
Nečas Center for Mathematical Modeling

Preconditioned iterative methods for
solving linear least squares problems

R. Bru, J. Maŕın, J. Mas, M. T̊uma

Preprint no. 2014-16

http://ncmm.karlin.mff.cuni.cz/

PRECONDITIONED ITERATIVE METHODS FOR SOLVING

LINEAR LEAST SQUARES PROBLEMS∗

RAFAEL BRU, JOSÉ MARÍN, JOSÉ MAS† AND MIROSLAV TŮMA‡

Abstract. New preconditioning strategies for solving m × n overdetermined large and sparse
linear least squares problems using the CGLS method are described. First, direct preconditioning
of the normal equations by the Balanced Incomplete Factorization (BIF) for symmetric and positive
definite matrices is studied and a new breakdown-free strategy is proposed. Preconditioning based
on the incomplete LU factors of an n × n submatrix of the system matrix is our second approach.
A new way to find this submatrix based on a specific weighted transversal problem is proposed.
Numerical experiments demonstrate different algebraic and implementational features of the new
approaches and put them into the context of current progress in preconditioning of CGLS. It is
shown, in particular, that the robustness demonstrated earlier by the BIF preconditioning strategy
transfers into the linear least squares solvers and the use of the weighted transversal helps to improve
the LU-based approach.

1. Introduction. Linear least-squares (LS) problems

min
x

‖b−Ax‖2, (1.1)

where A ∈ R
m×n (m ≥ n) is a large and sparse matrix with full column rank, can

be solved iteratively using the Conjugate Gradient for Least Squares (CGLS) method
[14], that implicitly applies the conjugate gradient method to the normal equations

ATAx = AT b. (1.2)

For solving either large sparse systems of linear algebraic equations or LS prob-
lems iterative methods may be preferred because they often require much less storage
than their direct counterparts. Their successful application often needs a good precon-
ditioner in order to achieve fast convergence rates. In particular, for systems of linear
equations arising from discretizations of three-dimensional boundary value problems,
the advantages of preconditioned iterative methods are clear and well documented in
the literature. However, less knowledge about their benefits for LS problems is avail-
able for various reasons. LS problems arising from various sources may differ very
much and may need differently preconditioned iterative methods. In other words, the
problem of robust and efficient iterative solution of LS problems is much harder than
the iterative solution of systems of linear equations. This fact is implicitly underlined
in the literature where experiments with various strategies are often tightly restricted
to classes of problems that arise in such distant areas of engineering and applied re-
search as signal and control processing, statistics, geodesy, etc. An excellent source on
general and specialized solution strategies with a comprehensive treatment of various
applications is still the book [14].

In principal, three main classes of general-purpose preconditioning approaches for
solving problem (1.1) were proposed, studied and subsequently enhanced by improve-
ments from various authors. The most traditional approach is based on the normal

∗Partially supported by Spanish grant MTM 2010-18674 and the project 13-06684S of the Grant
Agency of the Czech Republic.

†Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, 46022 València,
Spain (rbru@imm.upv.es, jmarinma@imm.upv.es, jmasm@imm.upv.es)

‡ Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou
věž́ı 2, 182 07 Prague 8, Czech Republic, (tuma@cs.cas.cz).

1

equations and a factorization of the symmetric positive definite matrix ATA. Sources
of the direct variant of this approach date back to [5]. In our context the precon-
ditioner can be based on an incomplete factorization of ATA. A recent strategy of
this type that uses also implicit decomposition of the inverse of ATA was recently
introduced in [12]. Another type of preconditioners based on approximate inverses
was recently studied in a series of papers [27, 28, 29] having a starting point in the
PhD thesis [26].

A lot of attention has been devoted to algorithms based on the incomplete QR
decomposition (IQR) of A. This approach that provides a preconditioner for CGLS
represents the second main source of preconditioning strategies, but there are other
closely related approaches less frequently used; see, e.g., [13]. An important theoreti-
cal feature of the QR-based approach without dropping is that we obtain QTQ = I.
In practice, the QR factorization causes a significant fill-in (for a recent source of
many references see [30]) and finding a useful sparse incomplete QR decomposition is
inherently difficult. Partly it may be because modification and compensation strate-
gies of the incomplete QR decomposition are much less understood than analogous
techniques for the incomplete symmetric and positive definite (SPD) factorization;
see, e.g., [1, 2, 8, 37, 63]. Finding appropriate tools to modify the structure or fac-
tors for the IQR decomposition, whose power was shown in [52], turns out to be an
important open problem in this field. An interesting contribution that discusses both
theoretical and practical aspects of the Gram-Schmidt-based incomplete LQ decom-
position as well as other preconditioning techniques is given in [56]. For the first
attempts to develop a drop tolerance based incomplete orthogonalization by Givens
rotations see [68] and the detailed overview [67], and also the incomplete orthogonal
decomposition based on static sparsity patterns in [47]. A recent theoretical overview
of the incomplete QR strategies based on Givens rotations is given in [3] and in the
subsequent paper [54].

One specific approach that uses an IQR decomposition based on Gram-Schmidt
orthogonalization with no dropping in Q is developed in [48]. This method is studied
in [64] and [65] where it is shown that this approach can be also described as a spe-
cific robust IC decomposition, called Cholesky Incomplete Modified Gram-Schmidt
(CIMGS). Without going into details, its main idea can be easily described consid-
ering the decomposition as a sequence of modifications of Schur complements. If the
decomposition is performed incompletely, the modifications are semidefinite, and it
is breakdown-free. Looking carefully at CIMGS in [65] we get that, see also [6], the
CIMGS method applied to the matrix B = ATA is equivalent to the IC decomposition
of B based on positive semidefinite updates proposed by Tismenetsky in [63]. The
resulting method is known to be rather robust [65, 8] and this is the reason that we
mention it here as a representative of the incomplete QR approaches.

The third main alternative is the LU-based approach. It was introduced in [51]
as a direct solution method. It consists of partitioning the system matrix A with
permuted rows as

PA =

(

A1

A2

)

,

where P denotes the row permutation matrix. The LS problem is then transformed
by multiplying A by A−1

1 from the right. The corresponding normal matrix is then
In+(A2A

−1
1)TA2A

−1
1 which should be easy to solve especially when m−n ≪ n, since

the above matrix is a low rank modification of the identity matrix. The transformed

2

LS problem can be then solved either directly with stationary iterative methods such
as SOR, or with a nonsymmetric Krylov space iterative method where A−1

1 serves
as a preconditioner. Further, A−1

1 can be used as a preconditioner for the normal
equations. Note that if a complete decomposition of A1 with well-conditioned L is
available, then the Peters-Wilkinson method may be the method of choice [55] for
solving both dense and sparse problems.

