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A model for epitaxial growth: Static theory

substrate

film I Fonseca, F., Leoni & Morini
(Arch. Rational Mech. Anal (2007) )

I F., Morini
(Arch. Rational Mech. Anal. (2012) )

Deposition of a thin film over a thick substrate

Mismatch strain
⇓

instability of the flat configuration and island formation

vertical
slope

cusp

contact angle =zero

I Asaro-Tiller-Grinfeld morphological instability

I B.Spencer, D.Meiron (Acta Metal. Mater., 1994)
I B.Spencer, J.Tersoff (Phy. Rev. Letter, 1997)
I further numerical results: Chiu, H. Gao, W. Nix
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Static theory: variational formulation

Γh

Q

Ωh

h : R2 → [0,∞) Q-periodic, Lipschitz

Ωh =
{

(x, y) ∈ Q× R : 0<y<h(x)
}

Γh = ∂Ωh ∩
{
y > 0

}
Q = [0, 1]× [0, 1]

I Γh = free profile of the film

I Ωh = reference configuration of the film, |Ωh| = d, d given

I u : Ωh 7→ R3 = displacement of the film

I u(x, 0) = e0(x, 0), Du(·, t) is Q-periodic

I e0 > 0 measure the mismatch between the two lattices
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Static theory: variational formulation
Γh

Ωh

Q

F (h, u) :=

∫
Ωh

W (E(u)) dxdy +

∫
Γh

ψ(ν)dσ

where

I E(u) =
1

2

(
∇u+∇Tu

)
= strain,

I W (E) = µ|E|2 + λ
2
trace(E2) µ > 0, µ+ λ > 0, Lamé coefficients

I ψ = (anisotropic) surface energy density

inf {F (h, u) : (h, u) admissible , |Ωh| = d}

I Grinfeld (1993): instability analysis based on the free-energy
I Bonnettier-Chambolle (2002): variational formulation in two-dimensions
I Chambolle-Solci (2007): variational formulation in three-dimensions
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Static theory

I Bonnettier & Chambolle (2002): existence of minimizing
configurations in 2D and numerical approximation

I Chambolle & Solci (2007): existence of minimizing configurations in
3D for a simplified model

I Fonseca, F., Leoni, and Morini (2007): regularity of (locally)
minimizing configurations

I F.-Morini (2012): 2Dqualitative properties and local minimality
results in the case of an isotropic surface energy, via second
variation,

I Bonacini (2013): the case of anisotropic surface energies in 2D and
3D.
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Morphology evolution: surface diffusion

Einstein-Nernst law: surface flux of atoms ∝ ∇Γµ

µ= chemical potential ; V = c× ∆Γ(t)µ︸ ︷︷ ︸
Laplace-Beltrami operator

(volume preserving)

µ= first variation of energy = divΓDψ(ν)︸ ︷︷ ︸
anisotropic curvature

+W (E(u)) + λ

V = ∆Γ

(
divΓDψ(ν) +W (E(u))

)
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Highly anisotropic surface energies

For highly anisotropic ψ it may happen

D2ψ(ν)[τ, τ ] < 0 for some τ ⊥ ν
⇓

the evolution becomes backward parabolic

Remedy: add a curvature regularization

F (h, u) :=

∫
Ωh

W (E(u)) dxdy+

∫
Γh

(
ψ(ν)+

ε

p
|H|p

)
dσ, p > 2, ε > 0

⇓

V = ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

− ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 −

1

p
H2
))]

Preliminary version – 1 maggio 2014 – 8:42



Highly anisotropic surface energies

For highly anisotropic ψ it may happen

D2ψ(ν)[τ, τ ] < 0 for some τ ⊥ ν
⇓

the evolution becomes backward parabolic

Remedy: add a curvature regularization

F (h, u) :=

∫
Ωh

W (E(u)) dxdy+

∫
Γh

(
ψ(ν)+

ε

p
|H|p

)
dσ, p > 2, ε > 0

⇓

V = ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

− ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 −

1

p
H2
))]

Preliminary version – 1 maggio 2014 – 8:42



Highly anisotropic surface energies

For highly anisotropic ψ it may happen

D2ψ(ν)[τ, τ ] < 0 for some τ ⊥ ν

⇓
the evolution becomes backward parabolic

Remedy: add a curvature regularization

F (h, u) :=

∫
Ωh

W (E(u)) dxdy+

∫
Γh

(
ψ(ν)+

ε

p
|H|p

)
dσ, p > 2, ε > 0

⇓

V = ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

− ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 −

1

p
H2
))]
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Highly anisotropic surface energies in 2D

