \right) d\sigma, \quad p > 2, \, \varepsilon > 0
$$

 $V = \Delta_{\Gamma} \left[\text{div}_{\Gamma}(D\psi(\nu)) + W(E(u)) \right]$ $-\varepsilon \Bigl(\Delta_\Gamma (|H|^{p-2}H)-|H|^{p-2}H\Bigl(\kappa_1^2+\kappa_2^2-\frac{1}{n} \Bigr)$ $\left[\frac{1}{p}H^2\right)\Big)\Big]$

Regularized energy:

$$
F(h,u):=\int_{\Omega_h} W(E(u))\,dxdy+\int_{\Gamma_h}\big(\psi(\nu)+\frac{\varepsilon}{2}k^2\big)d\mathcal{H}^1
$$

⇓

Regularized energy:

$$
F(h, u) := \int_{\Omega_h} W(E(u)) \, dx \, dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{2} k^2 \right) d\mathcal{H}^1
$$

$$
\Downarrow
$$

$$
V = \left(\text{div}_{\sigma} D\psi(\nu) + W(E(u)) - \varepsilon (k_{\sigma\sigma} + \frac{1}{2}k^3) \right)_{\sigma\sigma}
$$

► Fonseca, F., Leoni, and Morini (ARMA 2012): evolution of films in two-dimensions

Regularized energy:

$$
F(h, u) := \int_{\Omega_h} W(E(u)) \, dx \, dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{2} k^2 \right) d\mathcal{H}^1
$$
\n
$$
\Downarrow
$$
\n
$$
V = \left(\text{div}_{\sigma} D\psi(\nu) + W(E(u)) - \varepsilon (k_{\sigma\sigma} + \frac{1}{2}k^3) \right)_{\sigma\sigma}
$$

► Fonseca, F., Leoni, and Morini (ARMA 2012): evolution of films in two-dimensions

 \triangleright Fonseca, F., Leoni, and Morini (2014): evolution of films in three-dimensions

Curvature dependent energies

 \triangleright Curvature dependent energies \rightsquigarrow Herring (1951) on physical grounds.

► Curvature dependent energies \rightarrow Herring (1951) on physical grounds.

 \blacktriangleright In the context of grain growth, the curvature regularization was proposed by Di Carlo, Gurtin, Podio-Guidugli (1992)

Curvature dependent energies \rightsquigarrow **Herring (1951) on physical** grounds.

 \blacktriangleright In the context of grain growth, the curvature regularization was proposed by Di Carlo, Gurtin, Podio-Guidugli (1992)

In the context of epitaxial growth, see Gurtin & Jabbour (2002)

• Curvature dependent energies \rightsquigarrow Herring (1951) on physical grounds.

 \blacktriangleright In the context of grain growth, the curvature regularization was proposed by Di Carlo, Gurtin, Podio-Guidugli (1992)

In the context of epitaxial growth, see Gurtin & Jabbour (2002)

Given W , we wish to find $h\colon \mathbb{R}^2\times [0,T_0]\to (0,+\infty)$ s.t.

$$
\left(\frac{1}{J}\frac{\partial h}{\partial t} = \Delta_{\Gamma}\left[\text{div}_{\Gamma}(D\psi(\nu)) + W(E(u))\right] \n- \varepsilon \left(\Delta_{\Gamma}(|H|^{p-2}H) - |H|^{p-2}H\left(\kappa_1^2 + \kappa_2^2 - \frac{1}{p}H^2\right)\right)\right], \quad \text{in } \mathbb{R}^2 \times (0, T_0),
$$
\n
$$
\text{div } \mathbb{C}E(u) = 0 \quad \text{in } \Omega_h,
$$
\n
$$
\mathbb{C}E(u)[\nu] = 0 \quad \text{on } \Gamma_h, \qquad u(x, 0, t) = e_0(x, 0),
$$
\n
$$
h(\cdot, t) \text{ and } Du(\cdot, t) \quad \text{are } Q \text{-periodic},
$$
\n
$$
h(\cdot, 0) = h_0,
$$

Here $J := \sqrt{1 + |Dh|^2}$.

Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves

 \blacktriangleright Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves

 \blacktriangleright Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution

 \blacktriangleright Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves

 \triangleright Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution

 \blacktriangleright Garcke: analytical results concerning some diffuse interface versions of the evolution equation

 \blacktriangleright Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves

 \triangleright Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution

 \blacktriangleright Garcke: analytical results concerning some diffuse interface versions of the evolution equation

 \triangleright Bellettini, Mantegazza, Novaga (2007): analytical results concerning the L^2 -gradient flow of higher order geometric functionals (without elasticity)

 \triangleright Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves

 \triangleright Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution

 \blacktriangleright Garcke: analytical results concerning some diffuse interface versions of the evolution equation

 \triangleright Bellettini, Mantegazza, Novaga (2007): analytical results concerning the L^2 -gradient flow of higher order geometric functionals (without elasticity)

Elliott & Garcke (1997), Escher, Mayer & Simonett (1998): existence results for the surface diffusion equation without elasticity and without curvature regularization, via semigroups techniques.