In this paper we further develop both the first and the third approaches, i.e.,
the incomplete decomposition to solve the normal equations (1.2) as well as the LU-
based technique mentioned above, but our comparison covers also the incomplete
QR decomposition CIMGS. In the first approach treated here, namely the incom-
plete decomposition for the normal equations, we deal with the Balanced Incomplete
Factorization (BIF) preconditioner for symmetric and positive definite matrices from
[20], see also [19]. In particular, we present a new breakdown-free algorithm for SPD
matrices and demonstrate that this strategy is a useful choice for solving LS problems
because of its robustness.

The ILU approach has been slightly overlooked if we consider just the papers
published in recent years. An explanation may be the lack of attention devoted to
the choice of the submatrix A1 used for this type of preconditioning. Our proposal is
exactly in this direction. The incomplete LU decomposition is based on the generally
known ILUT algorithm [57] although we have also developed the BIF preconditioner
for solving nonsymmetric problems that was shown to be rather robust in [21]. The
core of the strategy is the matrix reordering that chooses the leading submatrix A1

of A. The reordering is based on an algorithm for finding the weighted transversal
(matching) using the sparsity structure and magnitudes of entries of A. Such an ap-
proach was introduced and motivated for square matrices in [53], and it was efficiently
implemented for nonsymmetric systems of linear equations in [33] and [34], see also
[7]. Although the reordering entails an additional small overhead and may result in
instabilities for very ill-conditioned problems [14, 40], the results of numerical exper-
iments in Tables 2 and 3 show that it sometimes leads to better performance than
that of the approach based on the normal equations.

The paper is organized as follows. In section 2 we present the enhanced BIF
algorithm accompanied by some theoretical results and propose its application to
computing the incomplete factorization of the matrix ATA. In section 3 we describe
the LU-based approach and the new reordering technique used to find the submatrix
A1. In section 4 we show the results of the numerical experiments. Section 5 outlines
the main conclusions.

2. The balanced incomplete factorization for the normal equations. As
mentioned, there is a long list of previous attempts to precondition the normal equa-
tions with various types of incomplete Cholesky (IC) factorizations. The precondition-
ing strategy we propose here uses the LDLT decomposition arising from the (shifted)
(I− (ATA)−1)−1-biconjugation applied to the normal equations [20], see equation (4)
in [25]. Our approach, in contrast to standard incomplete Cholesky decompositions,
computes also an approximation of the inverse Cholesky factor of ATA. It is well
known that because of the larger conditioning of ATA some standard approaches be-
come less stable [14]. One possibility to obtain a robust decomposition of a matrix is
to exploit properties of its inverse. This strategy was shown to be successful for stan-
dard incomplete LU decompositions of nonsymmetric matrices, see e.g., [16, 17, 18],
when the estimates related to the inverse of such matrices are used to monitor and
control dropping of the decomposition. A different algorithm that also uses informa-

3

tion from the inverse is the Robust Incomplete Factorization (RIF) introduced in [11]
that has been also applied to solve LS problems in [12]. Recent work [26], see also
[29], proposed ATA-biconjugation, which uses L−1, the inverse of the L factor of the
Cholesky factorization, as an auxiliary intermediate quantity. It was derived in an
interesting way starting with explicit expressions for the Moore-Penrose pseudoinverse
originally proposed by Greville [42] instead of using directly the AINV decomposition
of ATA [9]. It is worth noting that Greville’s method for computing the pseudoinverse
can also be derived from a general framework given in [23, Theorem 3.1.3] but we do
not give the details since this connection is not needed in this work.

Our method is based on a biconjugation process that allows the computation of a
decomposition of the inverse of a given matrix, see [19]. When applied to a symmetric
positive definite matrix B = ATA it computes the factors Z, Ds and V satisfying

s−1I −B−1 = s−2ZD−1
s V T , (2.1)

where s > 0 is a given scalar. Algorithmically, the columns of Z and V are computed
from

zk = ek −

k−1
∑

i=1

vTi ek
sri

zi and vk = yk −

k−1
∑

i=1

yTk zi
sri

vi, (2.2)

for k = 1, 2, . . . , n, where ek is kth unit vector, yk = (bk − sek)T , bk denote the kth
row of B, and ri = 1+vii/s are the elements of the diagonal matrix Ds. It was proved
in [20] that the decomposition B = LDLT and the decomposition (2.1) satisfy

Z = L−T , V = LD − sL−T and Ds = s−1D.

Thus, the Cholesky factorization of B and its inverse can be computed simultane-
ously with the biconjugation process described. Furthermore, both the direct and
the inverse factors are influenced by their counterparts since the computations can
be coupled in two ways. The motivation that lies behind the process is to obtain
more robust incomplete decompositions. This coupling was first performed in [20] via
synchronized dropping in the approximations of L and L−1 based on the relations
derived in [18]. Later on the approach proposed in [21] extended this coupled decom-
position to the nonsymmetric case and the resulting approach was again found rather
robust and efficient. Both papers contain also algorithmic schemes and description
of the implementation that is based on sparse data structures and incompleteness by
dropping.

To design an algebraic preconditioning algorithm to solve least squares prob-
lems we have to consider additional constraints. First, note that the system matrix
B = ATA of the normal equations is often significantly denser than A. This implies
that agressive dropping to keep the preconditioner sparse must be applied. As a
consequence the standard incomplete decompositions may become unstable and the
convergence of the iterative method can fail. Also, incomplete decompositions that
are parametrized often need fine tuning of the parameters to avoid breakdown, in par-
ticular, for the normal equations. Summarizing this, devising robust preconditioning
algorithms is even more crucial for solving the normal equations by preconditioned
iterative methods. This is the reason why we propose the use of the BIF precondi-
tioner which allows the coupled computation of both, the direct and inverse factors
of B, and a special care is devoted to computation of diagonal entries.

4

It was shown that the balanced incomplete decomposition is breakdown-free for
H-matrices, but it may fail for symmetric and positive definite matrices. We present
a new version for the symmetric positive definite matrices satisfying the breakdown-
free property. It is obtained by reformulating the computation of pivots using the
quadratic form defined by the SPD matrix B, and maintaining the computation of
both factors in V mutually dependent. The new compact scheme of the balanced
incomplete decomposition is displayed in Algorithm 2.1 as a dense code without drop-
ping.

Let us note that the columns of Z = L−T and the diagonal elements of D are
contained in the upper triangular part of V , see [20]. More precisely, the kth columns
of Z and the upper part of V are related by zk = −[vT1:k−1,k/s, 0, . . . , 0]

T + ek, and
the kth pivot is dk = vkk + s. This is the reason why Algorithm 2.1 is described only
in terms of the matrix V using equation (2.8) of [2] and the equalities given below in
the proof of Theorem 2.1.

