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Abstract

This paper reviews some recent results on the Navier-Stokes-Fourier system governing the
evolution of a general compressible, viscous, and heat conducting fluid. We discuss several
concepts of weak solutions, in particular, using the implications of the Second law of thermo-
dynamics. We introduce the concept of relative entropy and dissipative solution and show the
principle of weak-strong uniqueness. The second part of the paper is devoted to problems of
model reduction and the related singular limits. Several examples of singular limits are pre-
sented: The incompressible limit, the inviscid limit, the low Rossby number limit and their
combinations.
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1 Introduction

Mathematical modeling of fluids in motion includes an enormous variety of problems ranging from
the derivation of rigorous mathematical models from basic physical principles, mathematical analysis
of complicated systems of partial differential equations, to the design of appropriate and efficient
numerical schemes and their implementations, including scale analysis, and, last but not least, the
methods and tools commonly known as model reduction. We review some recent results concerning
the mathematical theory of complete fluid systems and the basic properties of solutions to the
underlying equations, in particular, the problem of well-posedness, meaning existence, uniqueness,

2



and continuous dependence (stability) of solutions to given system of equations with respect to the
data.

We present a sufficiently robust existence theory in the framework of weak (distributional) solu-
tions to the full Navier-Stokes-Fourier system of equations governing the motion of a general com-
pressible, viscous, and heat conductive fluid. Then we illustrate the strength of the new theory by
applications in the analysis of singular limits arising in the process of scale analysis, where some
features of a given fluid flow are being accented or suppressed by aa appropriate choice of the char-
acteristic numbers. Replacing the original (primitive) system by a reduced one obtained by means
of the scale analysis is an example of the method of model reduction applied at the level of modeling.
Another type of model reduction can be used in the process of mathematical analysis of a given
problem, where only special types of distinguished solutions may be considered and/or the solution
families restricted to various, typically finite-dimensional subsets of the corresponding phase space,
like invariant manifolds or attractors. Last but not least, the model reduction is amply used in nu-
merical analysis, where judiciously simplified schemes provide sufficiently accurate results minimizing
the computational costs.

In all the afore-mentioned situations, the problem stability of a family of solutions with respect
to data plays a crucial role. The paper is organized as follows. In Chapter 2, we introduce the basic
equations arising in continuum fluid dynamics, starting with simple models of incompressible viscous
and inviscid fluids. Then we derive a more complex model of a complete fluid - the Navier-Stokes-
Fourier system - using the basic principles of classical thermodynamics, in particular the Second law.
Chapter 3 is devoted to the mathematical problem of well-posedness, both in the classical and in
the modern (weak) sense. In Chapter 4, we introduce the concept of relative entropy and apply it
to showing the property of weak-strong uniqueness and conditional regularity for the Navier-Stokes-
Fourier system. Chapter 5 introduces shortly the problem of model reduction for complex fluid
systems based on scaling, while Chapter 6 contains several examples of singular limits.

2 Equations of continuum fluid mechanics

Probably the best known model in continuum fluid mechanics is the Navier-Stokes system of equa-
tions

divxu = 0, (2.1)

∂tu + divx(u⊗ u) +∇xΠ = ν∆u, (2.2)

where u = u(t, x) is the velocity field and Π = Π(t, x) is the pressure of an incompressible viscous
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fluid, where ν > 0 denotes the viscosity coefficient. The inviscid counterpart of (2.1), (2.2) is the
well-known Euler system

divxu = 0, (2.3)

∂tu + divx(u⊗ u) +∇xΠ = 0, (2.4)

where the effect of viscosity on the fluid motion is neglected. Despite the apparent simplicity of the
above systems, the basic questions of existence, uniqueness and stability of solutions remain largely
open, representing one of the major challenges in the theory of partial differential equations, see the
formulation of one of the millennium prize problems by Fefferman [18].

Yet the models represented by (2.1 - 2.4) are drastically simplified, the compressibility of the
fluid is neglected as well as the thermal effects produced as an inevitable consequence of the internal
viscous friction causing the irreversible transfer of the mechanical energy into heat enforced by the
Second law of thermodynamics. A more accurate picture of reality is provided by the barotropic
Navier-Stokes system, where the pressure p is expressed by means of a state equation p = p(%) as an
explicit function of the (variable) fluid density % = %(t, x):

∂t%+ divx(%u) = 0, (2.5)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxµ
(
∇xu +∇t

xu−
2

3
divxu

)
+∇x(ηdivxu), (2.6)

where µ and ν are the shear and bulk viscosity coefficient, respectively.
Although apparently more complicated than their “incompressible” counterparts (2.1), (2.2), the

equations (2.5), (2.6) look more “natural” from the point of view of the theory of evolutionary
equations, as time changes of both unknowns %, u are interrelated through a conventional nonlinear
operator. Note that the unknown pressure Π in the “incompressible” equations (2.2) or (2.4) is
determined a posteriori, playing the role of a “Lagrange multiplier” enforced by the incompressibility
constraint (2.1). In particular, the pressure Π is a “non-local” quantity, the value of which at a given
instant requires the knowledge of u in the entire physical space occupied by the fluid. Indeed, taking
the divergence of (2.2), we get, formally,

∆Π = −divxdivx(u⊗ u),

meaning the pressure is determined locally modulo a harmonic function. For further discussion on
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the interpretation of the pressure in the incompressible models see Bechtel, Rooney and Wang [3],
Li, Li and Pego [47], [48], among others.

The model of a fluid represented by the barotropic system (2.5), (2.6) is still incomplete from the
point of view of thermodynamics. Taking the scalar product of the momentum equation (2.6) with
u, we deduce the corresponding kinetic energy balance in the form

∂t

(
1

2
%|u|2

)
+ divx

(
1

2
%|u|2u

)
+ divx(pu)− divx (Su) = −S : ∇xu + pdivxu, (2.7)

where we have introduced the viscous stress tensor

S = µ
(
∇xu +∇t

xu−
2

3
divxu

)
+ ηdivxuI.

Moreover, we can use (2.5) to deduce

p(%)divxu = −∂t (%P(%)) + divx (%P(%)u) , P(%) =
∫ %

1

p(z)

z2
dz, (2.8)

and, going back (2.7) we recover a balance equation for the mechanical energy density

1

2
%|u|2 + %P(%),

specifically,

∂t

(
1

2
%|u|2 + %P(%)

)
+ divx

[(
1

2
%|u|2 + %P(%)

)
u
]

+ divx(pu)− divx (Su) = −S : ∇xu

containing a sink term proportional to −S : ∇xu. Thus the model (2.5), (2.6) features the dissipation
of the mechanical (“elastic”) energy.

In order to obtain a thermodynamically complete model, we have to introduce the (specific)
internal energy e and admit that p, and possibly also µ, η and other quantities as the case may be,
may depend on e. Under these circumstances, the total energy density reads

E =
1

2
%|u|2 + %e,

and e obeys the equation

∂t(%e) + divx(%eu) + divxq = S : ∇xu− pdivxu (2.9)

where the vector field q represents a diffusive flux of the internal energy. Note that the source term
in (2.9) simply equals the sink in (2.7). The resulting complete Navier-Stokes system reads:
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∂t%+ divx(%u) = 0, (2.10)

∂t(%u) + divx(%u⊗ u) +∇xp = divxS, (2.11)

∂t(%e) + divx(%eu) + divxq = S : ∇xu− pdivxu. (2.12)

Besides the three unknowns %, u, and e, the system (2.10 - 2.12) contains the pressure p, and the
transport terms S, q therefore certain constitutive relations or further field equations are needed to
close the problem.

2.1 Second law of thermodynamics, entropy

There are several possibilities how to close the system (2.10 - 2.12). The theory of extended thermo-
dynamics (see Müller and Ruggeri [56]) suggests to supplement the system by other field equations
expressing the time evolution of the unknowns quantities like S, q etc. Here, we pursue a different
strategy closing the system at the level of three field equations (2.10 - 2.12) by a family of consti-
tutive relations that characterize a specific material. To this end, we first evoke the Second law by
introducing another thermodynamic function - the (specific) entropy s.

Following Callen [6] we report the following basic properties of s:

• The entropy s is an increasing function of the internal energy e,

∂s

∂e
=

1

ϑ
> 0;

the (positive) quantity ϑ is termed absolute temparature.

• The Third law of thermodynamics: The entropy approaches a constant value (set zero for
convenience) s→ 0 if ϑ→ 0.

• The entropy production rate is a non-negative quantity. The entropy is being produced in any
physically admissible process.

Now assume that the internal energy depends only on the density % and the entropy s. Accord-
ingly, the equation (2.12) can be written in the form

∂t(%s) + divx(%su) + divx

(
q

ϑ

)
=

1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
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−∂t%
%

ϑ

∂e

∂%
− u · ∇x%

%

ϑ

∂e

∂%
− p

ϑ
divxu.

In accordance with the Second law, the last three terms on the right-hand side of the previous identity
should mutually cancel which yields the relation

∂e(%, s)

∂%
=

p

%2
(2.13)

imposing certain restrictions on the choice of the thermodynamic functions p, e, and s. In physics,
the processes under which the entropy remains unchanged are termed reversible. The message of
(2.13) states that the changes of the internal energy under constant entropy are only due to the
changes in the density and the pressure. It is customary to write (2.13) in a universal form as Gibbs’
relation:

ϑDs = De+ pD

(
1

%

)
. (2.14)

In what follows, it will be more convenient to express the thermodynamic functions e, p, and s in
terms of the density % and the absolute temperature ϑ playing hereafter the role of state variables.
Accordingly, (2.13) reads

∂e(%, ϑ)

∂%
=

1

%2

(
p(%, ϑ)− ϑ

∂p(%, ϑ)

∂ϑ

)
, (2.15)

while the equation (2.12) may be replaced by the entropy production equation

∂t(%s) + divx(%su) + divx

(
q

ϑ

)
=

1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
(2.16)

or, equivalently, the thermal energy equation

%cv
(
∂tϑ+ u · ∇xϑ

)
+ divxq = S : ∇xu− ϑ

∂p

∂ϑ
divxu, (2.17)

where the quantity

cv = cv(%, ϑ) =
∂e(%, ϑ)

∂ϑ
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is the specific heat at constant volume.
Finally, revoking the fundamental statement of the Second law, we claim that the entropy pro-

duction rate

σ =
1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
(2.18)

must be non-negative. Similarly to (2.6), we restrict ourselves to the class of Newtonian fluids, where
the viscous stress is given by Newton’s rheological law :

S = µ
(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxI, (2.19)

where the viscosity coefficients µ and η are non-negative scalars that may depend on % and ϑ.
Analogously, we assume that the heat flux q is linearly proportional to the temperature gradient,

thus given by Fourier’s law :
q = −κ∇xϑ, (2.20)

where the heat conductivity coefficient κ is a non-negative quantity enjoying sharing similar structure
with µ and λ. As a matter of fact, the non-negativity of the transport coefficients µ, η, and κ is
enforced by the Second law.

