Motion of elastic thin films by anisotropic surface diffusion with curvature regularization (work in collaboration with I. Fonseca, G. Leoni and M. Morini)

Nicola Fusco

- Fonseca, F., Leoni & Morini (Arch. Rational Mech. Anal (2007))
- F., Morini
 (Arch. Rational Mech. Anal. (2012))

Deposition of a thin film over a thick substrate

Mismatch strain

- Fonseca, F., Leoni & Morini (Arch. Rational Mech. Anal (2007))
- F., Morini
 (Arch. Rational Mech. Anal. (2012))

Deposition of a thin film over a thick substrate

Mismatch strain

instability of the flat configuration and island formation

film substrate

- Fonseca, F., Leoni & Morini (Arch. Rational Mech. Anal (2007))
- F., Morini
 (Arch. Rational Mech. Anal. (2012))

Deposition of a thin film over a thick substrate

Mismatch strain

instability of the flat configuration and island formation

film

substrate

- Fonseca, F., Leoni & Morini (Arch. Rational Mech. Anal (2007))
- F., Morini
 (Arch. Rational Mech. Anal. (2012))

Deposition of a thin film over a thick substrate

Mismatch strain

instability of the flat configuration and island formation

► Asaro-Tiller-Grinfeld morphological instability

film substrate

- Fonseca, F., Leoni & Morini (Arch. Rational Mech. Anal (2007))
- F., Morini
 (Arch. Rational Mech. Anal. (2012))

Deposition of a thin film over a thick substrate

Mismatch strain

instability of the flat configuration and island formation

- vertical slope

 As

 Cusp

 Contact angle = zero

 fur
 - Asaro-Tiller-Grinfeld morphological instability
 - B.Spencer, D.Meiron (Acta Metal. Mater., 1994) B.Spencer, J.Tersoff (Phy. Rev. Letter, 1997)
 - further numerical results: Chiu, H. Gao, W. Nix

$$h: \mathbb{R}^2 o [0, \infty)$$
 Q -periodic, Lipschitz $\Omega_h = \big\{ (x,y) \in Q imes \mathbb{R} \colon 0 \!<\! y \!<\! h(x) \big\}$

$$\Gamma_h = \partial \Omega_h \cap \{y > 0\}$$

$$Q = [0, 1] \times [0, 1]$$

$$h: \mathbb{R}^2 o [0, \infty)$$
 Q -periodic, Lipschitz $\Omega_h = \big\{ (x,y) \in Q imes \mathbb{R} \colon 0 \!<\! y \!<\! h(x) \big\}$

$$\Gamma_h = \partial \Omega_h \cap \{y > 0\}$$

$$Q = [0, 1] \times [0, 1]$$

$$Q = [0,1] \times [0,1]$$

•
$$\Gamma_h$$
 = free profile of the film

$$h: \mathbb{R}^2 o [0, \infty)$$
 Q -periodic, Lipschitz
$$\Omega_h = \big\{ (x,y) \in Q \times \mathbb{R} \colon 0 < y < h(x) \big\}$$

$$\Gamma_h = \partial \Omega_h \cap \{y > 0\}$$

$$Q = [0, 1] \times [0, 1]$$

$$ightharpoonup \Gamma_h = ext{free profile of the film}$$

•
$$\Omega_h=$$
 reference configuration of the film, $|\Omega_h|=d,\,d$ given

$$h: \mathbb{R}^2 o [0, \infty)$$
 Q -periodic, Lipschitz $\Omega_h = \big\{ (x,y) \in Q imes \mathbb{R} \colon 0 \!<\! y \!<\! h(x) \big\}$

$$\Gamma_h = \partial \Omega_h \cap \{y > 0\}$$

$$Q = [0, 1] \times [0, 1]$$

- $ightharpoonup \Gamma_h =$ free profile of the film
- $ightharpoonup \Omega_h = ext{reference configuration of the film, } |\Omega_h| = d, d ext{ given}$
- $lackbox{\rightarrow} u:\Omega_h\mapsto\mathbb{R}^3= ext{displacement of the film}$

 $ightharpoonup \Gamma_h =$ free profile of the film

$$h:\mathbb{R}^2 o [0,\infty)$$
 Q -periodic, Lipschitz $\Omega_h = \left\{ (x,y) \in Q imes \mathbb{R}: \ 0 \!<\! y \!<\! h(x)
ight\}$ $\Gamma_h = \partial \Omega_h \cap \left\{ y > 0
ight\}$

 $Q = [0,1] \times [0,1]$

$$lacktriangleq \Omega_h =$$
 reference configuration of the film, $|\Omega_h| = d, d$ given

$$lackbox{lack} u:\Omega_h\mapsto\mathbb{R}^3= ext{displacement of the film}$$

•
$$u(x,0) = e_0(x,0)$$
, $Du(\cdot,t)$ is Q -periodic

$$h:\mathbb{R}^2 o [0,\infty)$$
 Q -periodic, Lipschitz
$$\Omega_h = \big\{(x,y) \in Q imes \mathbb{R} \colon 0 < y < h(x) \big\}$$

$$\Gamma_h = \partial \Omega_h \cap \big\{y > 0 \big\}$$

$$Q = [0,1] imes [0,1]$$

- Γ_h = free profile of the film
- $lackbox{ }\Omega_h=$ reference configuration of the film, $\;|\Omega_h|=d,\,d$ given
- $lackbox{$lackbox{$\scriptstyle u$}}:\Omega_h\mapsto\mathbb{R}^3={
 m displacement}$ of the film
- $u(x,0) = e_0(x,0)$, $Du(\cdot,t)$ is Q-periodic
- $ightharpoonup e_0>0$ measure the mismatch between the two lattices

$$E(u) = \frac{1}{2}(\sqrt{u} + \sqrt{u}) = \text{strain}$$

$$F(h,u):=\int_{\Omega_h}W(E(u))\,dxdy+\int_{\Gamma_h}\psi(
u)d\sigma$$
 where

•
$$E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},$$

•
$$W(E) = \mu |E|^2 + \frac{\lambda}{2} trace(E^2)$$
 $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

$$F(h,u) := \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \psi(
u) d\sigma$$
 where

$$ightharpoonup E(u) = rac{1}{2} \left(\nabla u + \nabla^T u \right) = \text{strain},$$

•
$$W(E) = \mu |E|^2 + \frac{\lambda}{2} trace(E^2)$$
 $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

$$ullet$$
 $\psi =$ (anisotropic) surface energy density

$$F(h,u):=\int_{\Omega_h}W(E(u))\,dxdy+\int_{\Gamma_h}\psi(
u)d\sigma$$
 where

$$\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},$$

•
$$W(E) = \mu |E|^2 + \frac{\lambda}{2} trace(E^2)$$
 $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

$$ullet$$
 $\psi=$ (anisotropic) surface energy density

$$\inf \{F(h,u): (h,u) \text{ admissible}, |\Omega_h|=d\}$$

$$F(h,u):=\int_{\Omega_h}W(E(u))\,dxdy+\int_{\Gamma_h}\psi(
u)d\sigma$$
 where

$$\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},$$

•
$$W(E) = \mu |E|^2 + \frac{\lambda}{2} trace(E^2)$$
 $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

$$ullet$$
 $\psi=$ (anisotropic) surface energy density

$$\inf \{F(h,u): (h,u) \text{ admissible}, |\Omega_h|=d\}$$

$$\blacktriangleright E(u) = \frac{1}{2} (\nabla u + \nabla^T u) = \text{strain},$$

