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I}, = free profile of the film

v

Q, = reference configuration of the film, |Q,| = d, d given
> u: Qp — R3 = displacement of the film
> u(x,0) = eo(z,0), Du(-,t)is Q-periodic

» ¢o > 0 measure the mismatch between the two lattices
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» Bonacini (2013): the case of anisotropic surface energies in 2D and
3D.
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Morphology evolution: surface diffusion

Einstein-Nernst law: surface flux of atoms oc Vrpu

p=chemical potential ~» V =c¢x Appyp

Laplace-Beltrami operator
(volume preserving)

u= first variation of energy = divpDy(v) +W(E(u)) + A
——

anisotropic curvature

V =Ar (dierw(V) + W(E(“))) J
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Highly anisotropic surface energies

For highly anisotropic ¢ it may happen
D*y(v)[r,7] <0 forsomer L v

4
the evolution becomes backward parabolic
Remedy: add a curvature regularization

F(hou) = | W(E())dedy+ /

(Y(W)+-|H[P)do, p>2,>0
Qh 1—‘h p

I

V = Ap[dive(Dy()) + W (E(u))

— e (Ar(HP2H) — [HP~2H (k3 + 53 - }JH )]
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Regularized energy:

F(h,u) := W(E(u))dxdy+/ (1/1(1/)+%k2)d7-tl

Qh Fh

I

V= (diV0D¢(V) + W(E(u))—¢e(koo + %kﬁ))WJ

» Fonseca, F., Leoni, and Morini (ARMA 2012): evolution of films in
two-dimensions

» Fonseca, F., Leoni, and Morini (2014): evolution of films in
three-dimensions
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The evolution law
» Curvature dependent energies ~ Herring (1951) on physical
grounds.

» In the context of grain growth, the curvature regularization was
proposed by Di Carlo, Gurtin, Podio-Guidugli (1992)

» In the context of epitaxial growth, see Gurtin & Jabbour (2002)

Given W, we wish to find h: R? x [0,7p] — (0, +00) S.t.

1 0h
L — v A U
S Arp |:(11\F(DU(V)) + W(E(uw))
, ! 1 :
—E(Ar(\HV’_QH) L |H\1’—2H(Kf K2 - HQ)”, in R2 x (0, Tp),
P

divCE(u) =0 in Qp,

CE(u)[v] =0 onTy, u(xz,0,t) = eo(x,0),
h(-,t) and Du(-,t) are Q-periodic,

h('v O) =ho,

Here J := /1 + |Dh|?.
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» Siegel, Miksis, Voorhees (2004): numerical experiments in the case
of evolving curves

» Ratz, Ribalta, Voigt (2006): numerical results for the diffuse
interface version of the evolution

» Garcke: analytical results concerning some diffuse interface
versions of the evolution equation

» Bellettini, Mantegazza, Novaga (2007): analytical results
concerning the L2-gradient flow of higher order geometric functionals
(without elasticity)

» Elliott & Garcke (1997), Escher, Mayer & Simonett (1998):
existence results for the surface diffusion equation without elasticity
and without curvature regularization, via semigroups techniques.

» no analytical results for the sharp interface evolution with elasticity
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The gradient flow structure

F(h,u) ~ F(h) = F(h,up)

where uy, is the elastic equilibrium in Q.

» The evolution law is the 7/~ '-gradient flow of the reduced energy I

h = —vHﬂF(h)J

where V1 stands for the Gateaux differential of ' with respect to

the scalar product of H—!.