Regularized energy:

F (h, u) :=

∫
Ωh

W (E(u)) dxdy +

∫
Γh

(
ψ(ν) +

ε

2
k2
)
dH1

⇓

V =
(

divσDψ(ν) +W (E(u))−ε(kσσ + 1
2k

3)
)
σσ

I Fonseca, F., Leoni, and Morini (ARMA 2012): evolution of films in
two-dimensions

I Fonseca, F., Leoni, and Morini (2014): evolution of films in
three-dimensions
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The evolution law

I Curvature dependent energies ; Herring (1951) on physical
grounds.

I In the context of grain growth, the curvature regularization was
proposed by Di Carlo, Gurtin, Podio-Guidugli (1992)

I In the context of epitaxial growth, see Gurtin & Jabbour (2002)

Given W , we wish to find h : R2 × [0, T0]→ (0,+∞) s.t.

1

J

∂h

∂t
= ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

−ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 −

1

p
H2
))]

, in R2 × (0, T0),

divCE(u) = 0 in Ωh,

CE(u)[ν] = 0 on Γh, u(x, 0, t) = e0(x, 0) ,

h(·, t) and Du(·, t) are Q-periodic,
h(·, 0) = h0 ,

Here J :=
√

1 + |Dh|2.
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Some related results

I Siegel, Miksis, Voorhees (2004): numerical experiments in the case
of evolving curves

I Rätz, Ribalta, Voigt (2006): numerical results for the diffuse
interface version of the evolution

I Garcke: analytical results concerning some diffuse interface
versions of the evolution equation

I Bellettini, Mantegazza, Novaga (2007): analytical results
concerning the L2-gradient flow of higher order geometric functionals
(without elasticity)

I Elliott & Garcke (1997), Escher, Mayer & Simonett (1998):
existence results for the surface diffusion equation without elasticity
and without curvature regularization, via semigroups techniques.

I no analytical results for the sharp interface evolution with elasticity
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The gradient flow structure

F (h, u) ; F (h) := F (h, uh)

where uh is the elastic equilibrium in Ωh.

I The evolution law is the H−1-gradient flow of the reduced energy F

ḣ = −∇H−1F (h)

where ∇H−1 stands for the Gateaux differential of F with respect to

the scalar product of H−1.

I First observed by Cahn &Taylor (1994) in the context of surface
diffusion
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The minimizing movements scheme in our case
I Given T > 0, N ∈ N, we set τ := T

N . For i = 1, . . . , N we define
inductively (hi, ui) as the solution of the incremental minimum
problem

min
(h, u) admissible
‖Dh‖∞ ≤ C

F (h, u) +
1

2τ

∫
Γhi−1

|DΓhi−1
wh|2dH2

︸ ︷︷ ︸
where 

∆Γhi−1
wh =

h− hi−1√
1 + |Dhi−1|2

,∫
Γhi−1

wh dH2 = 0 .

I
1

2τ

∫
Γhi−1

|DΓhi−1
wh|2dH2 ∼ ‖h− hi−1‖2H−1
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The discrete Euler-Lagrange equation
I The Euler-Lagrange equation of the incremental problem is

1

τ
whi = divΓhi

(Dψ(ν)) +W (E(ui))

− ε
(

∆Γhi
(|Hi|p−2Hi)− |Hi|p−2Hi

(
(κi1)2 + (κi2)2 − 1

p
H2
i

))

I By applying ∆Γhi−1
to both sides, we formally get

1

J i−1

hi − hi−1

τ
= ∆Γhi−1

[
divΓhi

(Dψ(ν)) +W (E(ui))

− ε
(

∆Γhi
(|Hi|p−2Hi)− |Hi|p−2Hi

(
(κi1)2 + (κi2)2 − 1

p
H2
i

))]

which is a discrete version of the continuous evolution law.
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Estimates
I hN (·, t) = hi−1 + t−(i−1)τ

τ (hi − hi−1) if (i− 1)τ ≤ t ≤ iτ

Basic energy estimate:

F (hi, ui) +
1

2τ

∫
Γhi−1

|DΓhi−1
wh|2dH2 ≤ F (hi−1, ui−1) ≤ · · · ≤ F (h0, u0)

;
∑
i

1
2τ ‖hi − hi−1‖2H−1 ≤ CF (h0, u0)

Proposition
There exists T0 > 0 depending only (h0, u0) s. t.:

(i) (hN )N is bounded in H1(0, T0;H−1);

(ii) (hN )N is bounded in L∞(0, T0;W 2,p);

(iii) (hN )N is bounded in C0,β([0, T0];C1,α) for every α ∈ (0, p−2
2 ),

and β ∈ (0, (p− 2− αp)(p+ 2)/16p2);

(iv)
(
E(uN )

)
N

is bounded in C0,β([0, T0];C1,α) for every α ∈ (0, p−2
2 ),

and β ∈ (0, (p− 2− αp)(p+ 2)/16p2).
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Higher regularity (difficult!)

Set H̃N (·, t) = Hi , for (i− 1)∆T ≤ t < i∆T , the sum of the principal
curvatures of hi(·), then we have

(∗)
∫ To

o

∫
Q

|D2(|H̃N |p−2H̃N )|2 dxdt ≤ C

ε

∫
Q

|Hi|p−2Hi

[
∆ϕ− D2ϕ[DHi, DHi]

J2
i

− ∆HiDHi ·Dϕ
J2
i

− 2
D2Hi[DHi, Dϕ]

J2
i

+ 3
D2Hi[DHi, DHi]DHi ·Dϕ

J4
i

]
dx

− ε

p

∫
Q

|Hi|p
DHi ·Dϕ

Ji
−
∫
Q

Dψ(−DHi, 1) · (−Dϕ, 0) dx

−
∫
Q

W (E(ui(x,Hi(x))))ϕdx+
1

τ

∫
Q

vhiϕdx = 0 ,
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Set H̃N (·, t) = Hi , for (i− 1)∆T ≤ t < i∆T , the sum of the principal
curvatures of hi(·), then we have

(∗)
∫ To

o

∫
Q

|D2(|H̃N |p−2H̃N )|2 dxdt ≤ C

The proof of (∗) is quite involved and uses interpolation + a delicate
inductive argument based on the following Weyl type lemma

Lemma
Let p > 2, u ∈ L

p
p−1 (Q) such that∫

Q

uAD2ϕdx+

∫
Q

b ·Dϕ+

∫
Q

cϕ dx = 0 ∀ϕ ∈ C∞(Q) with
∫
Q

ϕdx = 0,

where A ∈W 1,p(Q;M2×2
sym), b ∈ L1(Q;R2), and c ∈ L1(Q). Then

u ∈ Lq(Q) for all q ∈ (1, 2). Moreover, if b, udivA ∈ Lr(Q;R2) and
c ∈ Lr(Q) for some r > 1, then u ∈W 1,r(Q).
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Local in time existence of weak solutions
1

J i−1

hi − hi−1

τ
= ∆Γhi−1

[
divΓhi

(Dψ(ν)) +W (E(ui))

−ε
(

∆Γhi
(|Hi|p−2Hi)− |Hi|p−2Hi

(
(κi1)2 + (κi2)2 − 1

pH
2
i

))]

I Previous estimates+ compactness argument ; hN → h up to
subsequences

I h is a weak solution in the following sense:

Theorem (Local existence)
h ∈ L∞(0, T0;W 2,p

# (Q)) ∩H1(0, T0;H−1
# (Q)) is a weak solution in

[0, T0] in the following sense:

(i) divΓ(Dψ(ν)) +W (E(u))− ε
(

∆Γ(|H|p−2H)− 1
p |H|

pH +

|H|p−2H
(
κ2

1 + κ2
2 − 1

pH
2
))
∈ L2(0, T0;H1

#(Q)),

(ii) for a.e. t ∈ (0, T0)

1
J
∂h
∂t = ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

− ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 − 1

pH
2
))]

in H−1
# (Q).
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Uniqueness and regularity in 2D
Theorem
In two dimensions:

(i) The weak solution is unique.

(ii) If h0 ∈ H3, ψ ∈ C4, then the solution is in
H1(0, T0;L2) ∩ L2(0, T0;H6).

I The proof is based on the following estimate.