•
$$W(E) = \mu |E|^2 + \frac{\lambda}{2} trace(E^2)$$
 $\mu > 0, \mu + \lambda > 0$, Lamé coefficients

$$lacktriangledown$$
 ψ = (anisotropic) surface energy density

$$\inf \{F(h,u): \ (h,u) \ \text{admissible} \ , \ |\Omega_h|=d \}$$

► Grinfeld (1993): instability analysis based on the free-energy

- $ightharpoonup E(u) = rac{1}{2} \left(\nabla u + \nabla^T u \right) = ext{strain,}$
- $W(E) = \mu |E|^2 + \frac{\lambda}{2} \operatorname{trace}(E^2)$ $\mu > 0, \mu + \lambda > 0$, Lamé coefficients
- $\psi =$ (anisotropic) surface energy density

$$\inf \{F(h,u): (h,u) \text{ admissible}, |\Omega_h|=d\}$$

- ► Grinfeld (1993): instability analysis based on the free-energy
- ► Bonnettier-Chambolle (2002): variational formulation in two-dimensions

- $ightharpoonup E(u) = rac{1}{2} (\nabla u + \nabla^T u) = \text{strain,}$
- $W(E)=\mu |E|^2+\frac{\lambda}{2} trace(E^2)$ $\mu>0, \mu+\lambda>0,$ Lamé coefficients
- $\psi =$ (anisotropic) surface energy density

$$\inf \left\{ F(h,u) : (h,u) \text{ admissible}, |\Omega_h| = d \right\}$$

- ► Grinfeld (1993): instability analysis based on the free-energy
- ► Bonnettier-Chambolle (2002): variational formulation in two-dimensions
- ► Chambolle-Solci (2007): variational formulation in three-dimensions

Static theory		

► Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation

- ► Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation
- ► Chambolle & Solci (2007): existence of minimizing configurations in 3D for a simplified model

- ► Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation
- ► Chambolle & Solci (2007): existence of minimizing configurations in 3D for a simplified model
- ► Fonseca, F., Leoni, and Morini (2007): regularity of (locally) minimizing configurations

- ► Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation
- ► Chambolle & Solci (2007): existence of minimizing configurations in 3D for a simplified model
- ► Fonseca, F., Leoni, and Morini (2007): regularity of (locally) minimizing configurations
- ► F.-Morini (2012): 2Dqualitative properties and local minimality results in the case of an isotropic surface energy, via second variation,

- ► Bonnettier & Chambolle (2002): existence of minimizing configurations in 2D and numerical approximation
- ► Chambolle & Solci (2007): existence of minimizing configurations in 3D for a simplified model
- ► Fonseca, F., Leoni, and Morini (2007): regularity of (locally) minimizing configurations
- F.-Morini (2012): 2Dqualitative properties and local minimality results in the case of an isotropic surface energy, via second variation,
- ► Bonacini (2013): the case of anisotropic surface energies in 2D and 3D.

Einstein-Nernst law:

Einstein-Nernst law: surface flux of atoms

Einstein-Nernst law: surface flux of atoms $\propto
abla_\Gamma \mu$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma} \mu$ μ = chemical potential

Einstein-Nernst law: surface flux of atoms $\propto
abla_{\Gamma} \mu$

(volume preserving)

Morphology evolution: surface diffusion

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma} \mu$

$$\mu$$
= chemical potential \longrightarrow $V = c \times$

$$V = c \times$$

anisotropic curvature

$$\Delta_{\Gamma(t)}\mu$$

Laplace-Beltrami operator (volume preserving)

$$\mu$$
= first variation of energy = $\underbrace{\operatorname{div}_{\Gamma}D\psi(\nu)}_{}$ + $W(E(u))$ + λ

Morphology evolution: surface diffusion

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma} \mu$

$$\mu$$
= chemical potential $\ \ \, \sim \ \ \, V=c \, imes$

$$V = c \times$$

$$\Delta_{\Gamma(t)}\mu$$

Laplace-Beltrami operator (volume preserving)

$$\mu$$
= first variation of energy = $\operatorname{div}_{\Gamma}D\psi(\nu)$ + $W(E(u))$ + λ

$$-\frac{\text{div}_{\Gamma}D\varphi(\nu)}{\sqrt{2}}$$
 $+W(E(v))$

anisotropic curvature

$$V = \Delta_{\Gamma} \Big(\operatorname{div}_{\Gamma} D\psi(\nu) + W(E(u)) \Big)$$

For highly anisotropic ψ it may happen

For highly anisotropic
$$\psi$$
 it may happen
$$D^2\psi(\nu)[\tau,\tau]<0\quad \text{for some }\tau\perp\nu$$

For highly anisotropic ψ it may happen

$$D^2\psi(
u)[au, au]<0 \quad ext{ for some } au\perp
u$$

For highly anisotropic ψ it may happen

$$D^2\psi(\nu)[\tau,\tau]<0\quad \text{ for some }\tau\perp\nu$$

$$\downarrow \qquad \qquad \downarrow$$
 the evolution becomes backward parabolic

For highly anisotropic ψ it may happen

$$D^2\psi(
u)[au, au]<0 \quad ext{ for some } au\perp
u$$

the evolution becomes backward parabolic

For highly anisotropic ψ it may happen

$$D^2\psi(
u)[au, au]<0 \quad ext{ for some } au\perp
u$$

the evolution becomes backward parabolic

For highly anisotropic ψ it may happen

$$D^2\psi(
u)[au, au]<0$$
 for some $au\perp
u$

the evolution becomes backward parabolic

$$F(h,u) := \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{p} |H|^p \right) d\sigma, \quad p > 2, \ \varepsilon > 0$$

For highly anisotropic ψ it may happen

$$D^2\psi(
u)[au, au]<0$$
 for some $au\perp
u$

the evolution becomes backward parabolic

$$F(h,u) := \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{p} |H|^p \right) d\sigma, \quad p > 2, \, \varepsilon > 0$$

For highly anisotropic ψ it may happen

$$D^2\psi(
u)[au, au]<0 \quad ext{ for some } au\perp
u$$

the evolution becomes backward parabolic

$$F(h,u) := \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{p} |H|^p \right) d\sigma, \quad p > 2, \, \varepsilon > 0$$

$$V = \Delta_{\Gamma} \left[\operatorname{div}_{\Gamma}(D\psi(\nu)) + W(E(u)) - \varepsilon \left(\Delta_{\Gamma}(|H|^{p-2}H) - |H|^{p-2}H \left(\kappa_1^2 + \kappa_2^2 - \frac{1}{p}H^2 \right) \right) \right]$$

Regularized energy:

$$F(h,u) := \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{2} k^2 \right) d\mathcal{H}^1$$

Regularized energy:

$$F(h, u) := \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{2} k^2 \right) d\mathcal{H}^1$$

$$V = \left(\operatorname{div}_{\sigma} D\psi(\nu) + W(E(u)) - \varepsilon \left(k_{\sigma\sigma} + \frac{1}{2}k^{3}\right)\right)_{\sigma\sigma}$$

Fonseca, F., Leoni, and Morini (ARMA 2012): evolution of films in two-dimensions

Regularized energy:

$$F(h,u) := \int_{\Omega_h} W(E(u)) \, dx dy + \int_{\Gamma_h} \left(\psi(\nu) + \frac{\varepsilon}{2} k^2 \right) d\mathcal{H}^1$$

$$\downarrow \downarrow$$

$$V = \left(\operatorname{div}_{\sigma} D\psi(\nu) + W(E(u)) - \varepsilon \left(k_{\sigma\sigma} + \frac{1}{2}k^{3}\right)\right)_{\sigma\sigma}$$

- ► Fonseca, F., Leoni, and Morini (ARMA 2012): evolution of films in two-dimensions
- ► Fonseca, F., Leoni, and Morini (2014): evolution of films in three-dimensions

The evolution law Curvature dependent energies

► Curvature dependent energies → Herring (1951) on physical grounds.