We have obtained the Navier-Stokes-Fourier system governing the motion of a linearly viscous,
compressible, and heat conducting fluid:

∂t%+ divx(%u) = 0, (2.21)

∂t(%u) + divx(%u⊗ u) +∇xp = divxS + %f , (2.22)

%cv
(
∂tϑ+ u · ∇xϑ

)
+ divxq = S : ∇xu− ϑ

∂p

∂ϑ
divxu +Q, (2.23)

S = µ
(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxI, (2.24)

q = −κ∇xϑ. (2.25)

In the above system, we have also introduced an external driving force f and a heat source Q.
More details and a detailed derivation of the model (2.21 - 2.25) may be found, for instance, in
the monograph Gallavotti [27]. Systems of equations like (2.21 - 2.25) are called complete as they
incorporate all the basic principles of thermodynamics.
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3 Well posedness

Models in continuum fluid dynamics are (supposed to be) deterministic. The information about the
present state of all phase variables determines completely the behavior of the system in the future.
The initial time is usually taken t = 0 for definiteness. The concept of well-posedness in the sense of
Hadamard entails the following properties of a system of (evolutionary) equations:

• The system in question admits, possibly global-in-time, solutions for any “admissible class” of
data.

• The solutions are uniquely determined in terms of the data.

• The solutions depend continuously on the data and the time t.

To be honest, given the present state of knowledge, we are still very far from a complete solution
of the problem of well posedness even for the “simply” looking models like (2.1), (2.2) or even (2.3),
(2.4). In this section, we discuss briefly the recent state of the art of the well-posedness problem and
suggest some directions to be pursued in future studies.

3.1 Data

We still have not specified what we mean by the data for the evolutionary systems like (2.21 - 2.25).
Obviously, the initial state of all the relevant phase variables must be given, specifically we prescribe
the initial conditions

%(0, ·) = %0, ϑ(0, ·) = ϑ0, u(0, ·) = u0, (3.1)

where this set is appropriately reduced for the simpler systems (2.5), (2.6) or (2.1), (2.2). Note that
the driving force f as well as the heat source Q, if any, may be considered as a kind of data as well.

3.2 The effect of the physical boundary

In the real world applications, the fluids are confined to a physical space, typically a (bounded)
domain in the Euclidean space R3. In many the cases, the boundary can be free, meaning determined
by the motion itself and not known a priori. In more complicated but still physically very relevant
cases, the boundaries may divide two or more qualitatively different fluids like gases and liquids. Of
course, these are just a few examples of what may occur in the nature.

In this paper, we restrict ourselves to the simplest possible situation of a single fluid confined to
a fixed domain Ω ⊂ RN , N = 1, 2, 3. Even in such a case, a proper choice of the boundary conditions
is subject to discussion.
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If, in addition, the boundary ∂Ω is impermeable, we easily deduce that

u · n|∂Ω = 0, (3.2)

where n denotes the (outer) normal vector to ∂Ω. The impermeability condition (3.2) is sufficient
for a complete description of the (ideal) inviscid fluids, the motion of which is governed by the Euler
system (2.3), (2.4). Indeed using (3.2), together with (2.3), (2.4), we check easily that the total
kinetic energy ∫

Ω

1

2
|u|2(t, ·) dx

is (formally) conserved in an ideal fluid, which therefore slips around the boundary without any
resistance or interaction with the latter. We shall see below that certain weak solutions to the Euler
system may actually violate the principle of energy conservation.

The situation becomes more delicate for viscous fluids, for which a condition relevant to the
complete slip reads

[S · n]tan|∂Ω = 0, (3.3)

meaning the tangential component of the normal (viscous) stress vanishes on ∂Ω. The complete slip
condition (3.3), however, contradicts strongly the observed boundary behavior of viscous fluids and
leads to d’Alembert’s paradox of the absence of the drag force on a body moving with a constant
velocity with respect to an (incompressible) fluid.

Numerous practical experiments, however, seem to be at odds with (3.3) as viscous fluids are
usually observed to adhere completely to the physical boundary - the behavior described by the
no-slip boundary condition

[u]tan|∂Ω = 0 (3.4)

provided the boundary is at rest.
Although frequently used in modeling of viscous fluids, the no-lip condition (3.3) gives rise to a

number of paradoxes, among which the absence of collisions of rigid bodies moving in a viscous fluid,
see Hesla [29], Hillairet [30] , Hillairet and Takahashi [31]. In the light of these arguments, a suitable
compromise between the complete slip and its absence is offered by Navier’s boundary condition

[S · n]tan + β[u]tan = 0, (3.5)

where β ≥ 0 plays a role of a friction coefficient, see Buĺıček, Málek, and Rajagopal [4]. Note that
the condition (3.5) reduces to the complete slip for β → 0 and approaches the no-slip behavior for
β →∞. The reader interested in the physical aspects of (3.5) may consult Priezjev and Troian [58],
and Priezjev, Darhuber, and Troian [57], among others.
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3.2.1 Far field behavior

In certain situations like modeling objects in large physical domains like gaseous stars in astrophysics,
it is convenient to consider unbounded domains, in particular, the domains exterior to one or several
compact sets. In such a case, the behavior of certain quantities for |x| → ∞ must prescribed to avoid
multiplicity of solutions for given data. Typically, we postulate the far field behavior of the state
variables, specifically,

%→ %∞, ϑ→ ϑ∞, u → u∞ for |x| → ∞. (3.6)

3.3 Strong (classical) vs. weak (distributional) solutions

Leray [41] was probably the first who applied the modern approach to the incompressible Navier-
Stokes system (2.1), (2.2) and obtained what is now called weak solution of the problem in the natural
3D− setting. A Leray’s type solution u is actually considerably “weaker” than what we may call a
distributional solution since

u ∈ Cweak([0, T ];L2(Ω;R3)) ∩ L2(0, T ;W 1,2(Ω;R3)), divxu = 0,

satisfies the integral identity∫ T

0

∫
Ω

(∂tu · ∂tϕ+ (u⊗ u) : ∇xϕ) dx dt =
∫ T

0

∫
Ω
ν∇xu : ∇xϕ dx dt (3.7)

for any test function
ϕ ∈ C∞

c ((0, T )× Ω;R3), divxϕ = 0.

In particular, the pressure Π miraculously disappeared in (3.7) because of the specific class of
solenoidal test functions. This elegant “trick” simplifies the problem considerably and makes the
proof of existence quite easy, at least in the light of the modern tools (not known in Leray’s time)
based on Sobolev spaces and compactness arguments of Rellich-Kondrashev type. The pressure it-
self can be recovered a posteriori by means of a non-constructive representation theorem, where the
specific form of Π depends also on the boundary conditions, see Sohr [66, Chapter 2, Lemma 2.2.1].
In general, very little is known about regularity of Π and it is exactly this aspect that makes the
problem of regularity of Leray’s solutions very difficult and in fact largely open till present times (cf.
Fefferman [18]).

As a matter of fact, the solutions constructed in Leray’s seminal work satisfy also the energy
inequality (under suitable boundary and/or far field consitions) in the form

d

dt

∫
Ω

1

2
|u|2 dx+ ν

∫
Ω
|∇xu|2 dx ≤ 0 in D′(0, T ), (3.8)
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where the inequality in place of the expected equality sign is the price to pay for working in a large
class of weak solutions, where the kinetic energy dissipation may not be (hypothetically) captured
by the viscous term. Inequality (3.8) can be taken as an integral part of the definition of suitable or
admissible weak solutions since, as uniqueness in this class is an open problem, there might be weak
solutions that violate (3.8). Note that the existence of (unrealistic) solutions that “produce” energy
was rigorously proved for the inviscid Euler system (2.3), (2.4), see Scheffer [61], Shnirelman [64], De
Lellis and Székelyhidi [11], Wiedemann [70]. The reader may consult the papers of Cheskydov et al.
[8], Duchon and Robert [14], Schvydkoy [65] for an interesting discussion concerning the possibility
of the inertial energy dissipation in equations of fluid mechanics.

On the other hand, the existence of classical (smooth) and possibly global-in-time solutions is
something we expect to be granted, at least for the equations and systems describing the motion of
viscous fluids, where possible singularities should be outset by the dissipation. In the light of many
nowadays standard results, see Prodi [59], Serrin [63], Caffarelli et al. [5], the set of hypothetical
singularities in incompressible (viscous) fluid systems is expected to be in some sense small, and the
singularities of concentration (blow up) type rather than discontinuities in the form of shock waves
that would be stable and persisting in time. Note, however, that certain discontinuities may survive
in the compressible Navier-Stokes system (2.5), (2.6) provided they were imposed through the choice
of the initial data, see Hoff [32], Hoff and Santos [33].

3.3.1 Classical solutions for the complete fluid systems

Smooth, classical solutions for models of viscous and even inviscid fluids are known to exist, however,
only locally in time, and (of course) for sufficiently smooth initial data. For future use, we quote the
result of Valli [68] based on the energy method developed earlier in the seminal work of Matsumura
and Nishida [54], [55] that applies to the complete Navier-Stokes-Fourier system (2.10), (2.11), and
(2.17). The technique of energy estimates was put in an elegant unifying framework by Kato [35] in
the context of the Euler flow. This approach is based on the scale of “energy” spaces of Sobolev type
W k,2(Ω) of functions having k distributional derivatives square integrable. For k ≥ 3, these spaces
form Banach algebras suitable for handling the nonlinear terms in the equations.