Algorithm 2.1.

for k = 1 : n do

vk = bk − sek
for i = 1 : k − 1 do

v1:i−1,k = v1:i−1,k −
bTk zi
zTi Bzi

v1:i−1,i

vi,k = s
bTk zi

zTi B zi

vk:n,k = vk:n,k −
bTk zi

zTi B zi
vk:n,k

end for

zk = −[vT1:k−1,k/s, 0, . . . , 0]
T + ek

end for

This algorithm computes the LDLT decomposition of B as it is stated in the
following theorem.

Theorem 2.1. Algorithm 2.1 obtains the matrix V = LD − sL−T where L and
D are the Cholesky factors of B = LDLT . Furthermore, the computation of V is
breakdown-free for any dropping of off-diagonal entries in V .

Proof. The only change in Algorithm 2.1 with respect to the BIF algorithm is the
computation of the denominator in the equations. Since Z = L−T and zi in Algorithm
2.1 is its ith column it follows

zTi Bzi = zTi LDLT zi = eTi Dei = di = sri.

Then the computation of the columns of the matrix V by the algorithm is just
equation (2.2), where the pivot di is computed in another way. Further, since B is
symmetric and positive definite and zi 6= 0, at least its ith entry is nonzero (equal to
1), we have that zTi Bzi > 0 even if dropping is applied.

To further improve the quality of the preconditioner we introduce a modification
following the ideas proposed by Tismenetsky [63] that we briefly describe here. This

approach assumes that each column lk of the exact factor L is split as lk = l̄k+ l̂k such
that l̄k and l̂k have orthogonal patterns. Then the Tismenetsky algorithm decomposes
in each step the matrix increased by E = L̂L̂T , where E is an additional positive

5

semidefinite local error matrix. E typically reflects the entries of L that are small in
some sense and kept in L̂. The same splitting as in the Tismenetsky decomposition
can be applied also to BIF for computation of the lower triangular part of V . Assume
that each lower triangular part vk:n,k of the column k of V is expressed as a direct sum
vk:n,k = v̄k:n,k + v̂k:n,k such that v̄k:n,k and v̂k:n,k have orthogonal patterns. Theorem
2.2 formally describes the Tismenetsky decomposition based on the lower triangular
part of V that is breakdown-free.

Theorem 2.2. Consider Algorithm 2.1 applied to a symmetric and positive def-
inite matrix B, with the computation of vk:n,k replaced by

vk:n,k = vk:n,k −
∑

i<k
v̄ki 6=0

v̄ki
vii + s

(v̄k:n,i + v̂k:n,i)−
∑

i<k
v̂ki 6=0

v̂ki
vii + s

v̄k:n,i , (2.3)

for k = 1, . . . , n. Let D = diag(V)+sI and let L be the unitary lower triangular matrix
such that has the same strictly lower triangular part as V D−1. Let B̂ = LDLT with
B̂ = B + E, for some positive semidefinite matrix E. Then, the computation of V is
breakdown-free.

Proof. In exact arithmetic Algorithm 2.1 computes a matrix V such that V =
LD − sL−T . Equation (2.8) of [21] states bTk zi = lkidi = vki and also di = vii + s.
Then the modification in (2.3) is just the Tismenetsky algorithm for any choice of
the splitting of vectors vk = v̄k + v̂k if the entry vkk remains in v̄k. Then, by the
proposition stated in page 336 of [63] the new algorithm is breakdown-free.

The exact update in (2.3) removes coupling of the computation of the direct and
inverse factors in V that we consider to be important for the decomposition robustness.
In our experiments we use the Algorithm 2.2 where the update (2.3) is reformulated
in the sense of Theorem 2.1 and allows safe incomplete implementation. The coupling
of the upper and lower triangular parts of V is restored via the bilinear form that
makes the incomplete decomposition also breakdown-free.

Algorithm 2.2.

for k = 1 : n do

vk = bk − sek
for i = 1 : k − 1 do

v1:i−1,k = v1:i−1,k −
bTk zi

zTi B zi
v1:i−1,i

vi,k = s
bTk zi

zTi B zi

vk:n,k = vk:n,k −
∑

i<k
v̄ki 6=0

v̄ki
zTi B zi

(v̄k:n,i + v̂k:n,i)−
∑

i<k
v̂ki 6=0

v̂ki
zTi B zi

v̄k:n,i

end for

zk = −[vT1:k−1,k/s, 0, . . . , 0]
T + ek

Split vk:n,k in two vectors, v̄k:n,k and v̂k:n,k with orthogonal pattern such that
vk:n,k = v̄k:n,k + v̂k:n,k

end for

3. LU preconditioning for least squares problems. The class of LU pre-
conditioners for the least-squares problems based on splitting of A with permuted
rows

6

PA =

(

A1

A2

)

(3.1)

mentioned in the Introduction was thoroughly considered in [15]. It was noted there
that such preconditioned iterative methods have very good convergence properties
provided that the permutation matrix P is chosen such that the matrix AA−1

1 is well-
conditioned. The resulting Krylov space method for the preconditioned system was
deeply studied in [39]. It was also shown in [15] that a simple reformulation of the
LU preconditioned algorithm can be easily adapted to solve generalized least-squares
problems.

Our main goal here is to show that the LU preconditioner based on an incomplete
decomposition can sometimes successfully compete with the other methods as our
experiments in Section 4 show. The proposed strategy is based on finding a good row
reordering P of A such that A1 has a stable incomplete decomposition A1 ≈ L1U1

and PA(L1U1)
−1 is well-conditioned. To find the reordering we use the concept of

maximum transversal of a matrix. Moreover, after computing the transversal we still
keep the possibility to choose the pivot from the whole matrix A when the incomplete
LU decomposition of A1 is actually performed.

We recall that a transversal M of a m × n sparse matrix A is a subset of its
nonzero entries such that no two of them are in the same row and also no two of them
are in the same column. Being M a transversal is a necessary and sufficient condition
for permuting the subset M to the diagonal. M is called a maximum transversal if
its cardinality is as large as possible. If A has full column rank then all maximum
transversals have n elements, thus obtaining a maximum transversal is a way to
find a permutation P of A such that the n diagonal entries of PA are the nonzero
entries of the transversal. An efficient implementation of the basic algorithm that
finds the maximum transversal [46] was given in [36], see also a recent survey [32].
The corresponding problem in graph theory is often called the maximum bipartite
matching problem.