Proposition
Let h ∈ H5, h ≥ c0 > 0, and let u be corresponding elastic
equilibrium. Then, there exists a constant C depending only on
‖h‖H2 , c0, and ‖E(u)‖L∞(Ωh) s.t.∫

Γh

|DE(u)|2 dH1 ≤ C
∫ b

0

(
1 + |h(iv)|2

)
dx

and∫
Γh

|D2E(u)|2 dH1 +

∫
Γh

|Dσ(E(u))|4 dH1 ≤ C
∫ b

0

(
1 + |h(v)|2

)
dx .
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Second variation approach
Let G(h, u) =

∫
Ωh

W (E(u)) dxdy +H1(Γh)

For ϕ smooth and periodic, with
∫
ϕ = 0, let (ht, ut) be defined by

ht = h+ tϕ , ut elastic equilibrium in Ωht

Set

∂2G(h, u)[ϕ] =
d2

dt2
G(ht, ut)∣∣t=0

Theorem (F.-Morini, 2012)
Let (h, u) be a critical configuration, h ∈ C2, h > 0 s.t.

∂2G(h, u)[ϕ] > 0 ∀ϕ 6= 0.

Then, there exists δ > 0 s.t.

G(h, u) < G(g, v)

for all admissible (g, v), with |Ωg| = |Ωh| and 0<‖g − h‖L∞<δ.
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Then, there exists δ > 0 s.t.

G(h, u) < G(g, v)

for all admissible (g, v), with |Ωg| = |Ωh| and 0<‖g − h‖L∞<δ.
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Local minimality of the 2D flat configuration
I the flat configuration in the [0, b](d

b
, u0

)
u0(x, y) = e0

(
x,− λy

2µ+ λ

)
is critical

Theorem (F., Morini, 2012)
- if 0<b≤ π

4

2µ+ λ

e2
0µ(µ+ λ)

, the flat configuration is an isolated local

minimizer for all d > 0

- if b>
π

4

2µ+ λ

e2
0µ(µ+ λ)

, the flat configuration is an isolated local

minimizer for 0<d<dloc(b), where dloc(b) is the unique solution to

K
(2πdloc(b)

b2

)
=
π

4

2µ+ λ

e2
0µ(µ+ λ)

1

b
, K explicit

while for d > dloc(b) the flat configuration is never an isolated local
minimizer
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Local minimality of the 3D flat configuration:
anisotropic case

Let
G(h, u) =

∫
Ωh

W (E(u)) dxdy +

∫
Γh

ψ(ν)dH2

and as before

F (h, u) = G(h, u) +
ε

p

∫
Γh

|H|p dH2.

Theorem (Bonacini, 2013)
Assume that D2ψ(e3) > 0 on (e3)⊥ and ∂2G(d, u0) > 0. Then there
exists ε > 0 s.t.∫

Q

h = d, 0 < ‖h− d‖C1,α ≤ ε =⇒ G(d, ud) < G(h, uh).

=⇒ F (d, ud) =G(d, ud) < G(h, uh)≤ F (h, uh)
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Global in time existence and asymptotic stability

Consider the regularized surface diffusion equation

1

J

∂h

∂t
= ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

−ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 −

1

p
H2
))]

The main result is

Theorem (Fonseca-F.-Leoni-Morini)
Assume that D2ψ(e3) > 0 on e⊥3 and ∂2G(d, u0) > 0. There exists
ε > 0 s.t.
if ‖h0 − d‖W 2,p ≤ ε, then:

(i) any variational solution h exists for all times;

(ii) h(·, t)→ d in W 2,p as t→ +∞.
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Asymptotic stability: strategy of the proof
Step 1 (global existence):

I F (h(t), u(t)) is non-increasing in time

I F (h0, u0) close to F (d, ud) =⇒ F (h(t), u(t)) close to F (d, ud)
for t ∈ [0, T ∗)

I By local minimality h(t) close to d in C1,α for
t ∈ [0, T ∗) ⇒ T ∗ = +∞

Step 2 (Liapunov stability):
I ∀σ > 0 there exists δ > 0 s.t.
‖h0 − d‖W 2,p ≤ δ ⇒ ‖h(t)− d‖W 2,p ≤ σ for all t > 0.