We consider regular initial data:

%(0, ·) = %0, inf
Ω
%0 > 0, %0 ∈ W 3,2(Ω), (3.9)

ϑ(0, ·) = ϑ0, inf
Ω
ϑ0 > 0, ϑ0 ∈ W 3,2(Ω), (3.10)

u(0, ·) = u0 ∈ W 3,2(Ω;R3). (3.11)

We note that these regularity hypotheses are probably not optimal form the point of view of existence
of local smooth solutions, however, solutions in the class are convenient for our future discussion, in
particular in the part devoted to the problem of weak-strong uniqueness.
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For definiteness, we focus on problems on bounded regular domains Ω ⊂ R3 and assume the
no-slip boundary condition for the velocity

u|∂Ω = 0, (3.12)

together with the no-flux condition
∇xϑ · n|∂Ω = 0. (3.13)

Moreover, since we are interested in classical (smooth) solutions, the compatibility conditions

u0|∂Ω = 0, ∇xϑ0 · n|∂Ω = 0, ∇xp(%0, ϑ0)|∂Ω = divxS(%0, ϑ0,∇xu0) + %0f |∂Ω (3.14)

must be imposed.
For such a choice of initial data, the complete Navier-Stokes-Fourier system (2.21 - 2.25), sup-

plemented with the boundary conditions (3.12), (3.13), is well-posed in the classical sense albeit
only locally in time. More specifically, we report the following result of Valli [67], [68], and Valli,
Zajaczkowski [69]:

Theorem 3.1 Let Ω ⊂ R3 be a bounded domain of class C4. Suppose that p = p(%, ϑ), µ =
µ(%, ϑ), η = η(%, ϑ), cv = cv(%, ϑ), and κ = κ(ϑ) are C3−functions of their arguments, satisfying

0 < cv ≤ cv(%, ϑ) ≤ cv, 0 < µ ≤ µ(%, ϑ), η(%, ϑ) ≥ 0, 0 < κ ≤ κ(ϑ)

for all % > 0, ϑ > 0. Let, moreover, f ∈ C3([0, T ]× Ω).

Finally, let the initial data {%0, ϑ0,u0} belong to the class W 3,2 and satisfy (3.9), (3.10), together
with the compatibility conditions (3.14).

Then there exists a positive time T such that the problem (2.21 - 2.25), (3.1), (3.12), (3.13)
admits a unique solution {%, ϑ,u} on the time interval (0, T ) in the class

%, ϑ ∈ C([0, T ];W 3,2(Ω)), u ∈ C([0, T ];W 3,2(Ω;R3)).

Moreover, the solution is classical in (0, T )×Ω, meaning all derivatives appearing in the system
(2.21 - 2.23) are continuous in the open set (0, T )× Ω.
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3.3.2 Weak solutions for the complete fluid system

We introduce the concept of weak solution used first in [15] and later developed in the monograph
[21]. The main ingredients of this approach can be characterized as follows:

• The heat equation (2.23) is replaced by the entropy balance, where the entropy production rate
satisfies the inequality :

σ ≥ 1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
. (3.15)

• The resulting system is supplemented with the total energy balance:

d

dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
dx =

∫
Ω

(
%f · u +Q

)
dx. (3.16)

The inequality sign in (3.15) anticipates the (hypothetical) presence of singularities in the weak
solutions that would produce an extra piece of entropy not captured by the “classical” terms on
the right-hand side. This loss of information is compensated by augmenting the resulting system by
(3.16).

The weak formulation of the problem is standard. For the sake of simplicity, we take f = 0,
Q = 0. We say that a trio {%, ϑ,u} is a weak solution to the Navier-Stokes-Fourier system (2.10),
(2.11), (2.16), emanating from the initial data

%(0, ·) = %0, %u(0, ·) = %0u0, %s(%, ϑ)(0, ·) = %0s(%0, ϑ0), %0 ≥ 0, ϑ0 > 0, (3.17)

and supplemented with the initial conditions (3.12), (3.13) if:

• the density and the absolute temperature satisfy %(t, x) ≥ 0, ϑ(t, x) > 0 for a.a. (t, x) ∈
(0, T ) × Ω, % ∈ Cweak([0, T ];Lγ), %u ∈ Cweak([0, T ];Lβ(Ω;R3)) for certain γ, β > 1 specified
below, ϑ ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;W 1,r(Ω)), and u ∈ L2(0, T ;W 1,2

0 (Ω;R3));

• the equation of continuity (2.10) is replaced by a family of integral identities∫
Ω
%(τ, ·)ϕ(τ, ·) dx−

∫
Ω
%0ϕ(0, ·) dx =

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dx dt (3.18)

for any ϕ ∈ C1([0, T ]× Ω), and any τ ∈ [0, T ];

• the momentum equation (2.11) is satisfied in the sense of distributions, specifically,∫
Ω
%u(τ, ·) · ϕ(τ, ·) dx−

∫
Ω
%0u0 · ϕ(0, ·) dx (3.19)∫ τ

0

∫
Ω

(
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%, ϑ)divxϕ− S : ∇xϕ

)
dx dt

for any ϕ ∈ C1([0, T ]× Ω;R3), ϕ|∂Ω = 0, and any τ ∈ [0, T ];
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• the entropy balance (2.16) is replaced, in accordance with (3.15), by a family of integral in-
equalities

∫
Ω
%0s(%0, ϑ0)ϕ(0, ·) dx−

∫
Ω
%s(%, ϑ)(τ, ·)ϕ(τ, ·) dx+

∫ τ

0

∫
Ω

ϕ

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
dx dt (3.20)

≤ −
∫ τ

0

∫
Ω

(
%s(%, ϑ)∂tϕ+ %s(%, ϑ)u · ∇xϕ+

q · ∇xϕ

ϑ

)
dx dt

for any ϕ ∈ C1([0, T ]× Ω), ϕ ≥ 0, and a.a. τ ∈ [0, T ];

• the total energy is conserved:∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
(τ, ·) dx =

∫
Ω

(
1

2
%0|u0|2 + %0e(%0, ϑ0)

)
dx (3.21)

for a.a. τ ∈ [0, T ].

As shown in [21, Chapter 2] a weak solution is a strong one, in particular the entropy balance is
satisfied with an equality sign, as soon as it is smooth.

3.3.3 Global existence for the complete Navier-Stokes-Fourier system

The main advantage of working in the framework of weak solutions is the fact that the complete fluid
system admits global-in-time solutions for any physically relevant choice of data. We report here the
existence result proved in detail in [21, Chapter 3]. To this end, we introduce several restrictions
imposed on the constitutive equations interrelating the thermodynamic functions p, e, and s. The
reader may consult the monograph Eliezer, Ghatak and Hora [16] as well as [21, Chapter 1] for
the physical background. Note that all hypotheses listed below comply with the general physical
principles discussed in the previous part of this paper, in particular with Gibbs’ equation (2.14).

We suppose that the pressure p is given by the formula

p(%, ϑ) = ϑ5/2P
(

%

ϑ3/2

)
+
a

3
ϑ4, a > 0, (3.22)

with P ∈ C1[0,∞) ∩ C3(0,∞) satisfying

P (0) = 0, P ′(Z) > 0, 0 <
5
3
P (Z)− P ′(Z)Z

Z
< c for all Z > 0, (3.23)

lim
Z→∞

P (Z)

Z5/3
> 0. (3.24)
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Here, we assume that the pressure consists of the molecular component

pM(%, ϑ) = ϑ5/2P
(

%

ϑ3/2

)
that obeys the mono-atomic gas state eqution,

and of the radiation component

pR(ϑ) =
a

3
ϑ4.

The remaining, rather awkwardly looking assumptions, follow from the hypothesis of thermodynamics
stability introduced and discussed in Section 4.1 below, see also [21, Chapter 1].

In agreement with Gibbs’ equation (2.14), we take

e(%, ϑ) =
3

2

ϑ5/2

%
P
(

%

ϑ3/2

)
+
a

%
ϑ4, (3.25)

together with

s(%, ϑ) = S
(

%

ϑ3/2

)
+

4a

3

ϑ3

%
, (3.26)

where

S ′(Z) = −3

2

5
3
P (Z)− P ′(Z)Z

Z2
, lim

Z→∞
S(Z) = 0. (3.27)

Finally, we assume the the viscous stress S = S(ϑ,∇xu) and the heat flux q = q(ϑ,∇xϑ) are
given through (2.19), (2.20), where the transport coefficients µ = µ(ϑ), η = η(ϑ), and κ = κ(ϑ) are
continuously differentiable functions of the temperature satisfying

µ(1 + ϑΛ) ≤ µ(ϑ) ≤ µ(1 + ϑΛ), |µ′(ϑ)| < c for all ϑ ∈ [0,∞),
2

5
< Λ ≤ 1, (3.28)

0 ≤ η(ϑ) ≤ η(1 + ϑΛ) for all ϑ ∈ [0,∞), (3.29)

κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3) for all ϑ ∈ [0,∞). (3.30)

Here, similarly to our choice of the thermodynamic functions p, e, and s, the growth restrictions
imposed in (3.30) are motivated by the effect of thermal radiation.

We report the following result ([21, Chapter 3, Theorem 3.1]):
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Theorem 3.2 Let Ω ⊂ R3 be a bounded domain of class C2+ν. Suppose that the thermodynamic
functions p, e, s and the transport coefficients µ, η κ comply with the hypotheses (3.22 - 3.30).
Let the initial data satisfy

%0 ∈ L5/3(Ω), ϑ0 ∈ L∞(Ω), %0, ϑ0 > 0,u0 ∈ W 1,∞(Ω;R3). (3.31)

Then the Navier-Stokes-Fourier system possesses a weak solution {%, ϑ,u} on an arbitrary time
interval (0, T ) in the sense specified in Section 3.3.2. Specifically, the weak solution enjoys the
following properties:

% ≥ 0 a.a. in (0, T )× Ω, % ∈ C([0, T ];L1(Ω)) ∩ L∞(0, T ;L5/3(Ω)) ∩ Lδ((0, T )× Ω) (3.32)

for a certain δ > 5
3
;

ϑ > 0 a.a. in (0, T )× Ω, ϑ ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;W 1,2(Ω)), (3.33)

ϑ3, log(ϑ) ∈ L2(0, T ;W 1,2(Ω)); (3.34)

u ∈ L2(0, T ;Wα
0 (Ω;R3)), α =

8

5− Λ
, %u ∈ Cweak(0, T ;L5/4(Ω;R3)). (3.35)

We remark that (3.32) is definitely not optimal, see [21, Chapter 3] for possible extensions. In
particular, the initial density %0 may contain vacuum zones, meaning %0 may vanish on a non-empty
proper subset of Ω.