To enforce stronger diagonal dominance of the permuted matrix and therefore try
to satisfy the two desirable properties of the splitting (3.1) stated above, additional
constraints on the choice of the transversal M are imposed. Taking into account the
magnitude of the entries for square nonsymmetric matrices convert this problem into a
variant of the weighted bipartite matching problem [33, 34, 53], also referred to as the
assignment problem [22]. Experiments with preconditioned iterative methods can be
found in [7]. Its application to symmetric and indefinite systems has been studied in
[35, 43, 60]. Here we introduce a transversal-based reordering for rectangular matrices
of size m× n, m ≥ n.

A well known strategy that has been used for square matrices considers the max-
imum transversal M = {ap(1),1, . . . , ap(n),n}, such that the product

n
∏

j=1

|ap(j),j | (3.2)

is maximized over all possible bijective maps p : {1, . . . , n} → {1, . . . , n}. Here we are
interested mainly in generally rectangular matrices but it is still worth to note that if
A is a generalized diagonally dominant matrix (M- or H-matrix), then the maximum
of the product (3.2) is attained by the transversal formed by the main diagonal entries,
that is, no reordering is needed.

7

Theorem 3.1. (a) Let A be an H-matrix with nonsingular comparison matrix.
Then

n
∏

j=1

|ajj | ≥

n
∏

j=1

|ap(j),j |, for any permutation p of {1, . . . , n}.

(b) If there is a permutation matrix P such that PA is an H-matrix, then the
algorithm that finds a maximum transversal maximizing the product (3.2) provides a
permutation matrix P ′ such that P ′A is an H-matrix.

Proof. (a) Since A is an H-matrix there exists a diagonal matrix with positive
diagonal entries such that AD is diagonally dominant by rows, that is

|ajj | dj ≥
∑

k 6=j

|akj | dk.

Let p be an arbitrary permutation of the set {1, . . . , n}, different from the principal
one. Then for each j one has |ajj | dj ≥ |ap(j),j | dp(j). Then

n
∏

j=1

|ajj | dj ≥

n
∏

j=1

|ap(j),j | dp(j)

and the result follows.
(b) It is an easy consequence of part (a), since the product of the absolute values

of the diagonal entries of the H-matrix PA maximizes the product (3.2).
As it is well known the condition of being generalized strictly diagonally domi-

nant guarantees the successful computation of many preconditioners. According to
Theorem 3.1, the strategy of maximizing the product (3.2) reorders matrices such
that they are in most cases more diagonally dominant.

In [33] it is proved that maximizing the product (3.2) is equivalent to minimizing
the sum of weights

n
∑

j=1

|cp(j),j | (3.3)

defined as

cij =

{

log āj − log |aij |, aij 6= 0,
∞, aij = 0,

(3.4)

where āj = maxi |aij | is the maximum magnitude of an entry of the jth column of A.
To take into account other problem features such as the matrix sparsity, the definition
of the weights in (3.4) may be modified.

However, in the rectangular case, A ∈ R
m×n with m ≥ n, this definition of the

weights cij may not be suitable for the following reason. To decompose the n × n
leading submatrix A1 of PA, the row dominance is more important than the column
one, because we concentrate on obtaining a well-conditioned matrix A1 and also in
the stability of its incomplete LU decomposition. Observe that even in the case that
A contains a submatrix that is an H-matrix, the above strategy does not guarantee
to find that submatrix, as can be seen in Example 1.

Then, we redefine the weights as

cij =

{

log āi − log |aij |, aij 6= 0,
∞, aij = 0,

(3.5)

8

where āi = maxj |aij | is the maximum magnitude of an entry of the ith row of
A. The injective map p : {1, . . . , n} → {1, . . . ,m} that minimizes the sum (3.3) is
computed and entries of the corresponding transversal are permuted to the diagonal
of A to provide the permuted matrix PA. Now, the product of diagonal entries is not
maximized over the set of all row permutations of A.

Example 1. Consider the following matrix

A1

A2

=

1
2

3
5 6 8
3 5 6
2 3 4

.

Our method (3.5) leads to choosing the well-conditioned submatrix formed by the first
three rows of A to form A1 instead of choosing the last ones (with entries of larger
magnitudes) as strategy (3.4) does. Clearly, A1 is an M-matrix, it is better conditioned
and has more stable factorization than A2, which is not an M-matrix. Observe that
AA−1

1 has condition number 8.29 that is smaller than the one of AA−1
2 which is 13.59.

Moreover, since our goal is to compute an incomplete factorization of the chosen
submatrix, sparsity is another point to be considered. We propose to modify the
weights (3.5) as

c̄ij = θcij + (1− θ)

(

ri
rmax

)

cij (3.6)

where ri is number of nonzero entries in row i, rmax = maxi ri and 0 ≤ θ ≤ 1. For
values of θ greater than 0.5 the magnitude of the matrix entries is emphasized.

4. Numerical experiments. In this section we present the results of some
numerical experiments aimed at assessing the performance of the BIF preconditioner
for least squares problems and the new approach to find a useful splitting (3.1) for
the LU-based preconditioner. We also compare them with some other well known
methods. All codes developed for the tests were written in FORTRAN 95, and have
been compiled with Intel Fortran Composer XE 2013. For the experiments we used
one processor of an Intel Core2 Q6700 (2.66GHz, 4GB RAM).

The number of rows m, number of columns n together with a short description of
each matrix source are summarized in Table 1. All matrices can be found in the Tim
Davis collection of sparse matrices [31]. Note that because of typographical reasons,
the full matrix names were in Tables 2 and 3 abbreviated. With respect to the matrices
representing constraints for the simplex method of linear programming we note that
they proceed from specific types of problems, see [4], and they may be difficult to
use especially for combinatorial preprocessings since their nonzero entries are often
chosen from a very restricted set of numerical values. Note that these matrices had
to be transposed in order to have m > n and in some cases they were automatically
regularized by removing linearly dependent columns. Regularization by removing
their last column was also needed for the popular animal breeding matrices, although
we have not found anywhere in the literature that these matrices do not have full
column rank.