- ► Curvature dependent energies → Herring (1951) on physical grounds.
- ► In the context of grain growth, the curvature regularization was proposed by Di Carlo, Gurtin, Podio-Guidugli (1992)

- ► Curvature dependent energies → Herring (1951) on physical grounds.
- ► In the context of grain growth, the curvature regularization was proposed by Di Carlo, Gurtin, Podio-Guidugli (1992)
- ► In the context of epitaxial growth, see Gurtin & Jabbour (2002)

- ► Curvature dependent energies → Herring (1951) on physical grounds.
- ► In the context of grain growth, the curvature regularization was proposed by Di Carlo, Gurtin, Podio-Guidugli (1992)
- ► In the context of epitaxial growth, see Gurtin & Jabbour (2002)

Given W, we wish to find $h: \mathbb{R}^2 \times [0, T_0] \to (0, +\infty)$ s.t.

$$\begin{cases} \frac{1}{J}\frac{\partial h}{\partial t} = \Delta_{\Gamma} \left[\operatorname{div}_{\Gamma}(D\psi(\nu)) + W(E(u)) \right. \\ \left. -\varepsilon \Big(\Delta_{\Gamma}(|H|^{p-2}H) - |H|^{p-2}H \Big(\kappa_{1}^{2} + \kappa_{2}^{2} - \frac{1}{p}H^{2} \Big) \Big) \right], & \text{in } \mathbb{R}^{2} \times (0, T_{0}), \\ \operatorname{div} \mathbb{C}E(u) = 0 & \text{in } \Omega_{h}, \\ \mathbb{C}E(u)[\nu] = 0 & \text{on } \Gamma_{h}, \quad u(x, 0, t) = e_{0}(x, 0), \\ h(\cdot, t) \text{ and } Du(\cdot, t) & \text{are } Q\text{-periodic,} \\ h(\cdot, 0) = h_{0}, \end{cases}$$

Here $J := \sqrt{1 + |Dh|^2}$.

► Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves

- ► Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves
- ► Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution

- ► Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves
- ► Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution
- Garcke: analytical results concerning some diffuse interface versions of the evolution equation

- ► Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves
- ► Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution
- ► Garcke: analytical results concerning some diffuse interface versions of the evolution equation
- ▶ Bellettini, Mantegazza, Novaga (2007): analytical results concerning the L^2 -gradient flow of higher order geometric functionals (without elasticity)

- ► Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves
- ► Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution
- ► Garcke: analytical results concerning some diffuse interface versions of the evolution equation
- ▶ Bellettini, Mantegazza, Novaga (2007): analytical results concerning the L^2 -gradient flow of higher order geometric functionals (without elasticity)
- Elliott & Garcke (1997), Escher, Mayer & Simonett (1998): existence results for the surface diffusion equation without elasticity and without curvature regularization, via semigroups techniques.

- ► Siegel, Miksis, Voorhees (2004): numerical experiments in the case of evolving curves
- ► Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version of the evolution
- ► Garcke: analytical results concerning some diffuse interface versions of the evolution equation
- ▶ Bellettini, Mantegazza, Novaga (2007): analytical results concerning the L^2 -gradient flow of higher order geometric functionals (without elasticity)
- ► Elliott & Garcke (1997), Escher, Mayer & Simonett (1998): existence results for the surface diffusion equation without elasticity and without curvature regularization, via semigroups techniques.
- no analytical results for the sharp interface evolution with elasticity

The gradient flow structure

$$F(h,u) \qquad \leadsto \qquad \overline{F}(h) := F(h,u_h)$$

where u_h is the elastic equilibrium in Ω_h .

The gradient flow structure

$$F(h,u) \qquad \leadsto \qquad \overline{F}(h) := F(h,u_h)$$

where u_h is the elastic equilibrium in Ω_h .

ullet The evolution law is the H^{-1} -gradient flow of the reduced energy \overline{F}

$$\dot{h} = -\nabla_{H^{-1}} \overline{F}(h)$$

where $\nabla_{H^{-1}}$ stands for the Gateaux differential of \overline{F} with respect to the scalar product of H^{-1} .

The gradient flow structure

$$F(h,u) \longrightarrow \overline{F}(h) := F(h,u_h)$$

where u_h is the elastic equilibrium in Ω_h .

▶ The evolution law is the H^{-1} -gradient flow of the reduced energy \overline{F}

$$\dot{h} = -\nabla_{H^{-1}} \overline{F}(h)$$

where $\nabla_{H^{-1}}$ stands for the Gateaux differential of \overline{F} with respect to the scalar product of H^{-1} .

► First observed by Cahn &Taylor (1994) in the context of surface diffusion

▶ Given T>0, $N\in\mathbb{N}$, we set $\tau:=\frac{T}{N}$. For $i=1,\ldots,N$ we define inductively (h_i,u_i) as the solution of the incremental minimum problem

▶ Given $T>0, N\in\mathbb{N}$, we set $\tau:=\frac{T}{N}$. For $i=1,\ldots,N$ we define inductively (h_i,u_i) as the solution of the incremental minimum problem

$$\min_{ \begin{array}{c} (h,u) \text{ admissible} \\ \|Dh\|_{\infty} \leq C \end{array}} F(h,u) + \underbrace{\frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2}_{}$$

▶ Given $T>0, N\in\mathbb{N}$, we set $\tau:=\frac{T}{N}$. For $i=1,\ldots,N$ we define inductively (h_i,u_i) as the solution of the incremental minimum problem

$$\min_{ \begin{array}{c} (h,u) \text{ admissible} \\ \|Dh\|_{\infty} \leq C \end{array}} F(h,u) + \underbrace{\frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2}_{}$$

where

$$\begin{cases} \Delta_{\Gamma_{h_{i-1}}} w_h = \frac{h - h_{i-1}}{\sqrt{1 + |Dh_{i-1}|^2}}, \\ \int_{\Gamma_{h_{i-1}}} w_h d\mathcal{H}^2 = 0. \end{cases}$$