4 Relative entropy and weak-strong uniqueness

In the previous part, we have discussed two basic concepts of solutions to problems in fluid dynamics.
The strong solutions satisfying the underlying system of equations in the classical sense, and the weak
solutions that comply with a family of integral identities corresponding to the original formulation
of the problem in the form of conservation or balance laws. The strong solutions are uniquely
determined by the data but exist, or at least are known to exist, for a possibly very short lap of time.
The weak solutions, on the other hand, are not (known to) be uniquely determined by the data but
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exist globally in time, at least for a certain physically relevant choice of constitutive relations. We
report that weak solutions are strong as soon as they are smooth enough.

In this part, we address a more delicate question, namely, the problem of weak-strong uniqueness:
Do the weak and strong solutions corresponding to the same data coincide on their common existence
time interval? Or, in other words, are the strong solutions unique in the class of weak solutions? To
answer this question, we introduce an auxilliary functional termed relative entropy and discuss its
basic properties.

4.1 Static solutions and the total dissipation balance

Static solutions are solutions of the Navier-Stokes-Fourier system minimizing the entropy production
rate σ, cf. (3.15). Accordingly, we obtain

S(ϑ,∇xu) : ∇xu = 0, and q(ϑ,∇xϑ) : ∇xϑ = 0,

form which we immeadiately deduce that

u ≡ 0, and ϑ = ϑ̃ > 0 - a positive constant.

Note that we have used the fact that u satisfies the no-slip boundary condition (3.12), while∇xϑ com-
plies with (3.13). In the absence of any external force action (f ≡ 0), the static density distribution
%̃ therefore satisfies

∇xp(%̃, ϑ̃) = 0 in Ω. (4.1)

In general, equation (4.1) admits infinitely many (constant) solutions. To reduce the solution
set, we suppose, in addition to Gibbs’ equation (2.14), that the thermodynamic stability hypothesis
holds:

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0. (4.2)

In particular, we deduce from (4.1) that %̃ must be constant that can be chosen in such a way
that ∫

Ω
%̃ dx =

∫
Ω
%0 dx = M0, (4.3)

where M0 is the total mass of the fluid.
Finally, the value of ϑ̃ is uniquely determined by means of (4.2) and∫

Ω
%̃e(%̃, ϑ̃) dx = E0 =

∫
Ω

(
1

2
%0|u0|2 + %0e(%0, ϑ0)

)
dx, (4.4)
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where E0 is to total energy of the fluid. We remark that the relevant static solution for a specific
motion is determined by the initial state of the fluid.

Summing up the previous discussion we can rewrite the total energy balance (3.21) together with
the entropy production equation (3.20) in a concise form

d

dt

∫
Ω

(
1

2
%|u|2 +Hϑ̃(%, ϑ)− ∂Hϑ̃(%̃, ϑ̃)

∂%
(%− %̃)−Hϑ̃(%̃, ϑ̃)

)
dx = −ϑ̃

∫
Ω
σ dx ≤ 0, (4.5)

where we have set
Hϑ̃(%, ϑ) = %

(
e(%, ϑ)− ϑ̃s(%, ϑ)

)
. (4.6)

The quantity Hϑ̃(%, ϑ) is called ballistic free energy (cf. Ericksen [17]), while the relation (4.5) is
usually termed total dissipation balance. Note that

t 7→
∫
Ω

(
1

2
%|u|2 +Hϑ̃(%, ϑ)− ∂Hϑ̃(%̃, ϑ̃)

∂%
(%− %̃)−Hϑ̃(%̃, ϑ̃)

)
(t, ·) dx

is a Lyapunov function for the (homogeneous) Navier-Stokes-Fourier system and the total dissipation
balance (4.5) may be viewed as a statement about stability of the static solution %̃, ϑ̃. Indeed, as a
straightforward consequence of the thermodynamic stability hypothesis (4.2), we deduce that

• % 7→ Hϑ̃(%, ϑ̃) is a strictly convex function of %,

• ϑ 7→ Hϑ̃(%, ϑ) is decreasing for ϑ < ϑ̃ and increasing for ϑ > ϑ̃,

in particular

Hϑ̃(%, ϑ)− ∂Hϑ̃(%̃, ϑ̃)

∂%
(%− %̃)−Hϑ̃(%̃, ϑ̃) ≥ 0

with the equality sign only if % = %̃, ϑ = ϑ̃. A detailed discussion concerning the long-time behavior
of the weak solutions as well as the asymptotic stability of the static states to the full Navier-Stokes-
Fourier system may be found in the monograph [25].

4.2 Relative entropy

Motivated by the previous discussion, we introduce relative entropy functional in the form

E
(
%, ϑ,u

∣∣∣r,Θ,U) =
∫
Ω

(
1

2
%|u−U|2 +HΘ(%, ϑ)− ∂HΘ(r,Θ)

∂%
(%− r)−HΘ(r,Θ)

)
dx. (4.7)
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As we have observed in the previous part, the relative entropy E(%, ϑ,u|r,Θ,U) represents a kind
of distance between the triples (%, ϑ,u) and (r,Θ,U). Note that the relative entropy is actually a
relative “energy” and its definition is different from similar concepts of “genuine” relative entropies
used in the theory of hyperbolic systems, see, for instance, Dafermos [10].

Our goal will be to derive an integral relation, similar to the total dissipation balance (4.5), where
{%, ϑ,u} is a weak solution to the complete system and {r,Θ,U} are arbitrary smooth functions
satisfying

r > 0, Θ > 0,U|∂Ω = 0. (4.8)

To this end, we have to realize that

E
(
%, ϑ,u

∣∣∣r,Θ,U) =
5∑

j=1

Ij,

where

I1 =
∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
dx,

I2 = −
∫
Ω
%u ·U dx,

I3 =
∫
Ω
%

(
1

2
|U|2 − ∂HΘ(r,Θ)

∂%

)
dx,

I4 = −
∫
Ω

Θ%s(%, ϑ) dx,

and

I5 =
∫
Ω

(
∂HΘ(r,Θ)

∂%
r +HΘ(r,Θ)

)
dx.

Since the functions r, Θ, and U are supposed to be smooth, all integrals I1 . . . I5 can be eval-
uated by means of the weak formulation (3.18 - 3.21). Consequently, after a bit tedious but still
straightforward manipulation, we deduce the relative entropy inequality in the form

[
E
(
%, ϑ,u

∣∣∣r,Θ,U)]t=τ

t=0
(4.9)

+
∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
dx dt

≤
∫ τ

0
R(%, ϑ,u, r,Θ,U) dt,
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with
R(%, ϑ,u, r,Θ,U) (4.10)

=
∫ τ

0

∫
Ω
%(u−U) · ∇xU · (U− u) dx dt+

∫ τ

0

∫
Ω
%
(
s(%, ϑ)− s(r,Θ)

)(
U− u

)
· ∇xΘ dx dt

+
∫ τ

0

∫
Ω

(
%
(
∂tU + U · ∇xU

)
· (U− u)− p(%, ϑ)divxU + S(ϑ,∇xu) : ∇xU

)
dx dt

−
∫ τ

0

∫
Ω

(
%
(
s(%, ϑ)− s(r,Θ)

)
∂tΘ + %

(
s(%, ϑ)− s(r,Θ)

)
U · ∇xΘ +

q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)
dx dt

+
∫ τ

0

∫
Ω

((
1− %

r

)
∂tp(r,Θ)− %

r
u · ∇xp(r,Θ)

)
dx dt,

cf. [23] for details.

4.2.1 Dissipative solutions

The relative entropy inequality reveals a number of interesting properties of the weak solutions to the
Navier-Stokes-Fourier system. As a matter of fact, pursuing the strategy of DiPerna and Lions [45]
in the context of the inviscid (Euler) system, we may define a new class of dissipative solutions to the
Navier-Stokes-Fourier system by requiring only the relative entropy inequality (4.9) to be satified for
any trio of smooth test functions {r,Θ,U}. As we have observed, any weak solutions is a dissipative
solution, meaning satisfies (4.9), (4.10). Thus the dissipative solutions are solutions enjoying the
same regularity (integrability) properties of the weak solutions and satisfying, in addition, the relative
entropy inequality (4.9).

4.2.2 Weak-strong uniqueness

The first important consequence of the relative entropy inequality is the principle of weak-strong
uniqueness. In this case, we take the test functions {r,Θ,U} to be a (hypothetical) strong solution
of the same problem emanating from the same initial data as the weak solution {%, ϑ,u}. Now, it
turns out that all integrals appearing in the remainder term R on the right-hand side of (4.9) can be
“absorbed” by the left-hand side by means of a Gronwall type argument. Thus, after a bit tedious
but straightforward manipulation carried over in [23], we deduce that the weak and strong solutions
coincide as long as the latter exists. In other words, the strong solutions are unique in the class of
weak solutions. More precisely, we have the following result, see [23, Theorem 2.1]:
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Theorem 4.1 Under the hypotheses of Theorem 3.2, suppose that {%, ϑ,u} is a dissipative
(weak) solution to the Navier-Stokes-Fourier system emanating from the initial data {%0, ϑ0,u0}
that belong to the regularity class specified through (3.9 - 3.11), (3.14). Let

%̃, ϑ̃ ∈ C([0, T ] : W 3,2(Ω)), u ∈ C([0, T ];W 3,2(Ω;R3))

be the strong solution of the same problem defined on an existence interval [0, Tmax), 0 < T <
Tmax.