The stopping criterion used for CGLS was based on the backward error. Namely,
we stopped the iterations as soon as the residual 2-norm of the kth approximation of

9

Table 1

Test problems

Matrix m n nz Application

S 3,140 1,987 8,510 animal breeding
PHOTOGRAMMETRY2 4,472 936 37,056 photogrammetry
M 9,397 6,119 25,013 animal breeding
LP MAROS R7 9,408 3,136 144,848 linear programming
LP DFL001 12,230 6,071 35,632 linear programming
STORMG2-27 14,441 37,485 94,274 linear programming
TESTBIG 17,613 31,223 61,639 linear programming
LP OSA 07 25,067 1,118 144,812 linear programming
L 28,254 17,263 75,018 animal breeding
KEMELMACHER 28,452 9,693 100,875 computer graphics/vision
LP OSA 14 54,797 2,337 317,097 linear programming
DELTAX 68,600 21,961 247,424 example from S. Toledo
LANDMARK 71,952 2,704 1,151,232 problem from V. Pereyra
LP OSA 30 104,374 4,350 604,488 linear programming
LP KEN 18 154,699 105,127 358,171 linear programming
MESH DEFORM 234,023 9,393 853,829 image mesh deformation
IMAGE INTERP 240,000 120,000 711,683 image editing problem
SLS 1,748,122 62,729 6,804,304 statistics

the solution vector was smaller than α(||A||2||xk||2 + ||b||2). Note that this is only a
sufficient condition for convergence, see, e.g., the discussion in [24]. The constant α
was set to 10−6 for all problems except for the matrix LANDMARK for which 10−4

was used because of its lower final attainable accuracy. In all cases the initial guess
was x0 = 0, and the right-hand side b was chosen so that the solution was the vector
of all 1’s.

Before showing and discussing the results of experiments, let us describe the way
we present them. Arranging the results for more matrices and methods into tables is
often useful but it may not reveal some visible and important differences among the
considered approaches. In particular, robustness of the methods is not easily described
by tables. This is the reason why we provide, for some matrices, graphs containing a
more detailed view visualizing some characteristic features of the methods that would
otherwise stay hidden.

Tables 2 and 3 contain results for CGLS preconditioned by the four different
incomplete decompositions of B = ATA: BIF, IC, AINV and CIMGS. The imple-
mentation of the new breakdown-free BIF algorithm for the normal equations, sum-
marized in Section 2, is based on [20]. In addition, in each step of the decomposition
we computed the diagonal entries of the preconditioner from the bilinear form in a
straightforward way by an additional matrix-vector product and a dot product. The
BIF shift parameter s was fixed to 1 as in [20], and data structure for rows of the
matrix Vs stored at most lsize = 10 of the largest nonzero magnitudes. Further,
additional size of the intermediate memory used for each v̂k was fixed to lsize/2. IC
denotes the left-looking implementation of a standard drop-tolerance based incom-
plete Cholesky decomposition that was used in [12] to evaluate the RIF algorithm.
AINV is the factorized approximate inverse preconditioner [9]. Its right-looking im-
plementation is used since the computational complexity for sparse preconditioners
should depend less on the matrix ATA, that may be rather dense. Thus, the AINV

10

computation depends more on the sparsity of the computed approximate factor of the
inverse of ATA. Finally, we consider CIMGS, that is the incomplete QR factorization
in which Q is exact and only the factor R is computed incompletely. For the sake of
efficiency we used for CIMGS the left-looking implementation proposed by Kaporin in
[49], which uses two drop tolerances. The smaller one is fixed to 10−4, and it simply
means that the nonzero fill-in entries smaller than this value are used only to modify
the diagonal of the preconditioner. The larger drop tolerance controls the size of the
preconditioner.

Table 2 reports number of nonzeros in the incomplete factor (under size) and
number of preconditioned CGLS iterations (under its). The complementary Table
3 reports the time to construct the preconditioner (under tp) and the time for the
iterative solution phase (under tit). In boldface the best achieved timings (adding
time for the decomposition and for the preconditioned CGLS) for each problem are
highlighted although in some cases the differences are very small. For each matrix
we report two experiments. One corresponds to a very sparse preconditioner and the
other to a denser one. We always intend to couple the number of iterations with
the size of the preconditioner, see also the concept of efficiency in such comparisons
introduced in [61] that couples size of the preconditioner and iteration count together
into a common quantity. Therefore, this way of presenting the results is different
than the approach used in [54], where the authors are interested in getting the best
preconditioner not depending on its size.

An important goal of the experiments was also to demonstrate completely differ-
ent robustness of the approaches with respect to the sizes of generated preconditioners.
The preconditioners sharing the same line in the tables were chosen such that they
have approximately the same sizes for the compared approaches, but it was not possi-
ble to achieve this in some cases. Then, a significantly lower size of the preconditioner
means that an algorithm was not able to generate a larger preconditioner, possibly
also because of the implementation. A significantly larger size for a particular method
means that it was not possible to obtain a useful preconditioner of the size similar
to other methods because of some numerical problems (breakdowns in construction
or non-convergence of the preconditioned iterative method). For example, BIF pre-
conditioners for the OSA matrices are generated always very sparse and they are
surprisingly still very efficient. Limited internal memory in BIF here may help to in-
terrupt some fill-in dependencies in the decomposition very early and the final factor
is then always sparse [20]. The implementation of BIF that limits memory for the
rows of V may not generally allow to obtain preconditioners that imply very small
iteration counts. Later we show that IC is rather susceptible to breakdowns or may
needs a large number of iterations for significant amount of sizes of the preconditioner,
but we tried to avoid these unstable cases in Tables 2 and 3. To get a more compre-
hensive view of the behavior of the IC preconditioner including possible instabilities,
one should consult rather the figures 4.1, 4.2 and 4.3.

It appears from the tables that the performance of BIF and IC is similar from the
point of view of the rate of convergence of the preconditioned CGLS method. Time
to compute BIF is higher than for IC, but not prohibitive. It can be sometimes as
high as for AINV. Note that the time to compute the BIF factors for larger problems
is smaller than for AINV because of the internal memory restriction for V mentioned
above. On the other hand, the timings, especially for larger matrices, are increased
by the breakdown-free computation of the diagonal entries with the full bilinear form.
It pays off from the point of view of robustness since it is the only method that

11

Table 2

Sizes and iteration counts of the BIF, IC, AINV and CIMGS preconditioners.