▶ Given T>0, $N\in\mathbb{N}$, we set $\tau:=\frac{T}{N}$. For $i=1,\ldots,N$ we define inductively (h_i,u_i) as the solution of the incremental minimum problem

$$\min_{ \begin{array}{c} (h,u) \text{ admissible} \\ \|Dh\|_{\infty} \leq C \end{array}} F(h,u) + \underbrace{\frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2}_{}$$

where

$$\begin{cases} \Delta_{\Gamma_{h_{i-1}}} w_h = \frac{h - h_{i-1}}{\sqrt{1 + |Dh_{i-1}|^2}}, \\ \int_{\Gamma_{h_{i-1}}} w_h d\mathcal{H}^2 = 0. \end{cases}$$

$$\frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \sim ||h - h_{i-1}||_{H^{-1}}^2$$

The discrete Euler-Lagrange equation

► The Euler-Lagrange equation of the incremental problem is

$$\begin{split} \frac{1}{\tau} w_{h_i} &= \text{div}_{\Gamma_{h_i}}(D\psi(\nu)) + W(E(u_i)) \\ &- \varepsilon \Big(\Delta_{\Gamma_{h_i}}(|H_i|^{p-2}H_i) - |H_i|^{p-2}H_i \Big((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p}H_i^2 \Big) \Big) \end{split}$$

The discrete Euler-Lagrange equation

► The Euler-Lagrange equation of the incremental problem is

$$\frac{1}{\tau} w_{h_i} = \operatorname{div}_{\Gamma_{h_i}} (D\psi(\nu)) + W(E(u_i))$$

$$-\varepsilon \left(\Delta_{\Gamma_{h_i}} (|H_i|^{p-2} H_i) - |H_i|^{p-2} H_i \left((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p} H_i^2 \right) \right)$$

▶ By applying $\Delta_{\Gamma_{h_{i-1}}}$ to both sides, we formally get

$$\frac{1}{J_{i-1}} \frac{h_i - h_{i-1}}{\tau} = \Delta_{\Gamma_{h_{i-1}}} \left[\operatorname{div}_{\Gamma_{h_i}} (D\psi(\nu)) + W(E(u_i)) - \varepsilon \left(\Delta_{\Gamma_{h_i}} (|H_i|^{p-2} H_i) - |H_i|^{p-2} H_i \left((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p} H_i^2 \right) \right) \right]$$

The discrete Euler-Lagrange equation

► The Euler-Lagrange equation of the incremental problem is

$$\frac{1}{\tau} w_{h_i} = \operatorname{div}_{\Gamma_{h_i}} (D\psi(\nu)) + W(E(u_i))
- \varepsilon \Big(\Delta_{\Gamma_{h_i}} (|H_i|^{p-2} H_i) - |H_i|^{p-2} H_i \Big((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p} H_i^2 \Big) \Big)$$

▶ By applying $\Delta_{\Gamma_{h_{i-1}}}$ to both sides, we formally get

$$\begin{split} \frac{1}{J}_{i-1} \frac{h_i - h_{i-1}}{\tau} &= \Delta_{\Gamma_{h_{i-1}}} \Big[\mathrm{div}_{\Gamma_{h_i}}(D\psi(\nu)) + W(E(u_i)) \\ &- \varepsilon \Big(\Delta_{\Gamma_{h_i}}(|H_i|^{p-2}H_i) - |H_i|^{p-2}H_i \Big((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p}H_i^2 \Big) \Big) \Big] \end{split}$$

which is a discrete version of the continuous evolution law.

$$h_N(\cdot,t) = h_{i-1} + \frac{t - (i-1)\tau}{\tau} (h_i - h_{i-1})$$
 if $(i-1)\tau \le t \le i\tau$

 $F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)$

Basic energy estimate:

$$lacksquare h_N(\cdot,t) = h_{i-1} + rac{t - (i-1) au}{ au} (h_i - h_{i-1}) \quad \text{ if } (i-1) au \leq t \leq i au$$

Basic energy estimate:

$$F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)$$

$$\rightarrow \sum_{i} \frac{1}{2\tau} ||h_i - h_{i-1}||_{H^{-1}}^2 \le CF(h_0, u_0)$$

$$h_N(\cdot,t) = h_{i-1} + \frac{t - (i-1)\tau}{\tau} (h_i - h_{i-1}) \quad \text{if } (i-1)\tau \le t \le i\tau$$

Basic energy estimate:

$$F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)$$

$$\sim \sum_{i} \frac{1}{2\tau} ||h_i - h_{i-1}||_{H^{-1}}^2 \le CF(h_0, u_0)$$

Proposition

(i)
$$(h_N)_N$$
 is bounded in $H^1(0,T_0;H^{-1});$

$$h_N(\cdot,t) = h_{i-1} + \frac{t - (i-1)\tau}{\tau} (h_i - h_{i-1}) \quad \text{if } (i-1)\tau \le t \le i\tau$$

Basic energy estimate:

$$F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)$$

$$\sim \sum_{i} \frac{1}{2\tau} ||h_i - h_{i-1}||_{H^{-1}}^2 \le CF(h_0, u_0)$$

Proposition

- (i) $(h_N)_N$ is bounded in $H^1(0,T_0;H^{-1})$;
- (ii) $(h_N)_N$ is bounded in $L^{\infty}(0,T_0;W^{2,p})$;
- (ii) $(n_N)_N$ is bounded in $L^{\infty}(0, T_0; W^{-n})$

$$h_N(\cdot,t) = h_{i-1} + \frac{t - (i-1)\tau}{\tau} (h_i - h_{i-1}) \quad \text{if } (i-1)\tau \le t \le i\tau$$

Basic energy estimate:

$$F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)$$

$$\sim \sum_{i} \frac{1}{2\tau} ||h_i - h_{i-1}||_{H^{-1}}^2 \le CF(h_0, u_0)$$

Proposition

- (i) $(h_N)_N$ is bounded in $H^1(0,T_0;H^{-1})$;
- (ii) $(h_N)_N$ is bounded in $L^{\infty}(0,T_0;W^{2,p})$;
- (iii) $(h_N)_N$ is bounded in $C^{0,\beta}([0,T_0];C^{1,\alpha})$ for every $\alpha\in(0,\frac{p-2}{2})$, and $\beta\in(0,(p-2-\alpha p)(p+2)/16p^2);$

 $h_N(\cdot,t) = h_{i-1} + \frac{t - (i-1)\tau}{\tau} (h_i - h_{i-1}) \quad \text{if } (i-1)\tau \le t \le i\tau$

Basic energy estimate:

$$F(h_i, u_i) + \frac{1}{2\tau} \int_{\Gamma_{h_{i-1}}} |D_{\Gamma_{h_{i-1}}} w_h|^2 d\mathcal{H}^2 \le F(h_{i-1}, u_{i-1}) \le \dots \le F(h_0, u_0)$$

$$\Rightarrow \sum_{i} \frac{1}{2\tau} ||h_i - h_{i-1}||_{H^{-1}}^2 \le CF(h_0, u_0)$$

Proposition

- (i) $(h_N)_N$ is bounded in $H^1(0,T_0;H^{-1})$;
- (ii) $(h_N)_N$ is bounded in $L^{\infty}(0,T_0;W^{2,p})$;
- (iii) $(h_N)_N$ is bounded in $C^{0,\beta}([0,T_0];C^{1,\alpha})$ for every $\alpha\in(0,\frac{p-2}{2}),$ and $\beta\in(0,(p-2-\alpha p)(p+2)/16p^2);$
- $\begin{array}{ll} \text{(iv)} & \left(E(u_N)\right)_N \text{ is bounded in } C^{0,\beta}([0,T_0];C^{1,\alpha}) \text{ for every } \alpha \in (0,\frac{p-2}{2}),\\ & \text{and } \beta \in (0,(p-2-\alpha p)(p+2)/16p^2). \end{array}$