Then
% = %̃, ϑ = ϑ̃, u = ũ in [0, T ]× Ω.

4.2.3 Conditional regularity

The weak-strong uniqueness principle may be used to derive a criterion of conditional regularity for
the weak or even only dissipative solutions - [24, Theorem 2.1]:

Theorem 4.2 Under the hypotheses of Theorem 4.1, assume that {%, ϑ,u} is a weak solution of
the Navier-Stokes-Fourier system in (0, T )× Ω such that

ess sup
(0,T )×Ω

‖∇xu‖ <∞.

Then {%, ϑ,u} is a classical solution of the problem in (0, T )× Ω.

5 Reducing complexity of the model

There are several possibilities how to approach the problem of model reduction in fluid mechanics.
It can be viewed from the point of view of mathematical modeling as elaborating models and their
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simplified (reduced) versions that would give rise to a satisfactory mathematical theory and produce,
at lower computational costs, the desired information on the fluid system in question. Mathematical
analysis may see the model reduction processes as a purely theoretical task, where the formal passage
from the primitive to target systems is rigorously justified by the tools of modern functional analysis.
Model reduction at this level may also include the study of systems reduced to invariant manifolds
or attractors as well as explicit solution formulas based on group symmetries and other physically
relevant simplifications of a given problem. Probably the most specific use of the term model reduction
occurs in numerical analysis and implementations of numerical schemes. Here model reduction or
model order reduction is understood as an effective process of reducing the number of equations used
for modeling a given system, without substantial changes in the accuracy of the expected output.
Unlike researchers in the field of modeling and analysis, numerical analysts have usually very clear
ideas concerning the specific methods and tools used in the model reduction process.

In the following text, we discuss several examples how the tools developed in the framework of
the abstract theory of complete fluid systems may be used to perform effective model reduction.
In particular, we rewrite the Navier-Stokes-Fourier system in the dimensionless form and perform
several singular limits when certain characteristic parameters become small or very large.

5.1 Scaling and scale analysis

With an appropriate choice of the reference (characteristic) units, the parameters determining the
behavior of a complete fluid system become explicit. Asymptotic analysis provides a useful tool
in the situations when certain of these parameters called characteristic numbers vanish or become
infinite. The Navier-Stokes-Fourier system in the standard form introduced in Section 3.3.2 does not
reveal anything more than the balance laws of certain quantities characterizing the instantaneous
state of a fluid. In order to obtain a deeper insight into the structure of possible solutions, it is
necessary to identify the characteristic values of relevant physical quantities: the reference time Tref ,
the reference length Lref , the reference density %ref , the reference temperature ϑref , together with the
reference velocity Uref , and the characteristic values of other composed quantities pref , eref , µref , ηref ,
κref , and the source terms fref , Qref as the case may be.

Accordingly, the resulting scaled Navier-Stokes-Fourier system reads as follows:
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Sr ∂t%+ divx(%u) = 0, (5.1)

Sr ∂t(%u) + divx(%u⊗ u) +
1

Ma2∇xp =
1

Re
divxS +

1

Fr2%∇xF, (5.2)

Sr ∂t(%s) + divx(%su) +
1

Pe
divx

(q
ϑ

)
= σ, (5.3)

Sr
d

dt

∫
Ω

(Ma2

2
%|u|2 + %e− Ma2

Fr2 %F
)
dx = 0, (5.4)

with the scaled entropy production rate

σ ≥ 1

ϑ

(Ma2

Re
S : ∇xu−

1

Pe

q · ∇xϑ

ϑ

)
, (5.5)

supplemented with a suitable set of boundary and initial conditions. Here, we have considered a
potential driving force

f = ∇xF (x)

and set Q = 0, see Klein et al. [39].
The dimensionless characteristic numbers appearing in the preceding system (5.1 - 5.5) are defined

as follows:
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4 Symbol 4 Definition 4 Name

Sr Lref/(TrefUref) Strouhal number

Ma Uref/
√
pref/%ref Mach number

Re %refUrefLref/µref Reynolds number

Fr Uref/
√
Lreffref Froude number

Pe prefLrefUref/(ϑrefκref) Péclet number

It is easy to observe that different choices of characteristic physical quantities may give rise to the
same sample of characteristic numbers. In the following part, we discuss several asymptotic limits
when some of these numbers become infinitely small or large.

6 Examples of singular limits

We review some recent results concerning the asymptotic behavior of solutions to the scaled Navier-
Stokes-Fourier system (5.1 - 5.5) for singular values of certain characteristic numbers.

6.1 Low Mach number limit: From compressible to incompressible fluid
flows

In many real world applications, such as atmosphere-ocean flows, fluid flows in engineering devices,
astrophysics, and many others, the velocities are small compared with the speed of sound proportional
to 1/

√
Ma in the scaled Navier-Stokes-Fourier system. Accordingly, we consider a scaled Navier-

Stokes-Fourier system in the form:

∂t%+ divx(%u) = 0, (6.1)

25



∂t(%u) + divx(%u⊗ u) +
1

ε2
∇xp(%, ϑ) = divxS(ϑ,∇xu) +

1

ε
%∇xF, (6.2)

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(
q(ϑ,∇xϑ)

ϑ

)
= σε, (6.3)

supplemented with the total energy balance

d

dt

∫
Ωε

(
ε2

2
%|u|2 + %e(%, ϑ)− ε%F

)
(t, ·) dx = 0, (6.4)

where the entropy production rate σε satisfies

σε ≥
1

ϑ

(
ε2S : ∇xu +

κ(ϑ)

ϑ
|∇xϑ|2

)
≥ 0. (6.5)

The system is supplemented with conservative boundary conditions

u · n|∂Ωε = 0, [Sn]× n|∂Ωε = 0, (6.6)

q · n|∂Ωε = 0. (6.7)

The reader will have noticed that we consider the problem on a family of spatial domains {Ωε}ε>0

that depend on ε. As a matter of fact, our goal is to consider the behavior of solutions on “large
domains” the radius of which approaches infinity for ε→ 0. The boundary conditions (6.6) are called
the complete slip boundary conditions. They play a crucial role in the analysis as the lead to a very
simple equations for the acoustic waves represented by the “compressible” component of the velocity
assumed to disappear in the asymptotic limit ε→ 0.

The initial state of the fluid system is determined by the following conditions:

%(0, ·) = %0,ε = %+ ε%1
0,ε, ϑ(0, ·) = ϑ0,ε = ϑ+ εϑ1

0,ε, (6.8)

where
%, ϑ > 0,

∫
Ωε

%1
0,ε dx =

∫
Ωε

ϑ1
0,ε dx = 0 for all ε > 0, (6.9)

and
{%1

0,ε}ε>0, {ϑ1
0,ε}ε>0 are bounded in L2 ∩ L∞(Ωε). (6.10)

It is essential that the aplitude of the perturbations of the data is of the same order as the Mach
number. Such data are usually called ill-prepared and we will come to this issue later in this section.

In addition, we suppose
u(0, ·) = u0,ε, (6.11)
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where
{u0,ε}ε>0 is bounded in L2 ∩ L∞(Ωε;R

3). (6.12)

As already pointed out, the fluid flow is restricted to a family of bounded domains Ωε chosen
to “mimick” the behavior of the fluid in a fictitious large (unbounded) domain Ω. Pursuing the
philosophy that any real physical space is always bounded but possibly “large” with respect to the
speed of sound in the medium, we consider a family of bounded domains {Ωε}ε>0 ⊂ R3 such that
Ωε ≈ Ω in a certain sense as ε→ 0. More specifically, we suppose that

Ω ⊂ R3 is an unbounded domain with a compact smooth boundary ∂Ω, (6.13)

and set
Ωε = Br(ε) ∩ Ω, (6.14)

where Br(ε) is a ball centered at zero with a radius r(ε), with εr(ε) →∞.
Our next goal will be to discuss the following topics:

• uniform bounds on the family of solution {%ε, ϑε,uε}ε>0 of problem (6.1 - 6.7), independent of
the parameter ε→ 0;

• strong (pointwise a.a.) convergence
%ε → %

ϑε → ϑ

 a.a. in (0, T )× Ω, (6.15)

and
uε → U a.a. in (0, T )× Ω (6.16)

at least for suitable subsequences.

As soon as the afore-mentioned issues are clarified, it is a routine matter to perform the limit for
ε → ∞ in the weak formulation of the Navier-Stokes-Fourier system. Under the specific scaling in
(6.1 - 6.3) the limit problem is identified as the Oberbeck-Boussinesq approximation:

divxU = 0, (6.17)

%
[
∂tU + divx(U×U)

]
+∇xΠ = µ(ϑ)∆U + r∇xF (6.18)

%cp
[
∂Θ + divx(ΘU)

]
− κ(ϑ)∆Θ− % ϑαdivx(UF ) = 0 (6.19)

r + %αΘ = 0, (6.20)
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see [26] for the complete proof and more information on the limit system. In (6.17 - 6.20), the
symbol Π denotes the pressure determined a posteriori by the motion, and Θ is the weak limit of
the temperature deviations

ϑε − ϑ

ε
→ Θ.

Note there are two positive parameters α = α(%, ϑ) and cp = cp(%, ϑ) resulting from the process of
scaling.

In the remaining part of this section, we focus on the two basic issues mentioned above, namely,
finding uniform bounds on the solutions of the scaled system independent of the scaling parame-
ter ε → 0, and compactness of the family of the velocity fields {uε}ε>0 intimately related to the
propagation of acoustic waves in the low Mach number regime.

6.1.1 Uniform bounds

The key ingredient in the proof of uniform bounds is the total dissipation balance (4.5) introduced
in Section 4.1. Its scaled version reads:

d

dt

∫
Ω

(
1

2
%ε|uε|2 +

1

ε2

[
Hϑ(%ε, ϑε)−

∂Hϑ(%̃ε, ϑ)

∂%
(%ε − %̃ε)−Hϑ(%̃ε, ϑ)

) ]
dx = − ϑ

ε2

∫
Ω
σε dx ≤ 0,

(6.21)
where (%̃ε, ϑ) is the static solution with the mass and energy,

∇xp(%̃ε, ϑ) = ε%̃ε∇xF in Ωε. (6.22)

Due to our specific choice of scaling, we may check that (6.22) implies

%̃ε → % a.a. in Ω.