Matrix
BIF IC AINV CIMGS

size its size its size its size its

S
6,538 101 10,741 108 6,668 93 6,785 613

49,413 96 41,550 12 54,526 25 52,144 7

PHOTO2
1,283 90 1,385 73 1,359 112 1,303 ‡

39,427 84 39,076 133 36,657 857 59,578 38

M
6,239 182 7,633 176 7,408 174 6,897 ‡

141,982 142 94,847 17 93,856 42 113,736 249

MAR R7
18,469 9 18,642 8 18,645 7 21,111 71

317,000 5 339,081 2 298,517 4 342,635 2

DFL001
11,835 254 10,018 307 11,460 258 20,200 ‡

236,996 140 299,992 471 392,724 485 1,906,518 16

STRG2-27
26,671 327 26,824 149 32,685 ‡ 32,232 ‡

86,370 174 90,160 221 1,995,888 ‡ 7,728,742 ‡

TESTBIG
63,777 80 78,391 23 50,457 97 103,974 ‡

139,117 57 170,825 16 145,324 ‡ 2,039,655 ‡

OSA 07
1,969 19 2,162 29 2,824 88 3,363 256
2,057 19 3,515 42 4,533 55 55,288 11

L
40,289 167 21,802 196 46,237 153 30,908 ‡

145,093 167 208,634 26 213,759 55 626,399 ‡

KEMELM
72,649 193 83,702 ‡ 76,560 ‡ 71,461 116

264,143 193 282,019 ‡ 338,038 ‡ 122,725 63

OSA 14
2,873 46 2,740 25 4,531 37 4,587 227
3,276 19 7,156 45 7,323 71 117,933 16

DELTAX
172,992 146 165,613 161 180,488 150 165,432 ‡

344,066 118 318,554 137 314,330 128 335,724 ‡

LMARK
24,675 51 28,636 10 4,856 ‡ 24,337 ‡

105,577 26 122,692 ‡ 341,544 ‡ 98,334 2

OSA 30
4,954 30 4,773 27 4,354 39 22,781 215
5,289 20 7,652 32 8,501 33 217,051 20

KEN 18
198,210 469 423,006 396 128,779 316 235,711 ‡

1,013,707 438 1,662,023 429 253,550 354 1,003,559 674

MESH DF
119,070 115 118,555 ‡ 12,297 182 137,227 384
241,574 105 235,124 5 43,712 279 261,049 47

IMG IN
1,174,032 15 1,241,194 ‡ ‡ ‡ 1,077,003 133
1,575,791 10 1,352,400 ‡ ‡ ‡ 1,541,568 70

SLS
66,605 53 65,355 60 62,729 79 9,547,789 ‡

80,444 25 71,462 47 69,838 55 9,795,156 36

successfully solves all the considered problems. CGLS preconditioned by AINV can
be sometimes rather competitive for sparser preconditioners. AINV turns out to be
slower when a denser incomplete decomposition is needed. This behavior corresponds
to our expectation that sparse approximate inverses often easily capture characteristic
features of the matrix, but in order to get higher accuracy, they may need more
nonzeros than direct incomplete decomposition (IC). But the difference may not be
always prohibitive and even denser AINV preconditioners may be useful, in particular,
in parallel implementations [10]. Results for the CIMGS preconditioner also agree
with previous computational experience [49, 62, 8, 66]. In most cases, CIMGS cannot
generate preconditioners which would be sparse and powerful at the same time. If

12

Table 3

Timings to for the preconditioner and preconditioned CGLS for the BIF, IC, AINV and CIMGS
preconditioners.

Matrix
BIF IC AINV CIMGS

t p t it t p t it t p t it t p t it

S
0.05 0.13 0.02 0.17 0.12 0.13 0.02 0.86
0.20 0.24 0.08 0.05 0.45 0.08 0.33 0.03

PHOTO2
0.05 0.20 0.03 0.16 0.16 0.23 0.03 ‡
0.35 0.27 0.06 0.42 0.44 2.54 0.09 0.16

M
0.03 0.44 0.05 0.43 0.13 0.42 0.03 ‡
0.98 0.89 0.23 0.09 0.69 0.21 0.27 1.36

MAR R7
0.92 0.06 0.27 0.05 0.55 0.05 0.30 0.42
4.11 0.08 0.80 0.03 4.49 0.06 2.15 0.03

DFL001
0.17 0.94 0.05 1.12 0.17 0.94 0.11 ‡
2.56 1.37 2.09 5.32 4.02 6.60 98.60 0.84

STRG2-27
0.44 2.31 0.11 1.06 0.44 ‡ 0.44 ‡
1.34 1.55 0.32 1.98 88.30 ‡ 172.00 ‡

TESTBIG
7.36 0.56 1.72 0.18 5.24 0.64 1.53 ‡

13.90 0.52 3.72 0.17 1.85 ‡ 52.20 ‡

OSA 07
0.06 0.13 0.05 0.19 0.20 0.55 0.06 1.58
0.07 0.12 0.06 0.27 0.22 0.33 0.09 0.09

L
0.28 1.11 0.09 1.20 0.34 0.90 0.03 ‡
1.42 1.61 0.73 0.31 2.29 0.50 3.81 ‡

KEMELM
2.55 1.47 0.14 ‡ 0.25 ‡ 0.13 0.56

11.10 2.46 0.40 ‡ 1.16 ‡ 0.31 0.56

OSA 14
0.16 0.59 0.13 0.34 0.39 0.47 0.11 2.86
0.16 0.25 0.11 0.59 0.52 0.89 0.20 0.27

DELTAX
14.10 2.64 0.92 2.86 2.89 2.70 0.75 ‡
26.40 2.66 1.77 3.02 5.80 2.71 1.09 ‡

LMARK
1.14 1.75 0.62 0.41 0.70 ‡ 0.59 ‡
2.64 1.03 0.72 ‡ 2.26 ‡ 0.81 0.12

OSA 30
0.29 0.72 0.25 0.64 0.36 0.92 0.24 5.17
0.30 0.49 0.25 0.76 0.90 0.78 0.40 0.61

KEN 18
0.90 14.20 0.72 15.00 0.58 8.69 0.25 ‡
4.95 22.70 2.93 30.70 2.00 11.10 2.68 32.70

MESH DF
1.14 4.63 0.34 ‡ 0.36 6.82 0.33 15.60
1.85 4.57 0.47 0.28 0.41 10.2 0.55 2.12

IMG IN
46.3 1.11 5.38 ‡ ‡ ‡ 0.71 9.08
75.4 0.87 6.35 ‡ ‡ ‡ 1.21 5.66

SLS
4.17 16.6 3.51 18.20 4.06 24.00 ‡ ‡
4.24 7.91 3.46 14.40 5.68 16.80 458.00 20.30

more fill-in is allowed, the method may converge very fast. Since the incomplete
QR decomposition hidden behind CIMGS does not drop elements in Q the whole
construction may take significant time.