 \triangleright Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves

 \blacktriangleright Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution

 \blacktriangleright Garcke: analytical results concerning some diffuse interface versions of the evolution equation

 \triangleright Bellettini, Mantegazza, Novaga (2007): analytical results concerning the L^2 -gradient flow of higher order geometric functionals (without elasticity)

Elliott & Garcke (1997), Escher, Mayer & Simonett (1998): existence results for the surface diffusion equation without elasticity and without curvature regularization, via semigroups techniques.

 \triangleright no analytical results for the sharp interface evolution with elasticity

The gradient flow structure

$$
F(h, u) \qquad \rightsquigarrow \qquad \overline{F}(h) := F(h, u_h)
$$

where u_h is the elastic equilibrium in Ω_h .

The gradient flow structure

$$
F(h, u) \qquad \rightsquigarrow \qquad \overline{F}(h) := F(h, u_h)
$$

where u_h is the elastic equilibrium in Ω_h .

► The evolution law is the H^{-1} -gradient flow of the reduced energy \overline{F}

$$
\dot{h}=-\nabla_{H^{-1}}\overline{F}(h)
$$

where $\nabla_{H^{-1}}$ stands for the Gateaux differential of \overline{F} with respect to

the scalar product of H^{-1} .

The gradient flow structure

$$
F(h, u) \qquad \rightsquigarrow \qquad \overline{F}(h) := F(h, u_h)
$$

where u_h is the elastic equilibrium in Ω_h .

► The evolution law is the H^{-1} -gradient flow of the reduced energy \overline{F}

$$
\dot h = -\nabla_{H^{-1}} \overline F{}(h)
$$

where $\nabla_{H^{-1}}$ stands for the Gateaux differential of \overline{F} with respect to

the scalar product of H^{-1} .

 \triangleright First observed by Cahn & Taylor (1994) in the context of surface diffusion

$$
(h, u) \n
$$
\text{admissible}
$$
\n
$$
||Dh||_{\infty} \leq C
$$
\n
$$
||Dh||_{\infty} \leq C
$$
\n
$$
||Dh||_{\infty} \leq C
$$
$$

The discrete Euler-Lagrange equation

 \blacktriangleright The Euler-Lagrange equation of the incremental problem is

$$
\begin{aligned} & \frac{1}{\tau} w_{h_i} = \text{div}_{\Gamma_{h_i}}(D\psi(\nu)) + W(E(u_i)) \\ &- \varepsilon \Big(\Delta_{\Gamma_{h_i}}(|H_i|^{p-2} H_i) - |H_i|^{p-2} H_i \Big((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p} H_i^2 \Big) \Big) \end{aligned}
$$

The discrete Euler-Lagrange equation

 \blacktriangleright The Euler-Lagrange equation of the incremental problem is

$$
\begin{aligned} \frac{1}{\tau} w_{h_i} & = \text{div}_{\Gamma_{h_i}}(D\psi(\nu)) + W(E(u_i)) \\ & - \varepsilon \Big(\Delta_{\Gamma_{h_i}}(|H_i|^{p-2}H_i) - |H_i|^{p-2}H_i\Big((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p}H_i^2\Big) \Big) \end{aligned}
$$

► By applying $\Delta_{\Gamma_{h_i_{+1}}}$ to both sides, we formally get

$$
\frac{1}{J}_{i-1} \frac{h_i - h_{i-1}}{\tau} = \Delta_{\Gamma_{h_{i-1}}} \Big[\text{div}_{\Gamma_{h_i}} (D\psi(\nu)) + W(E(u_i))
$$

$$
- \varepsilon \Big(\Delta_{\Gamma_{h_i}} (|H_i|^{p-2} H_i) - |H_i|^{p-2} H_i \Big((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p} H_i^2 \Big) \Big) \Big]
$$

The discrete Euler-Lagrange equation

 \blacktriangleright The Euler-Lagrange equation of the incremental problem is

$$
\begin{aligned} & \frac{1}{\tau} w_{h_i} = \text{div}_{\Gamma_{h_i}}(D\psi(\nu)) + W(E(u_i)) \\ &- \varepsilon \Big(\Delta_{\Gamma_{h_i}}(|H_i|^{p-2} H_i) - |H_i|^{p-2} H_i \Big((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p} H_i^2 \Big) \Big) \end{aligned}
$$

► By applying $\Delta_{\Gamma_{h_i_{+1}}}$ to both sides, we formally get

$$
\frac{1}{J}_{i-1} \frac{h_i - h_{i-1}}{\tau} = \Delta_{\Gamma_{h_{i-1}}} \Big[\text{div}_{\Gamma_{h_i}} (D\psi(\nu)) + W(E(u_i)) \n- \varepsilon \Big(\Delta_{\Gamma_{h_i}} (|H_i|^{p-2} H_i) - |H_i|^{p-2} H_i \Big((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p} H_i^2 \Big) \Big) \Big]
$$

which is a discrete version of the continuous evolution law.

$$
\blacktriangleright h_N(\cdot,t)=h_{i-1}+\tfrac{t-(i-1)\tau}{\tau}(h_i-h_{i-1})\quad\text{ if }(i-1)\tau\leq t\leq i\tau
$$

$$
\blacktriangleright h_N(\cdot, t) = h_{i-1} + \frac{t - (i-1)\tau}{\tau} (h_i - h_{i-1}) \quad \text{if } (i-1)\tau \le t \le i\tau
$$