Our hypotheses imposed on the initial data (6.8 - 6.12) imply the the quantity∫
Ω

(
1

2
%0,ε|u0,ε|2 +

1

ε2

[
Hϑ(%0,ε, ϑ0,ε)−

∂Hϑ(%̃ε, ϑ)

∂%
(%0,ε − %̃ε)−Hϑ(%̃ε, ϑ)

) ]
dx

evaluated in terms of the initial data remains bounded as ε → 0. Consequently, we immediately
deduce that

ess sup
t∈(0,T )

∫
Ω

(
1

2
%0,ε|u0,ε|2 +

1

ε2

[
Hϑ(%0,ε, ϑ0,ε)−

∂Hϑ(%̃ε, ϑ)

∂%
(%0,ε − %̃ε)−Hϑ(%̃ε, ϑ)

])
dx ≤ c (6.23)

and ∫
Ω
σε dx ≤ ε2c (6.24)
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for ε→ 0.
The bounds (6.23), (6.24), together with the structural properties (3.22 - 3.27) of the functions

p, e, and s, and (3.28 - 3.30) imposed of the transport coefficients µ, η, and κ, where we take, for
the sake of simplicity,

Λ = 1

in (3.28), (3.29), give rise to a family of uniform estimates listed below (see [26] for details):

ess sup
t∈(0,T )

∥∥∥∥%ε − %

ε

∥∥∥∥
L2+L5/3(Ωε)

≤ c, (6.25)

ess sup
t∈(0,T )

∥∥∥∥∥ϑε − ϑ

ε

∥∥∥∥∥
L2+L4(Ωε)

≤ c, (6.26)

∫ T

0

∫
Ω

∣∣∣∣∣∇x
ϑε − ϑ

ε

∣∣∣∣∣
2

dx dt ≤ c,
∫ T

0

∫
Ω

∣∣∣∣∣∇x
log(ϑε)− log(ϑ)

ε

∣∣∣∣∣
2

dx dt ≤ c, (6.27)

and

ess sup
t∈(0,T )

‖%εuε‖L2+L5/4(Ω;R3) ≤ c,
∫ T

0

∫
Ω

∣∣∣∣∇xuε +∇t
xuε −

2

3
divxuεI

∣∣∣∣2 dx dt ≤ c. (6.28)

A crucial role in deriving the above estimates is played by the coercivity properties of the function
Hϑ established in Section 4.1 that follow directly from the thermodynamic stability hypothesis (4.2).
Another important factor is the effective presence of a dissipativ mechanism expressed by means of
non-zero viscosity and heat conductivity. Last but not least, the validity of (6.25 - 6.28) is strictly
conditioned by our choice of the initial data, specifically (6.8). Since (6.8), togethere with (6.10 -
6.12) seems to be the weakest assumption that guarantees the uniform bounds established above,
this type of data is usually termed ill-prepared, in contrast with the well-prepared data for which the
families {%(1)

0,ε}ε>0, {ϑ(1)
0,ε}ε>0 as well as the gradient components of the velocity fields tend to zero a.a.

in Ω.
Note that (6.25), (6.26) imply the pointwise convergence claimed in (6.15). As for the family of

velocity fields {uε}ε>0, one can deduce from (6.28) and a variant of Korn’s inequality that

uε → U weakly in L2(0, T ;W 1,2(Ω)). (6.29)

The pointwise (a.a.) convergence claimed in (6.16) represents a more delicate question because of
possible oscillatory behavior of the velocities with respect to the time variable. This is the main
issue to be discussed in the next section.
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6.1.2 Acoustic waves

The velocity field uε, or rather the momentum %εuε, can be written in the form

%εuε = H[%εuε] +∇xΦε

where the symbol H denotes the Helmholtz projector onto the space of solenoidal (divergence-free)
functions. Of course, strictly speaking, the decomposition itself depends on ε as we have assumed
that the motion takes place in Ωε. For simplicity of presentation, we shall assume that Ωε = Ω and
we also omit the effect of the potential force %ε∇xF .

Since the limit velocity field U is expected to be solenoidal (see (6.17)), the gradient component
∇xΦε, where Φε is termed acoustic potential, should “disappear” in the course of the limit passage
ε→ 0. In order to describe the behavior of ∇xΦε, we derive the so-called Lighthill’s acoustic analogy,
see Lighthill [42], [43], [44].

The problem of the strong (a.a. pointwise) convergence of the velocities {uε}ε>0 is intimately
related to propagation and attenuation of acoustic waves represented by the functional Φε. The
poinwise convergence is not expected if the fluid is confined to bounded domains with acoustically
hard boundary (the complete slip-boundary conditions), where large amplitude rapidly oscillating
waves are generated in the limit ε→ 0 (see, for instance, Lions and Masmoudi [46], or Schochet [62]
). Here, we focus on the case where the target domain Ω be unbounded and the dispersion of the
acoustic waves takes place. More specifically, the two closely related properties must be satisfied:

• the point spectrum of the associated wave operator is empty;

• the local acoustic energy decays in time.

We remark that problems related to propagation of acoustic waves in R3 were studied by Des-
jardins and Grenier [12] and the effect of the boundary layer created by the no-slip conditions (ignored
in the present paper) was examined by Desjardins at al. [13].

To derive the acoustic equation governing the behavior of Φε, we begin by introducing a “time
lifting” Σε of the entropy production σε. Note that, in the weak formulation, σε must by interepreted
as a non-negative measure. Accordingly, we take

< Σε;ϕ >=< σε; I[ϕ] >,

where we have set

< Σε;ϕ >=< σε; I[ϕ] >, I[ϕ](t, x) =
∫ t

0
ϕ(z, x) dz for any ϕ ∈ L1(0, T ;C(Ω)). (6.30)
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Following the original idea of Lighthill [44], we rewrite the Navier-Stokes-Fourier system in the
form:

ε∂tZε + divxVε = εdivxF
1
ε, (6.31)

ε∂tVε + ω∇xZε = ε
(
divxF2

ε +∇xF
3
ε +

A

ε2ω
∇xΣε

)
, (6.32)

supplemented with the homogeneous boundary conditions

Vε · n|∂Ω = 0, (6.33)

where we set

Zε =
%ε − %

ε
+
A

ω
%ε

(
s(%ε, ϑε)− s(%, ϑ)

ε

)
+
A

εω
Σε, Vε = %εuε, (6.34)

F1
ε =

A

ω
%ε

(
s(%ε, ϑε)− s(%, ϑ)

ε

)
uε +

A

ω

κ∇xϑε

εϑε

, F2
ε = Sε − %εuε ⊗ uε, (6.35)

and

F 3
ε = ω

(
%ε − %

ε2

)
+ A%ε

(
s(%ε, ϑε)− s(%, ϑ)

ε2

)
−
(
p(%ε, ϑε)− p(%, ϑ)

ε2

)
. (6.36)

The constants A and ω has to be chosen so that

A%
∂s(%, ϑ)

∂ϑ
=
∂p(%, ϑ)

∂ϑ
, ω + A

∂s(%, ϑ)

∂%
=
∂p(%, ϑ)

∂%
. (6.37)

Note that the wave speed ω is strictly positive as a direct consequence of hypothesis of thermodynamic
stability.

Our goal is to show how the strong (pointiwise a.a.) convergence of the velocities {uε}ε>0, claimed
in (6.16), can be deduced from (6.31 - 6.33). Since the velocity field enjoy certain compactness in
the space variable (cf. (6.29), it is enough to show that[

t 7→
∫
Ω
Vε(t, ·) ·w dx

]
→
[
t 7→

∫
Ω
V(t, ·) ·w dx

]
in L1(0, T ) (6.38)

for any fixed w ∈ C∞
c (Ω;R3), where Vε = %εuε. Moreover, since our problem has been reduced to

showing (6.38), we may assume, with help of a simple approximation, that all quantities appearing
in the acoustic equations are smooth. This relaxation of the original problem as well the smoothing
procedure are discussed in detail in [26].
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Thus our task may be reduced to the following problem:

Show that the family [
t 7→

∫
Ω
Vε(t, ·) ·w dx

]
is precompact in L1(0, T ) (6.39)

for any w ∈ C∞
c (Ω;R3), on condition that

ε∂tZε + divxVε = εdivxF
1
ε in (0, T )× Ω, (6.40)

ε∂tVε + ω∇xZε = εdivxF2
ε in (0, T )× Ω, (6.41)

Vε · n|∂Ω = 0, (6.42)

Zε(0, ·) = Z0,ε, Vε(0, ·) = V0,ε in Ω, (6.43)

where

Z0,ε ∈ C∞
c (Ω), {Z0,ε}ε>0 bounded in L2(Ω), V0,ε ∈ C∞

c (Ω;R3), {V0,ε}ε>0 bounded in L2(Ω;R3),

and with the functions

F1
ε ∈ C∞

c ((0, T )× Ω;R3), F2
ε ∈ C∞

c ((0, T )× Ω;R3×3),

{F1
ε}ε>0 bounded in L2(0, T ;L2(Ω;R3)), {F2

ε,0}ε>0 bounded in L2(0, T ;L2(Ω;R3×3)). (6.44)

We first focus on compactness of the solenoidal part of Vε. To this end, consider a function
ψ ∈ W 1,2 ∩W 1,∞(Ω;R3), divxψ = 0, ψ · n|∂Ω = 0. Multiplying equation (6.41) on ψ and integrating
by parts, we obtain

d

dt

∫
Ω
Vε · ψ dx = −

∫
Ω

F2
ε : ∇xψ dx,

∫
Ω
Vε(0, ·) · ψ dx =

∫
Ω
V0,ε · ψ dx.