» First observed by Cahn &Taylor (1994) in the context of surface
diffusion
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»GivenT >0, N € N,we set7:= 4. Fori=1,..., N we define
inductively (h;,u;) as the solution of the incremental minimum
problem

1
min F(h,u)-Ff/ |Dl“h.71wh|2d7‘l2
(h,u) admissible 21 Joy,, "
|Dh|oe < C

where
h — }Li,1

Ar,, wh = ——l
Tn,_, Wh 1—~—|Dhi71|2

/ wpdH? =0.
T
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1

2 2 2
- - |Dr,, , wn|"dH" ~ [|h = hi—1[[f-
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1 .
—Wh; = divr, (DY(v)) + W(E(u;))
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T AP=271r.\ _ |P—2r7. i\2 iN\2 T pp2
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The discrete Euler-Lagrange equation
» The Euler-Lagrange equation of the incremental problem is

L, = divr,, (DY) + W (B(w))

= = i % 1
— (B, (B[P H) — [Hl 2 Hy (61 + (s3)° —
» By applying Ar,,  to both sides, we formally get
1 h; — h;_ .
S S = A, [dive, (DY) + W(E(w))
1—1 T
. ) 1
— (B, (Bl H) = [Hl =2 Hi (61 4 (s3) —

which is a discrete version of the continuous evolution law.
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> hy (1) = himg + ST (hy — hyly) i (- D) <t <dr

Basic energy estimate:
1
Fwwn+§/“ |Dr,. wn[2dH? < F(hiy i) < - < F(ho, uo)
Phi_y ’

~ 3o |lh — hic |31 < CF (ho, uo)

Proposition
There exists T, > 0 depending only (hg,ug) 8. t.:
(i) (hn)n is bounded in H (0, Ty; H=1);

(i) (hn)n s bounded in L> (0, To; W2P);
(iii) (hn)n is bounded in C%([0, Tp]; C<) for every a € (0, 252),
and 3 € (0,(p — 2 — ap)(p + 2)/16p?);

(iv) (E(un)), is bounded in C*A([0, Ty); C+) for every a € (0, 252),

and g € (0, (p — 2 — ap)(p +2)/16p?). :



Higher regularity (difficult!)

Set Hy(-,t) = H; ,for (i — 1)AT < t < iAT, the sum of the principal
curvatures of h;(-), then we have

T, B ]
() [ [ 1022 aa < 0
o Q



Higher regularity (difficult!)

Set Hy(-,t) = H; ,for (i — 1)AT < t < iAT, the sum of the principal
curvatures of h;(-), then we have

T, ~ ]
) | [ i P dsa < ©
o Q

D?p|DH;, DH;
6/ |Hi|p72Hi |:A(,O— 90[ 227 1}
Q J;

_ AHDH;-Dyp _,D*H;[DH;, Dy] +3D2 :[DH;, DH;|DH; - Dy
J2 J2 JE

DH; - D
o PR [ Du(-DHL 1) (D 0)da

/W (ui(z, Hi(z))))pdx + — /vhicpd:c:O,

Q

dx




Higher regularity (difficult!)

Set Hy(-,t) = H; ,for (i — 1)AT < t < iAT, the sum of the principal
curvatures of h;(-), then we have

T, B ]
() [ [ 122 ava < 0
o Q

The proof of (x) is quite involved and uses interpolation + a delicate
inductive argument based on the following Weyl type lemma
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Set Hy(-,t) = H; ,for (i — 1)AT < t < iAT, the sum of the principal
curvatures of h;(-), then we have

T, B ]
() [ [ 122 ava < 0
o Q

The proof of (x) is quite involved and uses interpolation + a delicate
inductive argument based on the following Weyl type lemma

Lemma :
Letp > 2,u € L»1(Q) such that

/uAD2<pdx+/b~Dcp+/ccpdx:O Yo € C(Q) With/cpdx:O,
Q Q Q Q

where A € W'P(Q;M2x2%), b e L'(Q;R?), and c € L'(Q). Then

w e LI(Q) forall g € (1,2). Moreover, ifb, wdivA € L"(Q;R?) and
c€ L"(Q) forsomer > 1, thenu € W1 (Q).
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Loclal ir;l tirge existence of weak solutions
G = A [dive, (D)) + W (E(w))
—=(Ar,, (HilP=2Hy) = B2 5 ((6)° + (8)° — $H2) )|
» Previous estimates+ compactness argument ~ Ay — h up to
subsequences



Local in time existence of weak solutions

}H% =Ar, | [divrhi (DY(v) + W (E(u,))
—e (A, (Hup=2Hy) — [ (1) + (55)° — 172) )]