Step 3 (Convergence up to a subsequence)

I The energy estimate gives∫ ∞
0

∥∥∥∂h
∂t

∥∥∥2

H−1
≤ CF (h0, u0).

I ∂h
∂t (·, tn)→ 0 in H−1 for some tn →∞

I h(·, tn)→ h in W 2,p, with h critical and ‖h− d‖W 2,p ≤ σ
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Asymptotic stability: strategy of the proof

Step 4 (h = d):

I There exist σ > 0 and c0 > 0 s.t.

∂2G(h, uh)[ϕ] ≥ c0‖ϕ‖2H1

provided ‖h− d‖W 2,p ≤ σ
I There exists σ > 0 s.t. ‖h− d‖W 2,p ≤ σ =⇒ h is not critical

I h = d.

Step 5 (Conclusion)

I F (h(t), u(t)) non-increasing =⇒ limt→∞ F (h(t), u(t)) exists

I By Step 2 and Step 4 F (h(tn), u(tn))→ F (h, uh) = F (d, ud)

I F (h(t), u(t))→ F (d, ud) as t→∞
I By isolated minimality h(t)→ d in W 2,p as t→∞

Preliminary version – 1 maggio 2014 – 8:42



Asymptotic stability: strategy of the proof

Step 4 (h = d):

I There exist σ > 0 and c0 > 0 s.t.

∂2G(h, uh)[ϕ] ≥ c0‖ϕ‖2H1

provided ‖h− d‖W 2,p ≤ σ

I There exists σ > 0 s.t. ‖h− d‖W 2,p ≤ σ =⇒ h is not critical

I h = d.

Step 5 (Conclusion)

I F (h(t), u(t)) non-increasing =⇒ limt→∞ F (h(t), u(t)) exists

I By Step 2 and Step 4 F (h(tn), u(tn))→ F (h, uh) = F (d, ud)

I F (h(t), u(t))→ F (d, ud) as t→∞
I By isolated minimality h(t)→ d in W 2,p as t→∞

Preliminary version – 1 maggio 2014 – 8:42



Asymptotic stability: strategy of the proof

Step 4 (h = d):

I There exist σ > 0 and c0 > 0 s.t.

∂2G(h, uh)[ϕ] ≥ c0‖ϕ‖2H1

provided ‖h− d‖W 2,p ≤ σ
I There exists σ > 0 s.t. ‖h− d‖W 2,p ≤ σ =⇒ h is not critical

I h = d.

Step 5 (Conclusion)

I F (h(t), u(t)) non-increasing =⇒ limt→∞ F (h(t), u(t)) exists

I By Step 2 and Step 4 F (h(tn), u(tn))→ F (h, uh) = F (d, ud)

I F (h(t), u(t))→ F (d, ud) as t→∞
I By isolated minimality h(t)→ d in W 2,p as t→∞

Preliminary version – 1 maggio 2014 – 8:42



Asymptotic stability: strategy of the proof

Step 4 (h = d):

I There exist σ > 0 and c0 > 0 s.t.

∂2G(h, uh)[ϕ] ≥ c0‖ϕ‖2H1

provided ‖h− d‖W 2,p ≤ σ
I There exists σ > 0 s.t. ‖h− d‖W 2,p ≤ σ =⇒ h is not critical

I h = d.

Step 5 (Conclusion)

I F (h(t), u(t)) non-increasing =⇒ limt→∞ F (h(t), u(t)) exists

I By Step 2 and Step 4 F (h(tn), u(tn))→ F (h, uh) = F (d, ud)

I F (h(t), u(t))→ F (d, ud) as t→∞
I By isolated minimality h(t)→ d in W 2,p as t→∞

Preliminary version – 1 maggio 2014 – 8:42



Asymptotic stability: strategy of the proof

Step 4 (h = d):

I There exist σ > 0 and c0 > 0 s.t.

∂2G(h, uh)[ϕ] ≥ c0‖ϕ‖2H1

provided ‖h− d‖W 2,p ≤ σ
I There exists σ > 0 s.t. ‖h− d‖W 2,p ≤ σ =⇒ h is not critical

I h = d.