In particular, we deduce that the family[
t 7→

∫
Ω
Vε · ψ dx

]
is precompact in C[0, T ]. (6.45)

We note that this step is strongly conditioned by our choice of the complete slip boundary condition.
To perform the analysis of acoustic waves (the gradient component of Vε), we rewrite system

(6.40), (6.41) in terms of an abstract self-adjoint operator (the Neumann Laplacean ∆N):
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∆N [v] = ∆v, ∇xv · n|∂Ω = 0, v(x) → 0 as |x| → ∞,

with
D(∆N) = {w ∈ L2(Ω) | w ∈ W 2,2(Ω), ∇xw · n|∂Ω = 0}.

If Ω is a regular (unbounded) domain in R3, exterior to a compact set, it can be shown that −∆N

is a self-adjoint, non-negative operator in L2(Ω), with an absolutely continuous spectrum [0,∞).
Moreover, ∆N satisfies the limiting absorption principle:

sup
λ∈C,0<α≤Re[λ]≤β<∞, Im[λ] 6=0

∥∥∥V ◦ (−∆N − λ)−1 ◦ V
∥∥∥
L[L2(Ω);L2(Ω)]

≤ cα,β, (6.46)

where
V(x) = (1 + |x|2)−

s
2 , s > 1

see Leis [40]. Similar properties may be shown on other types of unbounded domains like a half-space
or the entire physical space R3.

For the acoustic potential
Φε = ∆−1

N [divxVε], (6.47)

the system of equations (6.40), (6.41) reads

ε∂tZε + ∆NΦε = εdivxF
1
ε, ε∂tΦε + ωZε = ∆−1

N divxdivxF2
ε. (6.48)

The acoustic potential Φε may be therefore expressed by means of the standard Duhamel formula:

Φε(t, ·) (6.49)

= exp
(
±i
t

ε

√
−∆N

) [
∆N [h1

ε] +
1√
−∆N

[h2
ε]± i

(
∆N [h3

ε] +
1√
−∆N

[h4
ε]

)]

+
∫ t

0
exp

(
±i
t− s

ε

√
−∆N

) [
∆N [H1

ε ] +
1√
−∆N

[H2
ε ]± i

(
∆N [H3

ε ] +
1√
−∆N

[H4
ε ]

)]
ds,

for certain functions

{hi
ε}ε>0 bounded in L2(Ω), {H i

ε}ε>0 is bounded in L2((0, T )× Ω). (6.50)
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Now, there are several possibilities how to show strong convergence of the acoustic potential.
Here, we first revoke the space-time decay estimates for the group exp(it

√
−∆N) obtained by Kato

[34].

Theorem 6.1 [ Reed and Simon [60, Theorem XIII.25 and Corollary] ]

Let A be a closed densely defined linear operator and H a self-adjoint densely defined linear
operator in a Hilbert space X. For λ /∈ R, let RH [λ] = (H − λId)−1 denote the resolvent of H.
Suppose that

Γ = sup
λ/∈R, v∈D(A∗), ‖v‖X=1

‖A ◦RH [λ] ◦ A∗[v]‖X <∞. (6.51)

Then
sup

w∈X, ‖w‖X=1

π

2

∫ ∞

−∞
‖A exp(−itH)[w]‖2

X dt ≤ Γ2.

Thus the desired conclusion (6.39) follows by applying Theorem 6.1 in the situation

X = L2(Ω), H =
√
−∆N , A[v] = ϕG(−∆N)[v], v ∈ X,

with
G ∈ C∞

c (0,∞), ϕ ∈ C∞
c (Ω) given functions.

Kato’s result is applicable provided the domain Ω and the associated Neumann Laplacean obey
the limiting absorption principle (6.46). More general domains may be handled by means of the
celebrated RAGE theorem, see Cycon et al. [9, Theorem 5.8]:
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Theorem 6.2 Let H be a Hilbert space, A : D(A) ⊂ H → H a self-adjoint operator, C : H → H
a compact operator, and Pc the orthogonal projection onto the space of continuity Hc of A,
specifically,

H = Hc ⊕ clH
{
span{w ∈ H | w an eigenvector of A}

}
.

Then ∥∥∥∥1

τ

∫ τ

0
exp(−itA)CPc exp(itA) dt

∥∥∥∥
L(H)

→ 0 as τ →∞. (6.52)

RAGE theorem is optimal in the sense that represents both necessary and sufficient condition
for the local pointwise converegence of the acoustic waves, namely, the absence of eigenvalues of the
Neumann Laplacean in the domain Ω. Kato’s result and RAGE theorem may be viewed as two
extremal cases of the abstract theory of the acoustic waves propagation described in terms of the
associated spectral measures, see [19] for details.

6.2 High Reynolds - low Mach number limit: From compressible viscous
to incompressible inviscid fluid flows

In many real world applications, in particular in meteorology, the fluids are asymptotically incom-
pressible, and, at the same time, the transport coefficients - the viscosity and the heat conductivity
- are small. This the situation when the Mach number is small but Reynolds and Peclet numbers
are high. The corresponding scaled system, in the absence of external forces, reads
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∂t%+ divx(%u) = 0, (6.53)

∂t(%u) + divx(%u⊗ u) +
1

ε2
∇xp(%, ϑ) = εadivxS(ϑ,∇xu), (6.54)

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + εbdivx

(
q(ϑ,∇xϑ)

ϑ

)
= σε, (6.55)

supplemented with the total energy balance

d

dt

∫
Ωε

(
ε2

2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx = 0, (6.56)

where the entropy production rate σε satisfies

σε ≥
1

ϑ

(
εa+2S : ∇xu + εbκ(ϑ)

ϑ
|∇xϑ|2

)
≥ 0, (6.57)

and where a, b are positive exponents specified below.
The main difficulty of the asymptotic limit ε → 0, besides the oscillations due to the acoustic

velocity component, is the lack of bounds on the velocity and temperature gradient when ε→ 0. In
particular, the uniform bounds (6.27), (6.28) are no longer available and must be replaced by certain
stability relations.

The limit (target) problem can be (formally) identified quite easily as the incompressible Euler
system:

divxv = 0, (6.58)

∂tv + v · ∇xv +∇xΠ = 0, (6.59)

supplemented with a transport equation for the temperature deviation T ,

∂tT + v · ∇xT = 0. (6.60)

Similarly to the preceding section, the function v is the limit velocity while T ≈ ϑ−ϑ
ε

. Note that
the system (6.58 - 6.60) can be obtained as a hydrodynamic limit of the Boltzmann equation, see
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Golse [28].
To avoid problems related to the boundary conditions, and, at the same time, to guarantee the

dispersive estimates for the acoustic equation, we consider the problem in the whole space Ω = R3

and prescribe only the “far field” boundary conditions:

%→ % > 0, ϑ→ ϑ, u → 0 as |x| → ∞.

Furthermore, we consider the initial data in the form

%(0, ·) = %0,ε = %+ ε%
(1)
0,ε, ϑ(0, ·) = ϑ0,ε = ϑ+ εϑ

(1)
0,ε, u(0, ·) = u0,ε. (6.61)

The inviscid system (6.58 - 6.60) is known to possess a smooth solution at least on a short
time interval that may depend on the size of the initial data, see, for instance, Kato and Lai [35].
Consequently, the solutions {%ε, ϑε,uε}ε>0 of the scaled Navier-Stokes-Fourier system are expected
to converge to solutions of (6.58 - 6.60) on the interval of existence of the latter. We report the
following result, [22, Theorem 3.1]:
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Theorem 6.3 Let the thermodynamic functions p, e, and s as well as the transport coefficients
µ and κ comply with the hypotheses of Theorem 3.2, with α = 1. Let

b > 0, 0 < a <
10

3
. (6.62)

Furthermore, take the initial data (6.61) in such a way that

{%(1)
0,ε}ε>0, {ϑ(1)

0,ε}ε>0 are bounded in L2 ∩ L∞(R3), %
(1)
0,ε → %

(1)
0 , ϑ

(1)
0,ε → ϑ

(1)
0 in L2(R3),

and
{u0,ε}ε>0 is bounded in L2(R3;R3), u0,ε → u0 in L2(R3;R3),

where

%
(1)
0 , ϑ

(1)
0 ∈ W 1,2 ∩W 1,∞(R3), H[u0] = v0 ∈ W 2,k(R3;R3) for a certain k >

5

2
.

Let Tmax ∈ (0,∞] denote the maximal life-span of the regular solution v to the Euler system
(6.58), (6.59) satisfying v(0, ·) = v0. Finally, let {%ε, ϑε,uε} be a dissipative solution of the
Navier-Stokes-Fourier system in (0, T )×R3, T < Tmax introduced in Section 4.2.1.

Then
ess sup

t∈(0,T )

‖ %ε(t, ·)− % ‖L2+L5/3(R3) ≤ εc,

√
%εuε →

√
% v in L∞loc((0, T ];L2

loc(R
3;R3)) and weakly-(*) in L∞(0, T ;L2(R3;R3)),

and

ϑε − ϑ

ε
→ T in L∞loc((0, T ];Lq

loc(R
3;R3)) and weakly-(*) in L∞(0, T ;L2 + Lq(R3)), 1 ≤ q < 2,

where v, T is the unique solution of the Euler-Boussinesq system (6.58 - 6.60), with the initial
data

v0 = H[u0], T0 = %
∂s(%, ϑ)

∂ϑ
ϑ

(1)
0 − 1

%

∂p(%, ϑ)

∂ϑ
%

(1)
0 .
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The proof of Theorem 6.3 represents another application and illustrate the strength of the rela-
tive entropy inequality (4.9). Results of this type for a simpler compressible Navier-Stokes system
(without temperature) were obtained by Masmoudi [52], [53]. The reader will have noticed that
Theorem 6.3 applies to the dissipative solutions, meaning solutions belonging to the same class as
the weak solutions but satisfying merely the relative entropy inequality (4.9).

The complete proof of Theorem 6.3, carried over in [22], is rather involved, however, the leading
idea is relatively simple and consists in taking

U = ∇xΦε + v, r = %+ εRε, Θ = ϑ+ εTε

as the test functions in the relative entropy inequality (4.9). Here, v is the solution to the incom-
pressible Euler system, while Rε, Tε, and Φε solve the acoustic equation:

ε∂t(αRε + βTε) + ω∆Φε = 0,

ε∂t∇xΦε +∇x(αRε + βTε) = 0,

α =
1

%

∂p(%, ϑ)

∂%
, β =

1

%

∂p(%, ϑ)

∂ϑ
, ω = %

(
α+

β2

δ

)
.