» Previous estimates+ compactness argument ~ hy — h up to
subsequences
» h is a weak solution in the following sense:

Theorem (Local existence)
h € L=(0,To; W (Q)) N HY(0,To; H, ' (Q)) is a weak solution in
[0, To] in the following sense:

() dive(Dy(v)) + W(E(w)) - e(Ar([HP~2H) - L|HPPH +
|HIP~2H (k3 + 5 — LH?) ) € L2(0, To; H4(Q)),
(i) fora.e. t e (0,Tp)
= Ar[dive(Dy () + W (B(w)
Ar(HP=2H) = |HP-2H (53 + 53 - LH2))| in HZ'(Q).

10h
J

I
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Uniqueness and regularity in 2D

Theorem
In two dimensions:

(i) The weak solution is unique.
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Uniqueness and regularity in 2D

Theorem
In two dimensions:

(i) The weak solution is unique.
(iiy Ifhg € H3, 4 € C*, then the solution is in
H'(0,To; L) N L2(0, Ty; HS).
» The proof is based on the following estimate.
Proposition

Leth € H5, h > cy > 0, and let u be corresponding elastic
equilibrium. Then, there exists a constant C depending only on
2]l 2, co, @nd | E(u)|| s (q,) S-t.

b
/ |DE(u)? dH" < c/ (1+|h™?) dz
T'n 0



Uniqueness and regularity in 2D

Theorem
In two dimensions:

(i) The weak solution is unique.
(i) Ifhg € H3, 4 € C*, then the solution is in
H'(0,To; L) N L2(0, Ty; HS).
» The proof is based on the following estimate.
Proposition
Leth € H5, h > cy > 0, and let u be corresponding elastic

equilibrium. Then, there exists a constant C depending only on
|l 2, co, @nd || E(u)|| Lo (,) S-t.

b
/ |DE(u)|* dH' < c/ (1+|h™?) dz
Ty 0
and

b
/ ID2E)2dH + | Do (E(u)* dH" < c/ (14 (W) da.
Ty 0

Tn
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Second variation approach

Let G(h,u)= | W(E(u))dzdy +H(T'})
Qp

For ¢ smooth and periodic, with [ = 0, let (hy, u) be defined by
hy =h+ty, wu, elastic equilibrium in Qp,

Set
d2
D*G(h,u)p] = -

dtQ G(hf Ut) |t:0



Second variation approach

Let Glhyu) = | W(E(w))dady +H (Th)

Qp
For ¢ smooth and periodic, with [ ¢ = 0, let (h, u;) be defined by
hy =h+ty, wu, elastic equilibrium in Qp,
Set
2

G (hu)lg] = L

dt2 G(hf Ut) |t:0

Theorem (F.-Morini, 2012)
Let (h,u) be a critical configuration, h € C%, h >0 s.t.

92G(h,u)[p] >0 Yo # 0.
Then, there exists § > 0 s.t.
G(h,u) < G(g,v)

for all admissible (g, v), with |Q,| = || and 0<||g — h||z= <.



Local minimality of the 2D flat configuration
» the flat configuration in the [0, 4]

(L) wten=eofr—525)

B 20+ A
is critical
Theorem (F., Morini, 2012)
- if 0<b< 2nt A , the flat configuration is an isolated local

T deZu(pt )
minimizer for all d > 0



Local minimality of the 2D flat configuration
» the flat configuration in the [0, 4]

<£iﬂuo) uo(wvzu):(*f)(l'» Ay)

b’ B 20+ A
is critical
Theorem (F., Morini, 2012)
- if 0<b< 2nt A , the flat configuration is an isolated local

T dedu(p+ )
minimizer for all d > 0

, 20+ A . —— .
-if b> T 2L, the flat configuration is an isolated local
4egu(p+A)

minimizer for 0 <d <d;..(b), where dj,.(b) is the unique solution to

e A ..
K(del (b)) _ % 22ﬂ + K explicit
€o

1
b2 MTESY

while for d > d;,.(b) the flat configuration is never an isolated local
minimizer



Local minimality of the 3D flat configuration:
anisotropic case
Let

G(h,u) = i W(E(u)) dedy + : P(v)dH>

and as before

F(hu) = G(hu) + = | |H[P dH>.
pJr,

Theorem (Bonacini, 2013)

Assume that D*y(e3) > 0 on (e3)* and 9*G/(d, ug) > 0. Then there
exists e > 0 s.t.