Step 5 (Conclusion)

I F (h(t), u(t)) non-increasing =⇒ limt→∞ F (h(t), u(t)) exists

I By Step 2 and Step 4 F (h(tn), u(tn))→ F (h, uh) = F (d, ud)

I F (h(t), u(t))→ F (d, ud) as t→∞
I By isolated minimality h(t)→ d in W 2,p as t→∞

Preliminary version – 1 maggio 2014 – 8:42



Asymptotic stability: strategy of the proof

Step 4 (h = d):

I There exist σ > 0 and c0 > 0 s.t.

∂2G(h, uh)[ϕ] ≥ c0‖ϕ‖2H1

provided ‖h− d‖W 2,p ≤ σ
I There exists σ > 0 s.t. ‖h− d‖W 2,p ≤ σ =⇒ h is not critical

I h = d.

Step 5 (Conclusion)

I F (h(t), u(t)) non-increasing =⇒ limt→∞ F (h(t), u(t)) exists

I By Step 2 and Step 4 F (h(tn), u(tn))→ F (h, uh) = F (d, ud)

I F (h(t), u(t))→ F (d, ud) as t→∞
I By isolated minimality h(t)→ d in W 2,p as t→∞

Preliminary version – 1 maggio 2014 – 8:42



Asymptotic stability: strategy of the proof

Step 4 (h = d):

I There exist σ > 0 and c0 > 0 s.t.

∂2G(h, uh)[ϕ] ≥ c0‖ϕ‖2H1

provided ‖h− d‖W 2,p ≤ σ
I There exists σ > 0 s.t. ‖h− d‖W 2,p ≤ σ =⇒ h is not critical

I h = d.

Step 5 (Conclusion)

I F (h(t), u(t)) non-increasing =⇒ limt→∞ F (h(t), u(t)) exists

I By Step 2 and Step 4 F (h(tn), u(tn))→ F (h, uh) = F (d, ud)

I F (h(t), u(t))→ F (d, ud) as t→∞
I By isolated minimality h(t)→ d in W 2,p as t→∞

Preliminary version – 1 maggio 2014 – 8:42



Asymptotic stability: strategy of the proof

Step 4 (h = d):

I There exist σ > 0 and c0 > 0 s.t.

∂2G(h, uh)[ϕ] ≥ c0‖ϕ‖2H1

provided ‖h− d‖W 2,p ≤ σ
I There exists σ > 0 s.t. ‖h− d‖W 2,p ≤ σ =⇒ h is not critical

I h = d.

Step 5 (Conclusion)

I F (h(t), u(t)) non-increasing =⇒ limt→∞ F (h(t), u(t)) exists

I By Step 2 and Step 4 F (h(tn), u(tn))→ F (h, uh) = F (d, ud)

I F (h(t), u(t))→ F (d, ud) as t→∞

I By isolated minimality h(t)→ d in W 2,p as t→∞

Preliminary version – 1 maggio 2014 – 8:42



Asymptotic stability: strategy of the proof

Step 4 (h = d):

I There exist σ > 0 and c0 > 0 s.t.

∂2G(h, uh)[ϕ] ≥ c0‖ϕ‖2H1

provided ‖h− d‖W 2,p ≤ σ
I There exists σ > 0 s.t. ‖h− d‖W 2,p ≤ σ =⇒ h is not critical

I h = d.

Step 5 (Conclusion)

I F (h(t), u(t)) non-increasing =⇒ limt→∞ F (h(t), u(t)) exists

I By Step 2 and Step 4 F (h(tn), u(tn))→ F (h, uh) = F (d, ud)

I F (h(t), u(t))→ F (d, ud) as t→∞
I By isolated minimality h(t)→ d in W 2,p as t→∞

Preliminary version – 1 maggio 2014 – 8:42



Liapunov stability in the highly non-convex case
Consider the Wulff shape

Wψ := {z ∈ R3 : z · ν < ψ(ν) for all ν ∈ S2}

Theorem (Fonseca-F.-Leoni-Morini)
Assume that Wψ contains a horizontal facet. Then for every d > 0 the
flat configuration (d, ud) is Liapunov stable, that is, for every σ > 0
there exists δ(σ) > 0 s.t.∫
Q
h0 = d, ‖h0−d‖W 2,p ≤ δ(σ) =⇒ ‖h(t)−d‖W 2,p ≤ σ for all t > 0.
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Open problems and future directions

I Uniqueness in three-dimensions

I More general global existence results

I The non-graph case

I The convex case, without curvature regularization
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THANK YOU FOR YOUR ATTENTION!
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