Set $\tilde{H}_N(\cdot,t)=H_i$, for $(i-1)\Delta T \leq t < i\Delta T$, the sum of the principal curvatures of $h_i(\cdot)$, then we have

$$(*) \qquad \int_{o}^{T_{o}} \int_{Q} |D^{2}(|\tilde{H}_{N}|^{p-2}\tilde{H}_{N})|^{2} dx dt \le C$$

Set $H_N(\cdot,t) = H_i$, for $(i-1)\Delta T \le t < i\Delta T$, the sum of the principal curvatures of $h_i(\cdot)$, then we have

$$J_{o}$$
 J_{Q}

 $-\int_{\Omega} W(E(u_i(x, H_i(x))))\varphi dx + \frac{1}{\tau} \int_{\Omega} v_{h_i} \varphi dx = 0,$

$$-\frac{\Delta H_i D H_i \cdot D \varphi}{J_i^2} - 2 \frac{D^2 H_i [D H_i, D \varphi]}{J_i^2} + 3 \frac{D^2 H_i [D H_i, D H_i] D H_i \cdot D \varphi}{J_i^4} \right] dx$$
$$-\frac{\varepsilon}{p} \int_Q |H_i|^p \frac{D H_i \cdot D \varphi}{J_i} - \int_Q D \psi (-D H_i, 1) \cdot (-D \varphi, 0) dx$$

$$arepsilon \int_{Q} |H_{i}|^{p-2} H_{i} \left[\Delta \varphi - rac{D^{2} \varphi[DH_{i}, DH_{i}]}{J_{i}^{2}} \right]$$

Set $\tilde{H}_N(\cdot,t) = H_i$, for $(i-1)\Delta T \le t < i\Delta T$, the sum of the principal curvatures of $h_i(\cdot)$, then we have

$$(*) \qquad \int_{o}^{T_{o}} \int_{Q} |D^{2}(|\tilde{H}_{N}|^{p-2}\tilde{H}_{N})|^{2} dx dt \le C$$

The proof of (*) is quite involved and uses interpolation + a delicate inductive argument based on the following Weyl type lemma

Set $\tilde{H}_N(\cdot,t)=H_i$, for $(i-1)\Delta T \leq t < i\Delta T$, the sum of the principal curvatures of $h_i(\cdot)$, then we have

$$(*) \int_{0}^{T_{o}} \int_{O} |D^{2}(|\tilde{H}_{N}|^{p-2}\tilde{H}_{N})|^{2} dxdt \leq C$$

The proof of (*) is quite involved and uses interpolation + a delicate inductive argument based on the following Weyl type lemma

Lemma

Let p > 2, $u \in L^{\frac{p}{p-1}}(Q)$ such that

$$\int_Q u\,A\,D^2\varphi\,dx + \int_Q b\cdot D\varphi + \int_Q c\varphi\,dx = 0 \quad \forall \varphi \in C^\infty(Q) \text{ with } \int_Q \varphi\,dx = 0,$$

where $A \in W^{1,p}(Q; \mathbb{M}^{2 \times 2}_{sym})$, $b \in L^1(Q; \mathbb{R}^2)$, and $c \in L^1(Q)$. Then $u \in L^q(Q)$ for all $q \in (1,2)$. Moreover, if b, u div $A \in L^r(Q; \mathbb{R}^2)$ and $c \in L^r(Q)$ for some r > 1, then $u \in W^{1,r}(Q)$.

$$\begin{split} &\frac{1}{J} \frac{h_i - h_{i-1}}{\tau} = \Delta_{\Gamma_{h_i-1}} \left[\operatorname{div}_{\Gamma_{h_i}}(D\psi(\nu)) + W(E(u_i)) \right. \\ &\left. - \varepsilon \left(\Delta_{\Gamma_{h_i}}(|H_i|^{p-2}H_i) - |H_i|^{p-2}H_i \left((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p}H_i^2 \right) \right) \right] \end{split}$$

$$\frac{1}{J_{i-1}} \frac{h_i - h_{i-1}}{\tau} = \Delta_{\Gamma_{h_{i-1}}} \left[\operatorname{div}_{\Gamma_{h_i}}(D\psi(\nu)) + W(E(u_i)) - \varepsilon \left(\Delta_{\Gamma_{h_i}}(|H_i|^{p-2}H_i) - |H_i|^{p-2}H_i \left((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p}H_i^2 \right) \right) \right]$$

$$-\varepsilon \Big(\Delta_{\Gamma_{h_i}} (|H_i|^{p-2} H_i) - |H_i|^{p-2} H_i \Big((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p} H_i^2 \Big) \Big)$$

$$\frac{1}{J_{i-1}} \frac{h_i - h_{i-1}}{\tau} = \Delta_{\Gamma_{h_{i-1}}} \left[\operatorname{div}_{\Gamma_{h_i}} (D\psi(\nu)) + W(E(u_i)) - \varepsilon \left(\Delta_{\Gamma_{h_i}} (|H_i|^{p-2}H_i) - |H_i|^{p-2}H_i \left((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p}H_i^2 \right) \right) \right]$$

Previous estimates+ compactness argument $\rightsquigarrow h_N \to h$ up to subsequences

$$\frac{1}{J_{i-1}} \frac{h_i - h_{i-1}}{\tau} = \Delta_{\Gamma_{h_{i-1}}} \left[\operatorname{div}_{\Gamma_{h_i}} (D\psi(\nu)) + W(E(u_i)) - \varepsilon \left(\Delta_{\Gamma_{h_i}} (|H_i|^{p-2}H_i) - |H_i|^{p-2}H_i \left((\kappa_1^i)^2 + (\kappa_2^i)^2 - \frac{1}{p}H_i^2 \right) \right) \right]$$

- ightharpoonup Previous estimates+ compactness argument $ightharpoonup h_N
 ightarrow h$ up to subsequences
- \blacktriangleright h is a weak solution in the following sense:

Theorem (Local existence)

 $h\in L^\infty(0,T_0;W^{2,p}_\#(Q))\cap H^1(0,T_0;H^{-1}_\#(Q))$ is a weak solution in $[0,T_0]$ in the following sense:

(i)
$$\operatorname{div}_{\Gamma}(D\psi(\nu)) + W(E(u)) - \varepsilon \Big(\Delta_{\Gamma}(|H|^{p-2}H) - \frac{1}{p}|H|^{p}H + |H|^{p-2}H(\kappa_{1}^{2} + \kappa_{2}^{2} - \frac{1}{p}H^{2})\Big) \in L^{2}(0, T_{0}; H^{1}_{\#}(Q)),$$

(ii) for a.e.
$$t \in (0, T_0)$$

$$\begin{split} &\frac{1}{J}\frac{\partial h}{\partial t} = \Delta_{\Gamma} \Big[\mathrm{div}_{\Gamma}(D\psi(\nu)) + W(E(u)) \\ &- \varepsilon \Big(\Delta_{\Gamma}(|H|^{p-2}H) - |H|^{p-2}H \Big(\kappa_1^2 + \kappa_2^2 - \frac{1}{p}H^2\Big) \Big) \Big] \quad \text{in } H^{-1}_{\#}(Q). \end{split}$$

Uniqueness and regularity in 2D Theorem

In two dimensions:

(i) The weak solution is unique.