Now, let us have a closer look at the experiments for some of the matrices. Pre-
conditioning with IC and BIF of the CGLS method using the three matrices from the
animal breeding package is depicted on Figures 4.1–4.3. The IC preconditioner for

13

10
3

10
4

10
5

0

50

100

150

200

250

300

350

400

nu
m

be
r

of
 it

er
at

io
ns

size of the preconditioner (in the number of nonzeros)

 BIF least squares
 IC least squares

Fig. 4.1. Comparison of the BIF and IC preconditioned CGLS for the matrix S from the animal
breeding package.

these matrices shows significant instability for a large range of drop tolerances. The
behavior of BIF corresponds to our expectations on its robustness. Further, we can
see that if the IC preconditioner works, it can be faster than the BIF strategy in many
cases. Summarizing this observation, IC is often faster but it is more often unstable
than the BIF approach. Let us emphasize that if the preconditioners would be com-
pared only by taking a few results for the tables, we would not see the whole story. An
important question is the proportion in which the algorithm and the implementation
contribute to this picture. One of the characteristic features of our BIF implementa-
tion mentioned in [20] and above is that we store the factor V by rows in a fixed space
that do not allow to obtain very large preconditioners. The experiments for matrices
LP KEN 18 (see Figure 4.4) and LP DFL001 (see Figure 4.5) demonstrate this fact.
In particular, a closer look at the iteration counts for BIF and IC shows again that IC
is not stable with respect to the size of the preconditioner, in particular for precon-
ditioners of medium size. Note that, on both cases, CGLS preconditioned by IC was
unable to converge within a maximum number of 5, 000 iterations. These figures once
more confirm that the information contained in the figures may reveal more from the
real complexity of the comparison, and in some sense, also complementarity of the
different approaches.

We also show results of all the considered methods graphically in one figure. Fig-
ure 4.6 compares the iteration counts for the matrix HIRLAM (m = 1, 385, 270, n =
452, 200, nz = 2, 713, 200) [45] from the meteorological application that was also used
in the experiments in [12]. None of the tested methods is unstable for this matrix.
IC works rather well and BIF works also reasonably well although it is sometimes
slower. One of the main messages of this figure is to confirm that CIMGS is very
good once the size of the preconditioner is sufficiently large and it may be very poor
if the preconditioner is kept sparse. AINV solves the problem also rather well if the

14

10
3

10
4

10
5

10
6

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nu
m

be
r

of
 it

er
at

io
ns

size of the preconditioner (in the number of nonzeros)

 BIF least squares
 IC least squares

Fig. 4.2. Comparison of the BIF and IC preconditioned CGLS for the matrix M from the
animal breeding package.

decomposition is kept sparse. Otherwise, AINV needs consistently more iterations
but neither this approach is prohibitive.

Second set of results represent the LU-based preconditioning, that is the strategy
that decomposes only a submatrix A1 of A. Clearly, this type of preconditioning
may be rather weak whenever A1 represents only a small part of the structural and
numerical properties of A. One may think it will happen whenever m ≫ n but the
experiments show that there is not a clear evidence of this implication. Tables show
only a small part of our test set, namely the matrices that lead to convergence. We
are interested in showing that the preprocessing based on the weighted transversal
for rectangular matrices may bring advantages. We will see that such preprocessing
turns out to be a useful tool for developing better techniques to solve LS problems
iteratively that may be further enhanced by a multilevel approach, see [52].

Tables 4 and 5 present results of CGLS preconditioned by A−1
1 . For both ex-

periments with the LU preconditioner we used the dual dropping algorithm ILUT
with drop tolerance τ equal to 0.1 and allowing at most ten nonzeros in a row of the
ILUT preconditioner. This choice of parameters is a compromise for the set of ma-
trices of various sizes and from various applications. Our preliminary experience that
considered smaller τ and more allowed fill-in lead for larger matrices to high compu-
tational times. In both cases we preprocessed the matrices by the described weighted
transversal strategy that chooses A1. We have also used the related nonsymmetric
scaling described in [53] and [33], and the weights for the weighted transversal was
fixed as in (3.6) to θ = 0.55. Nevertheless, this setting for the reordered and scaled
test matrices was not critical since the algorithm was in many cases unsensitive to
changes in θ.

Table 4 depicts results with the standard ILUT decomposition of A1 without
any additional pivoting. Then, for experiments in Table 5, ILUT uses also the partial

15

10
4

10
5

10
6

10
7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

nu
m

be
r

of
 it

er
at

io
ns

size of the preconditioner (in the number of nonzeros)

 BIF least squares
 IC least squares

Fig. 4.3. Comparison of the BIF and IC preconditioned CGLS for the matrix L from the animal
breeding package.

Table 4

Preconditioning CGLS based on decomposition of A1 using the weighted transversal.

Matrix t p t it size its
S 0.01 0.20 5,368 149
M 0.02 0.87 16,812 294
LP MAROS R7 0.10 0.02 3,136 24
L 0.02 4.19 43,785 588
TESTBIG 0.02 0.19 28,018 26
LP OSA 07 0.02 0.39 1,118 69
LP OSA 14 0.02 0.84 2,337 71
LP OSA 30 0.06 1.53 4,350 69

pivoting for finding the pivot of the largest magnitude in each column searching among
the nonzero entries from all m rows of A. This pivoting dynamically modifies the
original choice of A1.

We can see, that once the transversal based strategy was applied, the LU pre-
conditioning is able to improve some of the iteration counts. Sometimes it does not
improve the results, but in general turns out to be helpful. Consider, e.g., results for
the matrix TESTBIG in Table 4. Here we get the convergence in 26 iterations for
much smaller preconditioner than in the algorithms based on the normal equations.
Clearly, in this case the submatrix A1 was able to capture important characteristic
features of A having the dimension around two thirds of the dimension of A, but
also for some other matrices very efficient runs with respect to the preconditioners
based on the normal equations were observed, as for the matrices LP MAROS R7 and
LP OSA 07 that are solved faster. Also note that CGLS performed badly in other
cases for which m is not much greater than n, as for the animal breeding matrices.

16

10
5

10
6

10
7

0

500

1000

1500

2000

2500

3000

nu
m

be
r

of
 it

er
at

io
ns

size of the preconditioner (in the number of nonzeros)

 BIF least squares
 IC least squares

Fig. 4.4. Comparison of the BIF preconditioning and ICT preconditioning of CGLS for the
matrix LP KEN 18.

10
3

10
4

10
5

10
6

10
7

10
8

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nu
m

be
r

of
 it

er
at

io
ns

size of the preconditioner (in the number of nonzeros)

 BIF least squares
 IC least squares

Fig. 4.5. Comparison of the BIF and IC preconditioning of CGLS for the matrix LP DFL001.

The experiments given in the first part of this section targeting method robustness
may point out an explanation. Decomposing only a submatrix of A that may be rather
sparse can be considered a partial direct decomposition that does not imply breakdown
but also does not help much. Simply, the method can be far from transforming CGLS
into a convergent iterative method. Our point of view is that this is just the main

17

10
5

10
6

10
7

10
8

0

100

200

300

400

500

600

700

nu
m

be
r

of
 it

er
at

io
ns

size of the preconditioner (in number of nonzeros)

 BIF least squares
 IC least squares
 CIMGS
AINV

Fig. 4.6. Comparison of LS preconditioned by the four considered preconditioners for the matrix
HIRLAM.