/ h=d, 0<|h—d|cre <e= G(d,uq) < G(h,upn).
JQ



Local minimality of the 3D flat configuration:
anisotropic case
Let

G(h,u) = i W(E(u)) dedy + : P(v)dH>

and as before

F(hu) = G(hu) + = | |H[P dH>.
pJr,

Theorem (Bonacini, 2013)

Assume that D*y(e3) > 0 on (e3)* and 9*G/(d, ug) > 0. Then there
exists e > 0 s.t.

/ h=d, 0<|h—d|cre <e= G(d,uq) < G(h,upn).
JQ

= F(d,uq) =G(d,uq) < G(h,up)< F(h,up)



Global in time existence and asymptotic stability

Consider the regularized surface diffusion equation

10h _ [diVF(D%/J(V)) - W(E(u)

—e(Ac(HP=2H) — |HP72H (5 + 13 — %H 2))}




Global in time existence and asymptotic stability

Consider the regularized surface diffusion equation

%}% = Ar [divF(Dw(V)) + W(E(u))

—e(Ar(HP72H) — [HP72H (62 + 63 ;H2))}

The main result is

Theorem (Fonseca-F.-Leoni-Morini)

Assume that D*y(e3) > 0 one;- and 9*G/(d, ug) > 0. There exists
e>0s.t
if ||h() T dHW2~” < ¢, then:

(i) any variational solution h exists for all times;

(i) h(-,t) — dinW?P ast — +oo.
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Asymptotic stability: strategy of the proof
Step 1 (global existence):

» F(h(t),u(t)) is non-increasing in time

» F(ho,ug) close to F(d,us) = F(h(t),u(t)) closeto F(d,uq)
fort e [0,T%)

» By local minimality h(t) close to d in C'1« for
tel0,T%) = T*=+o0

Step 2 (Liapunov stability):
» Yo > 0 there exists § > 0 s.t.
Hho — d||W2,p < § = Hh(t) — d”WQ,p <o for all ¢t > 0.

Step 3 (Convergence up to a subsequence)
» The energy estimate gives

[ 15 <crmow.

» %(.,t,) — 0in H~* for some ¢, — oo

> h(-,t,) — hin W2P, with h critical and ||k — d||y2» < o
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Asymptotic stability: strategy of the proof

Step 4 (h = d):
» There exist 0 > 0 and ¢y > 0 s.t.

9*G(h,un)e] > collellFn

provided ||k — d||wz» < 0
» There exists 0 > 0s.t. |h —d||w2» <o = his not critical
> h=d.

Step 5 (Conclusion)

» F(h(t),u(t)) non-increasing = lim; o F'(h(t),u(t)) exists
» By Step 2 and Step 4 F(h(t,), u(t,)) = F(h,uz) = F(d,uy)

> F(h(t),u(t)) = F(d,uq) ast — oo

» By isolated minimality h(t) — din W2P? ast — oo



Liapunov stability in the highly non-convex case
Consider the Wulff shape

Wy = {z €R3: z~u<¢(u)fora|lu€5’2}J
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Liapunov stability in the highly non-convex case
Consider the Wulff shape

Wy = {z €R3: z~u<¢(u)f0ral|u€5’2}J

/,,
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Theorem (Fonseca-F.-Leoni-Morini)

Assume that Wy, contains a horizontal facet. Then for every d > 0 the

flat configuration (d, ) is Liapunov stable, that is, for every o > 0
there exists (o) > 0 s.t.

Joho=d, |ho=dllwzs <6(0) = ||h(t)~d|wzn < o forallt > 0.
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Open problems and future directions

» Uniqueness in three-dimensions

» More general global existence results

» The non-graph case

» The convex case, without curvature regularization
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