Uniqueness and regularity in 2D

Theorem

In two dimensions:

- (i) The weak solution is unique.
- (ii) If $h_0 \in H^3$, $\psi \in C^4$, then the solution is in $H^1(0,T_0;L^2) \cap L^2(0,T_0;H^6)$.

Uniqueness and regularity in 2D

Theorem

In two dimensions:

- (i) The weak solution is unique.
- (ii) If $h_0 \in H^3$, $\psi \in C^4$, then the solution is in $H^1(0,T_0;L^2) \cap L^2(0,T_0;H^6)$.
- ► The proof is based on the following estimate.

Proposition

Let $h \in H^5$, $h \ge c_0 > 0$, and let u be corresponding elastic equilibrium. Then, there exists a constant C depending only on $\|h\|_{H^2}$, c_0 , and $\|E(u)\|_{L^\infty(\Omega_h)}$ s.t.

$$\int_{\Gamma_b} |DE(u)|^2 d\mathcal{H}^1 \le C \int_0^b (1 + |h^{(iv)}|^2) dx$$

Uniqueness and regularity in 2D

Theorem

In two dimensions:

- (i) The weak solution is unique.
- (ii) If $h_0 \in H^3$, $\psi \in C^4$, then the solution is in $H^1(0,T_0;L^2) \cap L^2(0,T_0;H^6)$.
- The proof is based on the following estimate.

Proposition

Let $h \in H^5$, $h \ge c_0 > 0$, and let u be corresponding elastic equilibrium. Then, there exists a constant C depending only on $\|h\|_{H^2}$, c_0 , and $\|E(u)\|_{L^\infty(\Omega_h)}$ s.t.

$$\int_{\Gamma_h} |DE(u)|^2 d\mathcal{H}^1 \le C \int_0^b (1 + |h^{(iv)}|^2) dx$$

and

$$\int_{\Gamma_{b}} |D^{2}E(u)|^{2} d\mathcal{H}^{1} + \int_{\Gamma_{b}} |D_{\sigma}(E(u))|^{4} d\mathcal{H}^{1} \leq C \int_{0}^{b} (1 + |h^{(v)}|^{2}) dx.$$

Second variation approach $G(h, u) = \int_{\Omega_h} W(E(u)) dxdy + \mathcal{H}^1(\Gamma_h)$

Second variation approach

Let
$$G(h,u) = \int_{\Omega_h} W(E(u)) \, dx dy + \mathcal{H}^1(\Gamma_h)$$

For
$$\varphi$$
 smooth and periodic, with $\int \varphi=0$, let (h_t,u_t) be defined by
$$h_t=h+t\varphi\,,\quad u_t \text{ elastic equilibrium in }\Omega_{h_t}$$

Second variation approach

Let
$$G(h,u) = \int_{\Omega_h} W(E(u)) \, dx dy + \mathcal{H}^1(\Gamma_h)$$

For φ smooth and periodic, with $\int \varphi = 0$, let (h_t, u_t) be defined by

$$h_t = h + t \varphi$$
, u_t elastic equilibrium in Ω_{h_t}

$$\partial^2 G(h, u)[\varphi] = \frac{d^2}{dt^2} G(h_t, u_t)|_{t=0}$$

Second variation approach

Let
$$G(h,u)=\int_{\Omega_h}W(E(u))\,dxdy+\mathcal{H}^1(\Gamma_h)$$

For φ smooth and periodic, with $\int \varphi = 0$, let (h_t, u_t) be defined by

 $\partial^2 G(h, u)[\varphi] = \frac{d^2}{dt^2} G(h_t, u_t)|_{t=0}$

 $\forall \varphi \neq 0.$

$$h_t = h + t arphi \, , \quad u_t \, \, ext{elastic equilibrium in} \, \, \Omega_{h_t} \, \, .$$

Set

Let (h, u) be a critical configuration, $h \in C^2$, h > 0 s.t.

Let
$$(n,u)$$
 be a children configuration, $n\in \mathbb{C}$, $n>0$ s. $\partial^2 G(h,u)[arphi]>0$ $orall arphi
eq 0$.

Then, there exists $\delta > 0$ s.t.

for all admissible
$$(g,v)$$
, with $|\Omega_q|=|\Omega_h|$ and $0<\|g-h\|_{L^\infty}<\delta.$

Local minimality of the 2D flat configuration

lacktriangle the flat configuration in the [0,b]

$$\left(\frac{d}{b}, u_0\right)$$
 $u_0(x, y) = e_0\left(x, -\frac{\lambda y}{2\mu + \lambda}\right)$

is critical

Theorem (F., Morini, 2012)

- if $0 < b \le \frac{\pi}{4} \frac{2\mu + \lambda}{e_0^2\mu(\mu + \lambda)}$, the flat configuration is an isolated local minimizer for all d>0

Local minimality of the 2D flat configuration

• the flat configuration in the [0, b]

$$\left(\frac{d}{b}, u_0\right)$$
 $u_0(x, y) = e_0\left(x, -\frac{\lambda y}{2\mu + \lambda}\right)$

is critical

Theorem (F., Morini, 2012)

- if $0 < b \le \frac{\pi}{4} \frac{2\mu + \lambda}{e_0^2 \mu(\mu + \lambda)}$, the flat configuration is an isolated local
- minimizer for all d>0
- if $b>\frac{\pi}{4}\frac{2\mu+\lambda}{e_0^2\mu(\mu+\lambda)}$, the flat configuration is an isolated local minimizer for $0< d< d_{loc}(b)$, where $d_{loc}(b)$ is the unique solution to

$$K\Bigl(rac{2\pi d_{loc}(b)}{b^2}\Bigr) = rac{\pi}{4}rac{2\mu+\lambda}{e_0^2\mu(\mu+\lambda)}rac{1}{b}\,, \quad K$$
 explicit

while for $d>d_{loc}(b)$ the flat configuration is never an isolated local minimizer

Local minimality of the 3D flat configuration: anisotropic case

Let

$$G(h, u) = \int_{\Omega_h} W(E(u)) dxdy + \int_{\Gamma_h} \psi(\nu) d\mathcal{H}^2$$

and as before

$$F(h, u) = G(h, u) + \frac{\varepsilon}{p} \int_{\Gamma_1} |H|^p d\mathcal{H}^2.$$

Theorem (Bonacini, 2013)

Assume that $D^2\psi(e_3)>0$ on $(e_3)^\perp$ and $\partial^2 G(d,u_0)>0$. Then there exists $\varepsilon>0$ s.t.

$$\int_{Q} h = d, \quad 0 < \|h - d\|_{C^{1,\alpha}} \le \varepsilon \Longrightarrow G(d, u_d) < G(h, u_h).$$