Basic energy estimate:

$$
F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)
$$

$$
\blacktriangleright h_N(\cdot,t)=h_{i-1}+\tfrac{t-(i-1)\tau}{\tau}(h_i-h_{i-1})\quad\text{ if }(i-1)\tau\leq t\leq i\tau
$$

- 1999 - 1999 - 199

Basic energy estimate:

$$
F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)
$$

$$
\sim \sum_{i} \frac{1}{2\tau} ||h_i - h_{i-1}||_{H^{-1}}^2 \leq CF(h_0, u_0)
$$

$$
\blacktriangleright h_N(\cdot,t)=h_{i-1}+\tfrac{t-(i-1)\tau}{\tau}(h_i-h_{i-1})\quad\text{ if }(i-1)\tau\leq t\leq i\tau
$$

Basic energy estimate:

$$
F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)
$$

$$
\Leftrightarrow \sum_{i} \frac{1}{2\tau} \|h_i - h_{i-1}\|_{H^{-1}}^2 \le C F(h_0, u_0)
$$

Proposition

There exists $T_0 > 0$ *depending only* (h_0, u_0) *s. t.:* (i) $(h_N)_N$ *is bounded in* $H^1(0, T_0; H^{-1})$;

$$
\blacktriangleright h_N(\cdot, t) = h_{i-1} + \frac{t - (i-1)\tau}{\tau} (h_i - h_{i-1}) \quad \text{if } (i-1)\tau \le t \le i\tau
$$

Basic energy estimate:

$$
F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)
$$

$$
\Leftrightarrow \sum_{i} \frac{1}{2\tau} \|h_i - h_{i-1}\|_{H^{-1}}^2 \le CF(h_0, u_0)
$$

Proposition

There exists $T_0 > 0$ *depending only* (h_0, u_0) *s. t.:* (i) $(h_N)_N$ *is bounded in* $H^1(0, T_0; H^{-1})$;

(ii) $(h_N)_N$ *is bounded in* $L^{\infty}(0, T_0; W^{2,p})$;

$$
\blacktriangleright h_N(\cdot,t)=h_{i-1}+\tfrac{t-(i-1)\tau}{\tau}(h_i-h_{i-1})\quad\text{ if }(i-1)\tau\leq t\leq i\tau
$$

Basic energy estimate:

$$
F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)
$$

$$
\Leftrightarrow \sum_{i} \frac{1}{2\tau} \|h_i - h_{i-1}\|_{H^{-1}}^2 \le CF(h_0, u_0)
$$

Proposition

There exists $T_0 > 0$ *depending only* (h_0,u_0) *s. t.:* (i) $(h_N)_N$ *is bounded in* $H^1(0, T_0; H^{-1})$;

(ii) $(h_N)_N$ *is bounded in* $L^{\infty}(0, T_0; W^{2,p})$;

(iii) $(h_N)_N$ *is bounded in* $C^{0,\beta}([0,T_0];C^{1,\alpha})$ *for every* $\alpha \in (0,\frac{p-2}{2})$ *,* $\bm{and}\ \beta \in (0,(p+2-\alpha p)(p+2)/16p^2)$;

$$
\blacktriangleright h_N(\cdot,t)=h_{i-1}+\tfrac{t-(i-1)\tau}{\tau}(h_i-h_{i-1})\quad\text{ if }(i-1)\tau\leq t\leq i\tau
$$

Basic energy estimate:

$$
F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)
$$

$$
\Leftrightarrow \sum_{i} \frac{1}{2\tau} \|h_i - h_{i-1}\|_{H^{-1}}^2 \le CF(h_0, u_0)
$$

Proposition

There exists $T_0 > 0$ *depending only* (h_0,u_0) *s. t.:* (i) $(h_N)_N$ *is bounded in* $H^1(0, T_0; H^{-1})$;

(ii) $(h_N)_N$ *is bounded in* $L^{\infty}(0, T_0; W^{2,p})$;

(iii) $(h_N)_N$ *is bounded in* $C^{0,\beta}([0,T_0];C^{1,\alpha})$ *for every* $\alpha \in (0,\frac{p-2}{2})$ *,* $\bm{and}\ \beta \in (0,(p+2-\alpha p)(p+2)/16p^2)$;

 $\big(\mathsf{iv}\big) \ \left(E(u_N)\right)_N$ is bounded in $C^{0,\beta}([0,T_0];C^{1,\alpha})$ for every $\alpha\in(0,\frac{p-2}{2}).$ *and* $\beta \in (0, (p + 2 - \alpha p)(p + 2)/16p^2)$ *.*

Set $|\tilde{H}_N(\cdot,t)\rangle=H_i\,$, for $(i-1)\Delta T\le t< i\Delta T,$ the sum of the principal curvatures of $h_i(\cdot)$, then we have

$$
(*) \qquad \qquad \int_{o}^{T_o} \int_{Q} |D^2(|\tilde{H}_N|^{p-2} \tilde{H}_N)|^2 dx dt \leq C
$$