The functions Rε, Tε are not uniquely determined; whence we introduce the transport equation

∂t(δTε − βRε) + Uε · ∇x(δTε − βRε) + (δTε − βRε)divxUε = 0, (6.63)

with

δ = %
∂s(%, ϑ)

∂ϑ
.

Note that equation (6.63) is nothing other than a convenient linearization of the entropy balance.
The resulting system of equations is now well-posed.

6.3 Rotating fluids

Rotating fluid systems appear in numerous applications of fluid mechanics, in particular in models
of atmospheric and geophysical flows, see the monograph [7]. Earth’s rotation, together with the
influence of gravity and the fact that atmospheric Mach number is typically very small, give rise to
a large variety of singular limit problems, where some of these characteristic numbers become large
or tend to zero, see Klein [37], [38].

In certain situations, it is convenient to study rotating fluids in the coordinate system attached
to the fluid reference domain. Accordingly, the Coriolis and centrifugal forces will appear as a new
contribution in the momentum equation. Neglecting, for the sake of simplicity, the influence of the
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temperature on the fluid motion we arrive at the following scaled Navier-Stokes system describing
the time evolution of the fluid density % = %(t, x) and the velocity field u = u(t, x):

∂t%+ divx(%u) = 0, (6.64)

∂t(%u) + divx(%u⊗ u) +
1

ε
(b× %u) +

1

ε2m
∇xp(%) = divxS(∇xu) +

1

ε2
%∇xG. (6.65)

The term 1/ε(b×%u) is the Coriolis force, where the small paramater ε corresponds to the Rossby
number and

b = [0, 0, 1]

is the (vertical) rotation axis. Accordingly,

1

ε2
%∇xG, G = |(x1, x2)|2

is the associated centrifugal force. Similarly to the preceding part, εm is the Mach number and m a
positive exponent to be fixed below.

We consider a very simple geometry of the underlying physical space Ω ⊂ R3, namely Ω is an
infinite slab,

Ω = R2 × (0, 1).

Moreover, to eliminate entirely the effect of the boundary on the motion, we prescribe the complete
slip boundary conditions for the velocity field

u · n|∂Ω = 0, [Sn]× n|∂Ω = 0, (6.66)

keeping in mind that the more standard no-slip boundary condition

u|∂Ω = 0

would drive the fluid to the rest in the asymptotic limit, namely u → 0 for ε → 0. On the other
hand, the Navier slip condition

u · n|∂Ω = 0, βutan + [Sn]tan|∂Ω = 0, β > 0, (6.67)

would give rise to a friction term in the limit system known as Ekman’s pumping, see [20]. The same
effect is being produced in the anisotropic case where “vertical” and “horizontal” viscosities are of
different order, see Masmoudi [49], [50], [51].
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As shown in Chemin at al. [7], incompressible rotating fluids stabilize to a 2D motion described
by the vertical averages of the velocity provided the Rossby number ε tends to zero. In addition,
the stabilizing effect of rotation has been exploited by many authors, see e.g. Babin, Mahalov and
Nicolaenko [1], [2]. On the other hand, as we have seen in the previous discussion, compressible fluid
flows in the low Mach number regime behave like the incompressible ones, see the pioneering paper
by Klainerman and Majda [36].

Thus, at least for m >> 1, solutions of the scaled system (6.64), (6.65) are expected to be rapidly
driven to incompressibility and then to stabilize to a purely horizontal motion as ε → 0. Such a
scenarion has been rigorously confirmed in [20], the result of which we now reproduce. One of the
main stumbling blocks in the study of this multiscale asymptotic limit is the action of the centrifugal
force that becomes large for |x| → ∞ thus interfering with the acoustic waves at the far field.

6.3.1 Hypotheses and main results

The initial data are ill-prepared with respect to the acoustic scaling, namely,

%ε(0, ·) = %0,ε, uε(0, ·) = u0,ε,

%0,ε = %̃ε + εmr0,ε, (6.68)

where %̃ε is a solution of the associated static problem:

∇xp(%̃ε) = ε2(m−1)%̃ε∇xG in Ω.

Moreover, we assume that the pressure p = p(%) satisfies

p ∈ C1[0,∞) ∩ C2(0,∞), p′(%) > 0 for all % > 0, lim
%→∞

p′(%)

%γ−1
= c > 0 (6.69)

for a certain γ > 3/2, and we normalize

P (%̃ε) = ε2(m−1)G, where P (%) =
∫ %

1

p′(z)

z
dz. (6.70)

Finally, we suppose that the initial data satisfy{
%̃

γ−2
2

ε r0,ε

}
ε>0

is bounded in L2(Ω), {r0,ε}ε>0 is bounded in L2 ∩ L∞(Ω),

{
√
%̃εu0,ε}ε>0 is bounded in L2(Ω;R3).

(6.71)
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Before formulating the main result, we introduce the vertical averages

〈v〉 (xh) =
1

|T 1|

∫
T 1
v(xh, x3) dx3,

where xh = [x1, x2] denotes the “horizontal” component. We report the following result, see [20,
Theorem 1]:

Theorem 6.4 Let the pressure p satisfy hypotheses (6.69), with γ > 3/2. Let %ε, uε be a finite
energy weak solution of the Navier-Stokes system in (0, T )×Ω , emanating from the initial data
(6.68), (6.71). In addition, suppose that

m > 10

and that
u0,ε → U0 weakly in L2(Ω;R3).

Then
ess sup

t∈(0,T )
‖%ε − 1‖(L2+Lγ)(K) ≤ εmc(K) for any compact K ⊂ Ω,

uε → U weakly in L2(0, T ;W 1,2(Ω;R3)),

where U = [Uh(xh), 0] is the unique solution to the 2D incompressible Navier-Stokes system

divhUh = 0, (6.72)

∂tUh + divh(Uh ⊗Uh) +∇hΠ = µ∆hUh, (6.73)

with the initial data
Uh(0, ·) =

[
H
[
[〈U0〉h , 0]

]]
h
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[25] E. Feireisl and D. Pražák. Asymptotic behavior of dynamical systems in fluid mechanics. AIMS,
Springfield, 2010.

[26] E. Feireisl and M.E. Schonbek. On the Oberbeck-Boussinesq approximation on unbounded
domains. In Abel Symposium Lecture Notes. Springer Verlag, Berlin, 2011.

[27] G. Gallavotti. Foundations of fluid dynamics. Springer-Verlag, New York, 2002.

44



[28] F. Golse. The Boltzmann equation and its hydrodynamic limits. In Evolutionary equations.
Vol. II, Handb. Differ. Equ., pages 159–301. Elsevier/North-Holland, Amsterdam, 2005.

[29] T.I. Hesla. Collision of smooth bodies in a viscous fluid: A mathematical investigation. 2005.
PhD Thesis - Minnesota.

[30] M. Hillairet. Lack of collision between solid bodies in a 2D incompressible viscous flow. Comm.
Partial Differential Equations, 32(7-9):1345–1371, 2007.

[31] M. Hillairet and T. Takahashi. Collisions in three-dimensional fluid structure interaction prob-
lems. SIAM J. Math. Anal., 40(6):2451–2477, 2009.

[32] D. Hoff. Dynamics of singularity surfaces for compressible viscous flows in two space dimensions.
Commun. Pure Appl. Math., 55:1365–1407, 2002.

[33] D. Hoff and M. M. Santos. Lagrangean structure and propagation of singularities in multidi-
mensional compressible flow. Arch. Ration. Mech. Anal., 188(3):509–543, 2008.

[34] T. Kato. Remarks on the zero viscosity limit for nonstationary Navier–Stokes flows with bound-
ary. In Seminar on PDE’s, S.S. Chern (ed.), Springer, New York, 1984.

[35] T. Kato and C.Y. Lai. Nonlinear evolution equations and the Euler flow. J. Funct. Anal.,
56:15–28, 1984.

[36] S. Klainerman and A. Majda. Singular limits of quasilinear hyperbolic systems with large param-
eters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math., 34:481–524,
1981.

[37] R. Klein. Asymptotic analyses for atmospheric flows and the construction of asymptotically
adaptive numerical methods. Z. Angw. Math. Mech., 80:765–777, 2000.

[38] R. Klein. Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM:
Math. Mod. Numer. Anal., 39:537–559, 2005.

[39] R. Klein, N. Botta, T. Schneider, C.D. Munz, S. Roller, A. Meister, L. Hoffmann, and T. Sonar.
Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math.,
39:261–343, 2001.

[40] R. Leis. Initial-boundary value problems in mathematical physics. B.G. Teubner, Stuttgart,
1986.

45



[41] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63:193–248,
1934.

[42] J. Lighthill. On sound generated aerodynamically I. General theory. Proc. of the Royal Society
of London, A 211:564–587, 1952.

[43] J. Lighthill. On sound generated aerodynamically II. General theory. Proc. of the Royal Society
of London, A 222:1–32, 1954.

[44] J. Lighthill. Waves in Fluids. Cambridge University Press, Cambridge, 1978.

[45] P.-L. Lions. Mathematical topics in fluid dynamics, Vol.1, Incompressible models. Oxford Science
Publication, Oxford, 1996.

[46] P.-L. Lions and N. Masmoudi. Incompressible limit for a viscous compressible fluid. J. Math.
Pures Appl., 77:585–627, 1998.

[47] J.-G. Liu, J. Liu, and R. L. Pego. On incompressible Navier-Stokes dynamics: a new approach
for analysis and computation. In Hyperbolic problems: theory, numerics and applications. I,
pages 29–44. Yokohama Publ., Yokohama, 2006.

[48] J.-G. Liu, J. Liu, and R. L. Pego. Stability and convergence of efficient Navier-Stokes solvers
via a commutator estimate. Comm. Pure Appl. Math., 60(10):1443–1487, 2007.

[49] N. Masmoudi. The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary.
Arch. Rational Mech. Anal., 142(4):375–394, 1998.

[50] N. Masmoudi. Asymptotic problems and compressible and incompressible limits. In Advances
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