Local minimality of the 3D flat configuration: anisotropic case

Let

$$G(h, u) = \int_{\Omega_h} W(E(u)) dxdy + \int_{\Gamma_h} \psi(\nu) d\mathcal{H}^2$$

and as before

$$F(h, u) = G(h, u) + \frac{\varepsilon}{p} \int_{\Gamma_{\epsilon}} |H|^p d\mathcal{H}^2.$$

Theorem (Bonacini, 2013)

Assume that $D^2\psi(e_3)>0$ on $(e_3)^\perp$ and $\partial^2 G(d,u_0)>0$. Then there exists $\varepsilon>0$ s.t.

$$\int_{Q} h = d, \quad 0 < \|h - d\|_{C^{1,\alpha}} \le \varepsilon \Longrightarrow G(d, u_d) < G(h, u_h).$$

$$\Longrightarrow F(d, u_d) = G(d, u_d) < G(h, u_h) \le F(h, u_h)$$

Global in time existence and asymptotic stability

Consider the regularized surface diffusion equation

$$\frac{1}{J}\frac{\partial h}{\partial t} = \Delta_{\Gamma} \left[\operatorname{div}_{\Gamma}(D\psi(\nu)) + W(E(u)) - \varepsilon \left(\Delta_{\Gamma}(|H|^{p-2}H) - |H|^{p-2}H \left(\kappa_1^2 + \kappa_2^2 - \frac{1}{p}H^2 \right) \right) \right]$$

Global in time existence and asymptotic stability

Consider the regularized surface diffusion equation

$$\frac{1}{J}\frac{\partial h}{\partial t} = \Delta_{\Gamma} \left[\operatorname{div}_{\Gamma}(D\psi(\nu)) + W(E(u)) - \varepsilon \left(\Delta_{\Gamma}(|H|^{p-2}H) - |H|^{p-2}H \left(\kappa_1^2 + \kappa_2^2 - \frac{1}{p}H^2 \right) \right) \right]$$

The main result is

Theorem (Fonseca-F.-Leoni-Morini)

Assume that $D^2\psi(e_3)>0$ on e_3^\perp and $\partial^2 G(d,u_0)>0$. There exists $\varepsilon>0$ s.t.

if
$$||h_0 - d||_{W^{2,p}} \le \varepsilon$$
, then:

- (i) any variational solution h exists for all times;
- (ii) $h(\cdot,t) \to d$ in $W^{2,p}$ as $t \to +\infty$.

ightharpoonup F(h(t),u(t)) is non-increasing in time

- ightharpoonup F(h(t), u(t)) is non-increasing in time
- $F(h_0,u_0)$ close to $F(d,u_d) \implies F(h(t),u(t))$ close to $F(d,u_d)$ for $t \in [0,T^*)$

- ightharpoonup F(h(t), u(t)) is non-increasing in time
- $F(h_0,u_0) \text{ close to } F(d,u_d) \implies F(h(t),u(t)) \text{ close to } F(d,u_d)$ for $t \in [0,T^*)$
- ▶ By local minimality h(t) close to d in $C^{1,\alpha}$ for $t \in [0, T^*)$

- ightharpoonup F(h(t), u(t)) is non-increasing in time
- $F(h_0,u_0) \text{ close to } F(d,u_d) \implies F(h(t),u(t)) \text{ close to } F(d,u_d)$ for $t \in [0,T^*)$
- By local minimality h(t) close to d in $C^{1,\alpha}$ for $t \in [0,T^*)$ \Rightarrow $T^* = +\infty$

Asymptotic stability: strategy of the proof Step 1 (global existence):

- ightharpoonup F(h(t), u(t)) is non-increasing in time
- $ightharpoonup F(h_0,u_0)$ close to $F(d,u_d)$ \implies F(h(t),u(t)) close to $F(d,u_d)$ for $t \in [0, T^*)$
- ▶ By local minimality h(t) close to d in $C^{1,\alpha}$ for $t \in [0, T^*) \Rightarrow T^* = +\infty$

•
$$\forall \sigma > 0$$
 there exists $\delta > 0$ s.t.

$$\|h_0 - d\|_{W^{2,p}} \le \delta \Rightarrow \|h(t) - d\|_{W^{2,p}} \le \sigma$$
 for all $t > 0$.

Asymptotic stability: strategy of the proof Step 1 (global existence):

- ightharpoonup F(h(t), u(t)) is non-increasing in time
- $F(h_0,u_0)$ close to $F(d,u_d) \implies F(h(t),u(t))$ close to $F(d,u_d)$ for $t \in [0,T^*)$
- ▶ By local minimality h(t) close to d in $C^{1,\alpha}$ for $t \in [0, T^*)$ \Rightarrow $T^* = +\infty$

Step 2 (Liapunov stability):

$$\blacktriangleright \forall \sigma > 0$$
 there exists $\delta > 0$ s.t.

$$\forall \sigma > 0$$
 there exists $\sigma > 0$ s.t

 $||h_0 - d||_{W^{2,p}} \le \delta \quad \Rightarrow \quad ||h(t) - d||_{W^{2,p}} \le \sigma \text{ for all } t > 0.$

Step 3 (Convergence up to a subsequence)

Step 1 (global existence):

- ightharpoonup F(h(t), u(t)) is non-increasing in time
- F (h_0,u_0) close to $F(d,u_d)$ \Longrightarrow F(h(t),u(t)) close to $F(d,u_d)$ for $t\in[0,T^*)$
- ▶ By local minimality h(t) close to d in $C^{1,\alpha}$ for $t \in [0, T^*)$ \Rightarrow $T^* = +\infty$

Step 2 (Liapunov stability):

- $\forall \sigma > 0$ there exists $\delta > 0$ s.t.
- $\|h_0 d\|_{W^{2,p}} \le \delta \quad \Rightarrow \quad \|h(t) d\|_{W^{2,p}} \le \sigma \text{ for all } t > 0.$
- Step 3 (Convergence up to a subsequence)
- ► The energy estimate gives

$$\int_0^\infty \left\| \frac{\partial h}{\partial t} \right\|_{H^{-1}}^2 \le CF(h_0, u_0).$$

Step 1 (global existence):

- F(h(t), u(t)) is non-increasing in time
- $F(h_0,u_0) \text{ close to } F(d,u_d) \implies F(h(t),u(t)) \text{ close to } F(d,u_d)$ for $t \in [0,T^*)$
- ▶ By local minimality h(t) close to d in $C^{1,\alpha}$ for $t \in [0, T^*)$ \Rightarrow $T^* = +\infty$

Step 2 (Liapunov stability):

- $\forall \sigma > 0$ there exists $\delta > 0$ s.t.
- $||h_0-d||_{W^{2,p}} \le \delta \quad \Rightarrow \quad ||h(t)-d||_{W^{2,p}} \le \sigma \text{ for all } t > 0.$

Step 3 (Convergence up to a subsequence)

► The energy estimate gives

$$\int_0^\infty \left\| \frac{\partial h}{\partial t} \right\|_{H^{-1}}^2 \le CF(h_0, u_0).$$

$$ightharpoonup rac{\partial h}{\partial t}(\cdot,t_n)
ightarrow 0 \text{ in } H^{-1} \text{ for some } t_n
ightarrow \infty$$

Asymptotic stability: strategy of the proof Step 1 (global existence):

- ightharpoonup F(h(t), u(t)) is non-increasing in time
- $F(h_0, u_0)$ close to $F(d, u_d) \implies F(h(t), u(t))$ close to $F(d, u_d)$ for $t \in [0, T^*)$

 $\int_{0}^{\infty} \left\| \frac{\partial h}{\partial t} \right\|_{H^{-1}}^{2} \le CF(h_{0}, u_{0}).$

By local minimality h(t) close to d in $C^{1,\alpha}$ for $t \in [0,T^*)$ \Rightarrow $T^* = +\infty$

Step 2 (Liapunov stability): $\forall \sigma > 0$ there exists $\delta > 0$ s.t.

$$\forall \sigma > 0$$
 there exists $\sigma > 0$ s.t. $\|h_0 - d\|_{W^{2,p}} \le \delta \quad \Rightarrow \quad \|h(t) - d\|_{W^{2,p}} \le \sigma$ for all $t > 0$.