Set $|\tilde{H}_N(\cdot,t)\rangle=H_i\,$, for $(i-1)\Delta T\le t< i\Delta T,$ the sum of the principal curvatures of $h_i(\cdot)$, then we have

$$
(*) \qquad \int_{o}^{T_o} \int_{Q} |D^2(|\tilde{H}_N|^{p-2}\tilde{H}_N)|^2 dxdt \leq C
$$

\n
$$
\varepsilon \int_{Q} |H_i|^{p-2} H_i \left[\Delta \varphi - \frac{D^2 \varphi[DH_i, DH_i]}{J_i^2} - \frac{\Delta H_i DH_i \cdot D\varphi}{J_i^2} - 2 \frac{D^2 H_i[DH_i, D\varphi]}{J_i^2} + 3 \frac{D^2 H_i[DH_i, DH_i]DH_i \cdot D\varphi}{J_i^4} \right] dx
$$

\n
$$
- \frac{\varepsilon}{p} \int_{Q} |H_i|^p \frac{DH_i \cdot D\varphi}{J_i} - \int_{Q} D\psi(-DH_i, 1) \cdot (-D\varphi, 0) dx
$$

\n
$$
- \int_{Q} W(E(u_i(x, H_i(x))))\varphi dx + \frac{1}{\tau} \int_{Q} v_{h_i} \varphi dx = 0,
$$

Set $\tilde{H}_N(\cdot,t)=H_i\,$, for $(i-1)\Delta T\le t< i\Delta T,$ the sum of the principal curvatures of $h_i(.)$, then we have

$$
(*) \qquad \qquad \int_{o}^{T_o} \int_{Q} |D^2(|\tilde{H}_N|^{p-2} \tilde{H}_N)|^2 dx dt \leq C
$$

The proof of $(*)$ is quite involved and uses interpolation + a delicate inductive argument based on the following Weyl type lemma

Set $\tilde{H}_N(\cdot,t)=H_i\,$, for $(i-1)\Delta T\le t< i\Delta T,$ the sum of the principal curvatures of $h_i(\cdot)$, then we have

$$
(*) \qquad \qquad \int_{o}^{T_o} \int_{Q} |D^2(|\tilde{H}_N|^{p-2} \tilde{H}_N)|^2 dx dt \leq C
$$

The proof of $(*)$ is quite involved and uses interpolation + a delicate inductive argument based on the following Weyl type lemma

Lemma $\mathsf{Let}\, p>2, \, u\in L^{\frac{p}{p-1}}(Q)$ such that

Z $\pmb Q$ $u A D^2 \varphi dx +$ $\pmb Q$ $b \cdot D\varphi +$ $\pmb Q$ $c\varphi dx = 0 \quad \forall \varphi \in C^\infty(Q)$ with Q $\varphi\,dx=0$,

where $A\in W^{1,p}(Q;{\mathbb M}^{2{\times}2}_{sym}),$ $b\in L^1(Q;{\mathbb R}^2),$ and $c\in L^1(Q).$ Then $u\in L^q(Q)$ for all $q\in (1,2)$. Moreover, if $b,$ u div $A\in L^r(Q;\mathbb{R}^2)$ and $c \in L^r(Q)$ for some $r > 1$, then $u \in W^{1,r}(Q)$.

▶ Previous estimates+ compactness argument

Previous estimates+ compactness argument $\leadsto h_N \to h$ up to subsequences

- **Previous estimates+ compactness argument** $\rightarrow h_N \rightarrow h$ up to subsequences
- \blacktriangleright h is a weak solution in the following sense:

Theorem (Local existence) $h\in L^{\infty}(0,T_0; W^{2,p}_\#(Q))\cap H^1(0,T_0; H^{-1}_\#(Q))$ is a weak solution in [0, T0] *in the following sense:*

(i)
$$
\operatorname{div}_{\Gamma}(D\psi(\nu)) + W(E(u)) - \varepsilon \left(\Delta_{\Gamma}(|H|^{p-2}H) - \frac{1}{p}|H|^pH + \varepsilon\right)
$$

$$
|H|^{p-2}H\big(\kappa_1^2+\kappa_2^2-\tfrac{1}{p}H^2\big)\Big)\in L^2(0,T_0;H^1_{\#}(Q)),
$$

(ii) for a.e.
$$
t \in (0, T_0)
$$

\n
$$
\frac{1}{J} \frac{\partial h}{\partial t} = \Delta_{\Gamma} \Big[\text{div}_{\Gamma} (D\psi(\nu)) + W(E(u)) - \varepsilon \Big(\Delta_{\Gamma} (|H|^{p-2}H) - |H|^{p-2}H(\kappa_1^2 + \kappa_2^2 - \frac{1}{p}H^2) \Big) \Big] \quad \text{in } H_{\#}^{-1}(Q).
$$

Theorem

In two dimensions:

(i) *The weak solution is unique.*

Theorem

In two dimensions:

(i) *The weak solution is unique.*

 (i) If $h_0 \in H^3$, $\psi \in C^4$, then the solution is in $H^1(0, T_0; L^2) \cap L^2(0, T_0; H^6)$.

Theorem

In two dimensions:

(i) *The weak solution is unique.*

 (i) If $h_0 \in H^3$, $\psi \in C^4$, then the solution is in $H^1(0, T_0; L^2) \cap L^2(0, T_0; H^6)$.

 \triangleright The proof is based on the following estimate. **Proposition**

Let $h \in H^5$, $h \ge c_0 > 0$, and let u be corresponding elastic *equilibrium. Then, there exists a constant* C *depending only on* $||h||_{H^2}$, c_0 , and $||E(u)||_{L^\infty(\Omega_h)}$ *s.t.*

$$
\int_{\Gamma_h} |DE(u)|^2 d\mathcal{H}^1 \leq C \int_0^b \left(1 + |h^{(iv)}|^2\right) dx
$$

Theorem

In two dimensions:

(i) *The weak solution is unique.*

Z

 (i) If $h_0 \in H^3$, $\psi \in C^4$, then the solution is in $H^1(0, T_0; L^2) \cap L^2(0, T_0; H^6)$.

 \blacktriangleright The proof is based on the following estimate. **Proposition**

Let $h \in H^5$, $h \ge c_0 > 0$, and let u be corresponding elastic *equilibrium. Then, there exists a constant* C *depending only on* $||h||_{H^2}$, c_0 , and $||E(u)||_{L^\infty(\Omega_h)}$ *s.t.*

$$
\int_{\Gamma_h} |DE(u)|^2 d\mathcal{H}^1 \leq C \int_0^b \left(1+|h^{(iv)}|^2\right) dx
$$

and

$$
\int_{\Gamma_h} |D^2 E(u)|^2 d\mathcal{H}^1 + \int_{\Gamma_h} |D_{\sigma}(E(u))|^4 d\mathcal{H}^1 \leq C \int_0^b (1+|h^{(v)}|^2) dx.
$$

Let $G(h, u) = \prod_{k=1}^{n}$ Ω_h $W(E(u)) dx dy + \mathcal{H}^1(\Gamma_h)$

Let $G(h, u) = \prod_{k=1}^{n}$ Ω_h $W(E(u)) dx dy + \mathcal{H}^1(\Gamma_h)$

For φ smooth and periodic, with $\int \varphi = 0$, let (h_t, u_t) be defined by

 $h_t = h + t\varphi$, u_t elastic equilibrium in Ω_{h_t}

Let $G(h, u) = \prod_{k=1}^{n}$ Ω_h $W(E(u)) dx dy + \mathcal{H}^1(\Gamma_h)$

For φ smooth and periodic, with $\int \varphi = 0$, let (h_t, u_t) be defined by

 $h_t = h + t\varphi$, u_t elastic equilibrium in Ω_{h_t}

Set

$$
\partial^2 G(h, u)[\varphi] = \frac{d^2}{dt^2} G(h_t, u_t)|_{t=0}
$$

Let
$$
G(h, u) = \int_{\Omega_h} W(E(u)) dx dy + \mathcal{H}^1(\Gamma_h)
$$

For φ smooth and periodic, with $\int \varphi = 0$, let (h_t, u_t) be defined by

 $h_t = h + t\varphi$, u_t elastic equilibrium in Ω_{h_t}

Set

$$
\partial^2 G(h, u)[\varphi] = \frac{d^2}{dt^2} G(h_t, u_t)|_{t=0}
$$

Theorem (F.-Morini, 2012) Let (h, u) be a critical configuration, $h \in C^2$, $h > 0$ s.t.

$$
\partial^2 G(h,u)[\varphi] > 0 \qquad \forall \varphi \neq 0.
$$

Then, there exists $\delta > 0$ *s.t.*

 $G(h, u) < G(q, v)$

for all admissible (g, v) *, with* $|\Omega_g| = |\Omega_h|$ *and* $0 < ||g - h||_{L^{\infty}} < \delta$ *.*

Local minimality of the 2D flat configuration

In the flat configuration in the $[0, b]$

$$
\left(\frac{d}{b}, u_0\right) \qquad u_0(x, y) = e_0\left(x, -\frac{\lambda y}{2\mu + \lambda}\right)
$$

is critical

Theorem (F., Morini, 2012) *- if* $0 < b \leq \frac{\pi}{4}$ 4 $2\mu+\lambda$ $\frac{2\pi}{e_0^2\mu(\mu+\lambda)}$, the flat configuration is an isolated local *minimizer for all* $\ddot{d} > 0$

Local minimality of the 2D flat configuration

In the flat configuration in the $[0, b]$

$$
\left(\frac{d}{b}, u_0\right) \qquad u_0(x, y) = e_0\left(x, -\frac{\lambda y}{2\mu + \lambda}\right)
$$

is critical

Theorem (F., Morini, 2012) *- if* $0 < b \leq \frac{\pi}{4}$ 4 $2\mu+\lambda$ $\frac{2\pi}{e_0^2\mu(\mu+\lambda)}$, the flat configuration is an isolated local *minimizer for all* $d > 0$ - *if* $b > \frac{\pi}{4}$ $2\mu + \lambda$ $\frac{e^{2\mu}}{e^{2\mu}(\mu+\lambda)}$, the flat configuration is an isolated local *minimizer for* $0\!<\!d\!<\!d_{loc}(b)$, where $d_{loc}(b)$ is the unique solution to $K\left(\frac{2\pi d_{loc}(b)}{l^2}\right)$ $\frac{b_{loc}(b)}{b^2}\Big)=\frac{\pi}{4}$ $2\mu + \lambda$ 1 $\frac{1}{b}$, *K* explicit

while for $d > d_{loc}(b)$ *the flat configuration is never an isolated local minimizer*