Step 3 (Convergence up to a subsequence)

The energy estimate gives

ah (, ,) a : 77-16

▶
$$\frac{\partial h}{\partial t}(\cdot,t_n) \to 0$$
 in H^{-1} for some $t_n \to \infty$

• $h(\cdot,t_n) o \overline{h}$ in $W^{2,p}$, with \overline{h} critical and $\|\overline{h}-d\|_{W^{2,p}}\le \sigma$

Step 4 $(\overline{h}=d)$:

Step 4 ($\overline{h}=d$):

▶ There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$\partial^2 G(h, u_h)[\varphi] \ge c_0 \|\varphi\|_{H^1}^2$$

provided
$$\|h-d\|_{W^{2,p}} \leq \sigma$$

Step 4 ($\overline{h}=d$):

▶ There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$\partial^2 G(h, u_h)[\varphi] \ge c_0 \|\varphi\|_{H^1}^2$$

provided
$$\|h-d\|_{W^{2,p}} \leq \sigma$$

▶ There exists $\sigma>0$ s.t. $\|h-d\|_{W^{2,p}}\leq\sigma$ \implies h is not critical

Step 4 ($\overline{h}=d$):

▶ There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$\partial^2 G(h, u_h)[\varphi] \ge c_0 \|\varphi\|_{H^1}^2$$

provided
$$\|h-d\|_{W^{2,p}} \leq \sigma$$

There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \le \sigma$ $\implies h$ is not critical

$$ightharpoonup \overline{h} = d.$$

Step 4 ($\overline{h} = d$):

▶ There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$\partial^2 G(h, u_h)[\varphi] \ge c_0 \|\varphi\|_{H^1}^2$$

provided
$$||h-d||_{W^{2,p}} \leq \sigma$$

Step 5 (Conclusion)

▶ There exists $\sigma > 0$ s.t. $\|h - d\|_{W^{2,p}} \le \sigma$ \implies h is not critical

$$ightharpoonup \overline{h} = d.$$

Step 4 ($\overline{h} = d$):

▶ There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$\partial^2 G(h, u_h)[\varphi] \ge c_0 \|\varphi\|_{H^1}^2$$

provided
$$||h-d||_{W^{2,p}} \leq \sigma$$

▶ There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \le \sigma$ \implies h is not critical

$$ightharpoonup \overline{h} = d.$$

Step 5 (Conclusion)

ightharpoonup F(h(t), u(t)) non-increasing $\implies \lim_{t \to \infty} F(h(t), u(t))$ exists

Step 4 ($\overline{h} = d$):

▶ There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$\partial^2 G(h, u_h)[\varphi] \ge c_0 \|\varphi\|_{H^1}^2$$

provided
$$||h-d||_{W^{2,p}} \leq \sigma$$

▶ There exists $\sigma > 0$ s.t. $||h - d||_{W^{2,p}} \le \sigma$ \implies h is not critical

$$\overline{h} = d$$
.

Step 5 (Conclusion)

- ightharpoonup F(h(t),u(t)) non-increasing $\implies \lim_{t\to\infty} F(h(t),u(t))$ exists
- ▶ By Step 2 and Step 4 $F(h(t_n), u(t_n)) \rightarrow F(\overline{h}, u_{\overline{h}}) = F(d, u_d)$

Step 4 ($\overline{h} = d$):

▶ There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$\partial^2 G(h, u_h)[\varphi] \ge c_0 \|\varphi\|_{H^1}^2$$

provided $||h-d||_{W^{2,p}} \leq \sigma$

- ▶ There exists $\sigma > 0$ s.t. $||h d||_{W^{2,p}} \le \sigma$ \implies h is not critical
- $\overline{h} = d$.

Step 5 (Conclusion)

- ightharpoonup F(h(t),u(t)) non-increasing $\implies \lim_{t\to\infty} F(h(t),u(t))$ exists
- ▶ By Step 2 and Step 4 $F(h(t_n),u(t_n)) \to F(\overline{h},u_{\overline{h}}) = F(d,u_d)$
- $lacksquare F(h(t),u(t))
 ightarrow F(d,u_d) ext{ as } t
 ightarrow \infty$

Step 4 ($\overline{h} = d$):

▶ There exist $\sigma > 0$ and $c_0 > 0$ s.t.

$$\partial^2 G(h, u_h)[\varphi] \ge c_0 \|\varphi\|_{H^1}^2$$

provided
$$||h-d||_{W^{2,p}} \leq \sigma$$

- ► There exists $\sigma > 0$ s.t. $||h d||_{W^{2,p}} \le \sigma$ \implies h is not critical
- $\overline{h} = d$.

Step 5 (Conclusion)

- ightharpoonup F(h(t),u(t)) non-increasing $\implies \lim_{t\to\infty} F(h(t),u(t))$ exists
- ▶ By Step 2 and Step 4 $F(h(t_n), u(t_n)) \rightarrow F(\overline{h}, u_{\overline{h}}) = F(d, u_d)$
- $lacksquare F(h(t),u(t)) o F(d,u_d)$ as $t o\infty$
- ▶ By isolated minimality h(t) o d in $W^{2,p}$ as $t o \infty$

Liapunov stability in the highly non-convex case Consider the Wulff shape

$$W_{\psi} := \{ z \in \mathbb{R}^3 : \, z \cdot \nu < \psi(\nu) \text{ for all } \nu \in S^2 \}$$

Liapunov stability in the highly non-convex case Consider the Wulff shape

$$W_{\psi} := \{ z \in \mathbb{R}^3 : \, z \cdot \nu < \psi(\nu) \text{ for all } \nu \in S^2 \}$$

Theorem (Fonseca-F.-Leoni-Morini)

Assume that W_{ψ} contains a horizontal facet. Then for every d>0 the flat configuration (d,u_d) is Liapunov stable, that is, for every $\sigma>0$ there exists $\delta(\sigma)>0$ s.t.

$$\int_Q h_0 = d, \quad \|h_0 - d\|_{W^{2,p}} \leq \delta(\sigma) \quad \Longrightarrow \quad \|h(t) - d\|_{W^{2,p}} \leq \sigma \text{ for all } t > 0.$$

Uniqueness in three-dimensions

Uniqueness in three-dimensions

More general global existence results

Uniqueness in three-dimensions

More general global existence results

► The non-graph case

Uniqueness in three-dimensions

More general global existence results

► The non-graph case

► The convex case, without curvature regularization