 $e_0^2\mu(\mu+\lambda)$

4

Local minimality of the 3D flat configuration: anisotropic case Let

$$
G(h, u) = \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \psi(\nu) d\mathcal{H}^2
$$

and as before

$$
F(h, u) = G(h, u) + \frac{\varepsilon}{p} \int_{\Gamma_h} |H|^p d\mathcal{H}^2.
$$

Theorem (Bonacini, 2013)

Assume that $D^2\psi(e_3)>0$ on $(e_3)^\perp$ and $\partial^2G(d,u_0)>0$. Then there *exists* $\varepsilon > 0$ *s.t.*

$$
\int_{Q} h = d, \quad 0 < \|h - d\|_{C^{1,\alpha}} \leq \varepsilon \Longrightarrow G(d, u_d) < G(h, u_h).
$$

Local minimality of the 3D flat configuration: anisotropic case Let

$$
G(h, u) = \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \psi(\nu) d\mathcal{H}^2
$$

and as before

$$
F(h, u) = G(h, u) + \frac{\varepsilon}{p} \int_{\Gamma_h} |H|^p d\mathcal{H}^2.
$$

Theorem (Bonacini, 2013)

Assume that $D^2\psi(e_3)>0$ on $(e_3)^\perp$ and $\partial^2G(d,u_0)>0$. Then there *exists* $\varepsilon > 0$ *s.t.*

$$
\int_{Q} h = d, \quad 0 < ||h - d||_{C^{1,\alpha}} \leq \varepsilon \Longrightarrow G(d, u_d) < G(h, u_h).
$$

$$
\Longrightarrow F(d,u_d) = G(d,u_d) < G(h,u_h) \leq F(h,u_h)
$$

Global in time existence and asymptotic stability

Consider the regularized surface diffusion equation

$$
\frac{1}{J} \frac{\partial h}{\partial t} = \Delta_{\Gamma} \left[\text{div}_{\Gamma} (D\psi(\nu)) + W(E(u)) \right.\left. - \varepsilon \left(\Delta_{\Gamma} (|H|^{p-2}H) - |H|^{p-2} H\left(\kappa_1^2 + \kappa_2^2 - \frac{1}{p} H^2\right) \right) \right]
$$

Global in time existence and asymptotic stability

Consider the regularized surface diffusion equation

$$
\frac{1}{J} \frac{\partial h}{\partial t} = \Delta_{\Gamma} \left[\text{div}_{\Gamma} (D\psi(\nu)) + W(E(u)) -\varepsilon \left(\Delta_{\Gamma} (|H|^{p-2}H) - |H|^{p-2}H\left(\kappa_1^2 + \kappa_2^2 - \frac{1}{p}H^2\right) \right) \right]
$$

The main result is

Theorem (Fonseca-F.-Leoni-Morini)

Assume that $D^2\psi(e_3)>0$ on e_3^\perp and $\partial^2 G(d,u_0)>0$. There exists $\varepsilon > 0$ **s**.t. *if* $||h_0 + d||_{W^{2,p}} \leq \varepsilon$, then:

(i) *any variational solution* h *exists for all times;*

(ii) $h(\cdot, t) \rightarrow d$ *in* $W^{2,p}$ *as* $t \rightarrow +\infty$ *.*

 \blacktriangleright $F(h(t), u(t))$ is non-increasing in time

 \blacktriangleright $F(h(t), u(t))$ is non-increasing in time

 $\blacktriangleright F(h_0, u_0)$ close to $F(d, u_d) \implies F(h(t), u(t))$ close to $F(d, u_d)$ for $t \in [0, T^*)$

 \blacktriangleright $F(h(t), u(t))$ is non-increasing in time

 \blacktriangleright $F(h_0, u_0)$ close to $F(d, u_d) \implies F(h(t), u(t))$ close to $F(d, u_d)$ for $t \in [0, T^*)$

 \blacktriangleright By local minimality $h(t)$ close to d in $C^{1,\alpha}$ for $t \in [0, T^*)$

 \blacktriangleright $F(h(t), u(t))$ is non-increasing in time

 \blacktriangleright $F(h_0, u_0)$ close to $F(d, u_d) \implies F(h(t), u(t))$ close to $F(d, u_d)$ for $t \in [0, T^*)$

 \blacktriangleright By local minimality $h(t)$ close to d in $C^{1,\alpha}$ for $t\in[0,T^*)\quad\Rightarrow\quad T^* = +\infty$
\blacktriangleright $F(h(t), u(t))$ is non-increasing in time

 \blacktriangleright $F(h_0, u_0)$ close to $F(d, u_d) \implies F(h(t), u(t))$ close to $F(d, u_d)$ for $t \in [0, T^*)$

 \blacktriangleright By local minimality $h(t)$ close to d in $C^{1,\alpha}$ for $t\in[0,T^*)\quad\Rightarrow\quad T^* = +\infty$

Step 2 (Liapunov stability): $\blacktriangleright \forall \sigma > 0$ there exists $\delta > 0$ s.t. $||h_0 - d||_{W^{2,p}} \leq \delta \implies ||h(t) - d||_{W^{2,p}} \leq \sigma$ for all $t > 0$.

 \blacktriangleright $F(h(t), u(t))$ is non-increasing in time

 \blacktriangleright $F(h_0, u_0)$ close to $F(d, u_d) \implies F(h(t), u(t))$ close to $F(d, u_d)$ for $t \in [0, T^*)$

 \blacktriangleright By local minimality $h(t)$ close to d in $C^{1,\alpha}$ for $t\in[0,T^*)\quad\Rightarrow\quad T^* = +\infty$

Step 2 (Liapunov stability):

 $\blacktriangleright \forall \sigma > 0$ there exists $\delta > 0$ s.t.

 $||h_0 - d||_{W^{2,p}} \leq \delta \implies ||h(t) - d||_{W^{2,p}} \leq \sigma$ for all $t > 0$.

Step 3 (Convergence up to a subsequence)

 \blacktriangleright $F(h(t), u(t))$ is non-increasing in time

 \blacktriangleright $F(h_0, u_0)$ close to $F(d, u_d) \implies F(h(t), u(t))$ close to $F(d, u_d)$ for $t \in [0, T^*)$

 \blacktriangleright By local minimality $h(t)$ close to d in $C^{1,\alpha}$ for $t\in[0,T^*)\quad\Rightarrow\quad T^* = +\infty$

Step 2 (Liapunov stability):

 $\blacktriangleright \forall \sigma > 0$ there exists $\delta > 0$ s.t.

$$
\|h_0-d\|_{W^{2,p}}\leq \delta\quad\Rightarrow\quad \|h(t)-d\|_{W^{2,p}}\leq \sigma\text{ for all }t>0.
$$

Step 3 (Convergence up to a subsequence)

 \blacktriangleright The energy estimate gives

$$
\int_0^\infty \left\| \frac{\partial h}{\partial t} \right\|_{H^{-1}}^2 \leq C F(h_0, u_0).
$$

 \blacktriangleright $F(h(t), u(t))$ is non-increasing in time

 $\blacktriangleright F(h_0, u_0)$ close to $F(d, u_d)$ \implies $F(h(t), u(t))$ close to $F(d, u_d)$ for $t \in [0, T^*)$

 \blacktriangleright By local minimality $h(t)$ close to d in $C^{1,\alpha}$ for $t\in[0,T^*)\quad\Rightarrow\quad T^* = +\infty$

Step 2 (Liapunov stability):

 $\blacktriangleright \forall \sigma > 0$ there exists $\delta > 0$ s.t.

$$
\|h_0-d\|_{W^{2,p}}\leq \delta\quad\Rightarrow\quad \|h(t)-d\|_{W^{2,p}}\leq \sigma\text{ for all }t>0.
$$

Step 3 (Convergence up to a subsequence)

 \blacktriangleright The energy estimate gives

$$
\int_0^\infty \left\| \frac{\partial h}{\partial t} \right\|_{H^{-1}}^2 \leq C F(h_0, u_0).
$$

$$
\quad \ \ \bullet \, \tfrac{\partial h}{\partial t}(\cdot,t_n) \to 0 \text{ in } H^{-1} \text{ for some } t_n \to \infty
$$

 \blacktriangleright $F(h(t), u(t))$ is non-increasing in time

 $\blacktriangleright F(h_0, u_0)$ close to $F(d, u_d) \implies F(h(t), u(t))$ close to $F(d, u_d)$ for $t \in [0, T^*)$

 \blacktriangleright By local minimality $h(t)$ close to d in $C^{1,\alpha}$ for $t\in[0,T^*)\quad\Rightarrow\quad T^* = +\infty$

Step 2 (Liapunov stability):

 $\blacktriangleright \forall \sigma > 0$ there exists $\delta > 0$ s.t.

$$
\|h_0-d\|_{W^{2,p}}\leq \delta\quad\Rightarrow\quad \|h(t)-d\|_{W^{2,p}}\leq \sigma\text{ for all }t>0.
$$

Step 3 (Convergence up to a subsequence)

 \blacktriangleright The energy estimate gives

$$
\int_0^\infty \left\| \frac{\partial h}{\partial t} \right\|_{H^{-1}}^2 \leq C F(h_0, u_0).
$$

$$
\quad \ \ \bullet \, \tfrac{\partial h}{\partial t}(\cdot,t_n) \to 0 \text{ in } H^{-1} \text{ for some } t_n \to \infty
$$

 $\blacktriangleright h(\cdot, t_n) \to \bar{h}$ in $W^{2,p}$, with \bar{h} critical and $\|\bar{h} - d\|_{W^{2,p}} \leq \sigma$

Step 4 $(\overline{h} = d)$:

Step 4 $(\overline{h} = d)$:

Figure Find $\sigma > 0$ and $c_0 > 0$ s.t.

 $\partial^2 G(h,u_h)[\varphi]\geq c_0\|\varphi\|_{H^1}^2$

provided $||h + d||_{W^{2,p}} \leq \sigma$

Step 4 $(\overline{h} = d)$:

Figure Find $\sigma > 0$ and $c_0 > 0$ s.t.

 $\partial^2 G(h,u_h)[\varphi]\geq c_0\|\varphi\|_{H^1}^2$

provided $||h + d||_{W^{2,p}} \leq \sigma$

Find Find Find There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \leq \sigma$ =⇒ h is not critical

Step 4 $(\overline{h} = d)$:

 $\overline{h} = d.$

If There exist $\sigma > 0$ and $c_0 > 0$ s.t.

 $\partial^2 G(h,u_h)[\varphi]\geq c_0\|\varphi\|_{H^1}^2$

provided $||h - d||_{W^{2,p}} \leq \sigma$

Find Find Find There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \leq \sigma$ =⇒ h is not critical

Step 4 $(\overline{h} = d)$:

Figure Find $\sigma > 0$ and $c_0 > 0$ s.t.

 $\partial^2 G(h,u_h)[\varphi]\geq c_0\|\varphi\|_{H^1}^2$

provided $||h - d||_{W^{2,p}} \leq \sigma$

Find Find Find There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \leq \sigma$ =⇒ h is not critical $\overline{h} = d.$

Step 5 (Conclusion)

Step 4 $(\overline{h} = d)$:

Figure Find $\sigma > 0$ and $c_0 > 0$ s.t.

$$
\partial^2 G(h,u_h)[\varphi]\geq c_0\|\varphi\|_{H^1}^2
$$

provided $||h - d||_{W^{2,p}} \leq \sigma$

I There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \leq \sigma$ = ⇒ h is not critical $\overline{h} = d$.

Step 5 (Conclusion)

 \blacktriangleright $F(h(t), u(t))$ non-increasing \implies $\lim_{t\to\infty} F(h(t), u(t))$ exists

Step 4 $(\overline{h} = d)$:

Figure 1 There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$
\partial^2 G(h,u_h)[\varphi]\geq c_0\|\varphi\|_{H^1}^2
$$

provided $||h - d||_{W^{2,p}} \leq \sigma$

I There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \leq \sigma$ = ⇒ h is not critical $\overline{h} = d$.

Step 5 (Conclusion)

 \blacktriangleright $F(h(t), u(t))$ non-increasing \implies $\lim_{t\to\infty} F(h(t), u(t))$ exists

► By Step 2 and Step 4 $F(h(t_n), u(t_n)) \rightarrow F(h, u_{\overline{h}}) = F(d, u_d)$

Step 4 $(\overline{h} = d)$:

• There exist $\sigma > 0$ and $c_0 > 0$ s.t.

 $\partial^2 G(h,u_h)[\varphi]\geq c_0\|\varphi\|_{H^1}^2$

provided $||h - d||_{W^{2,p}} < \sigma$

I There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \leq \sigma$ = ⇒ h is not critical $\overline{h} = d$.

Step 5 (Conclusion)

- \blacktriangleright $F(h(t), u(t))$ non-increasing \implies $\lim_{t\to\infty} F(h(t), u(t))$ exists
- ► By Step 2 and Step 4 $F(h(t_n), u(t_n)) \rightarrow F(h, u_{\overline{h}}) = F(d, u_d)$

$$
\blacktriangleright F(h(t),u(t))\to F(d,u_d) \text{ as } t\to\infty
$$

Step 4 $(\overline{h} = d)$:

Figure 1 There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$
\partial^2 G(h,u_h)[\varphi]\geq c_0\|\varphi\|_{H^1}^2
$$

provided $||h - d||_{W^{2,p}} < \sigma$

I There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \leq \sigma$ = ⇒ h is not critical $\overline{h} = d$.

Step 5 (Conclusion)

- \blacktriangleright $F(h(t), u(t))$ non-increasing \implies $\lim_{t\to\infty} F(h(t), u(t))$ exists
- ► By Step 2 and Step 4 $F(h(t_n), u(t_n)) \rightarrow F(h, u_{\overline{h}}) = F(d, u_d)$
- $\blacktriangleright F(h(t), u(t)) \to F(d, u_d)$ as $t \to \infty$

► By isolated minimality $h(t) \rightarrow d$ in $W^{2,p}$ as $t \rightarrow \infty$

Liapunov stability in the highly non-convex case Consider the Wulff shape

Liapunov stability in the highly non-convex case Consider the Wulff shape

Theorem (Fonseca-F.-Leoni-Morini)

Assume that W_{ψ} *contains a horizontal facet. Then for every* $d > 0$ *the flat configuration* (d, u_d) *is Liapunov stable, that is, for every* $\sigma > 0$ *there exists* $\delta(\sigma) > 0$ *s.t.*

$$
\textstyle \int_Q h_0=d,\quad \|h_0-d\|_{W^{2,p}}\le \delta(\sigma)\quad \Longrightarrow \quad \|h(t)-d\|_{W^{2,p}}\le \sigma\,\,\text{for all}\,\, t>0.
$$

- Uniqueness in three-dimensions

- Uniqueness in three-dimensions

More general global existence results

Individual Entity Uniqueness in three-dimensions

More general global existence results

 \blacktriangleright The non-graph case

Individual Entity Uniqueness in three-dimensions

More general global existence results

 \blacktriangleright The non-graph case

 \triangleright The convex case, without curvature regularization

THANK YOU FOR YOUR ATTENTION!