Table 5

Preconditioning CGLS based on decomposition of A1 based on the weighted transversal and
dynamic partial pivoting.

Matrix t p t it size its
S 0.02 0.20 5,271 128
M 0.03 0.80 15,990 266
LP MAROS R7 0.02 0.17 15,565 26
KEMELMACHER 0.21 2.15 30,195 315
TESTBIG 0.04 0.75 45,777 104
LP OSA 07 0.01 0.34 1,118 56
L 0.03 2.87 42,980 400
LP OSA 14 0.03 0.71 2,337 56
LP OSA 30 0.06 1.29 4,350 56
SLS 0.65 45.9 62735 151

practical drawback of the LU preconditioner for solving LS problems. Despite the
observed behavior that could be caused by the overall instability of the preconditioned
CGLS, let us note that LU preconditioning may be a method of choice for the solution
of weighted least squares as shown in [15]. Another important advantage is that it
is an algorithm that straightforwardly avoids forming ATA in the construction of
preconditioner. This feature can be useful because of relatively low memory demands.
Further, since it uses the original block A2, the preconditioner turns out to be more
suitable for the matrix-free framework if A1 can be determined directly from the
application. But, taking into account also the fact that we are able to solve only
a part of the problems in this way, LU preconditioning is usually less efficient than
direct preconditioning of the normal equations. An open question is whether LU
preconditioning may be more powerful if another preconditioner is applied on the top

18

of the matrix A2A
−1
1 or when we apply the incomplete decomposition repeatedly to

A2A
−1
1 for A with m > 2n.

Let us finalize this section with some comments on additional experience obtained
with the complete LU preconditioning. In some cases we were able to show that even
the direct solver used to compute the complete LU decomposition of a square sub-
matrix may be slower whenever used as a preconditioner. Nevertheless, a preferable
way to use direct solvers for solving sparse LS problems is to keep the factor L as
well-conditioned as possible and to apply them to a reformulated system as pointed
out in [55], see also [58, 59]. Therefore, we do not refer to these experiments here.
Also note that the strategy proposed here is a result of tests with other approaches
including some crash procedures for linear programming, see, e.g., [41] and P4/P5
preprocessings [44], [38], [50]. We have found that all these alternative preprocessings
need additional procedures to improve them. Their investigation is one of our future
tasks.

5. Conclusions and future work. In this paper we have described new pre-
conditioning strategies for solving sparse LS problems by preconditioned iterative
methods. In particular, we have evaluated the performance of BIF preconditioning
for the CGLS method. Moreover, we have further stabilized the BIF algorithm to
make it breakdown-free for SPD matrices. Our experimental results show the robust-
ness of the BIF algorithm for solving LS problems that is in line with previous work
for systems of linear equations. Although solving LS problems iteratively is rather
hard, and up to now there is no computational strategy that would iteratively solve
systems arising from a broad pool of various applications, we probably do not ex-
aggerate by saying that the BIF preconditioning belongs to the family of algebraic
preconditioners of choice, as recently found for RIF.

Further we introduced a new preprocessing strategy for incomplete LU precondi-
tioning following earlier work proposed by Läuchli. It is based on the computation of
weighted maximum transversals by rows and also takes into account the sparsity of
the leading submatrix A1. Our experiments show that this reordering improves the
conditioning and sparse structure of this submatrix.

Our future work in the field of the LU preconditioning will consider stabilization of
the crash techniques developed for the simplex method of linear programming by some
postprocessing, multiple application of the Läuchli splitting, and combination with
the other techniques. In particular, we would like to consider hierarchical methods
to solve LS problems, continuing in the pioneering work [52]. We intend to make the
resulting code publicly available as that of its predecessor, the RIF method.

6. Acknowledgements. We would like to thank the editor and anonymous
referees. Their constructive comments helped us to improve the paper significantly.
Parts of this paper were written while the fourth author was visiting the Universitat
Politècnica de València: the hospitality and support are greatly appreciated.

REFERENCES

[1] M. A. Ajiz and A. Jennings. A robust incomplete Choleski-conjugate gradient algorithm.
International J. of Numerical Methods in Engineering, 20(5):949–966, 1984.

[2] O. Axelsson and L. Y. Kolotilina. Diagonally compensated reduction and related precondition-
ing methods. Numerical Linear Algebra with Applications, 1(2):155–177, 1994.

[3] Z.-Z. Bai, I. S. Duff, and A. J. Wathen. A class of incomplete orthogonal factorization methods.
I: Methods and theories. BIT Numerical Mathematics, 41(1):53–70, 2001.

19

[4] S. Bellavia, J. Gondzio, and B. Morini. A matrix-free preconditioner for sparse symmetric
positive definite systems and least-squares problems. SIAM J. Sci. Comput., 35(1), 2013.

[5] C. Benoit. Note sur une méthode de résolution des équations normales provenant de
l’application de la méthode des moindres carrés a un systeme d’équations linéaires en
nombre inférieur a celui des inconnues. application de la méthode a la résolution d’un
systeme défini d’équations linéaires. Bulletin Géodésique, 2:5–77, 1924.

[6] M. Benzi. Personal communication, 2000.
[7] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and nonsymmetric

matrices. SIAM J. on Scientific Computing, 22(4):1333–1353, 2000.
[8] M. Benzi, R. Kouhia, and M. Tůma. Stabilized and block approximate inverse preconditioners

for problems in solid and structural mechanics. Comput. Methods Appl. Mech. Engrg.,
190(49-50):6533–6554, 2001.

[9] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the
conjugate gradient method. SIAM J. on Scientific Computing, 17(5):1135–1149, 1996.

[10] M. Benzi and M. Tůma. A comparative study of sparse approximate inverse preconditioners.
Applied Numerical Mathematics, 30(2-3):305–340, 1999.

[11] M. Benzi and M. Tůma. A robust incomplete factorization preconditioner for positive definite
matrices. Numerical Linear Algebra with Applications, 10(5-6):385–400, 2003.

[12] M. Benzi and M. Tůma. A robust preconditioner with low memory requirements for large
sparse least squares problems. SIAM J. on Scientific Computing, 25(2):499–512, 2003.

[13] Å. Björck. SSOR preconditioning methods for sparse least squares problems. In In Proceedings
of the Computer Science and Statistics 12th Annual Symposium on the Interface, pages
21–25. University of Waterloo, Canada, 1979.

[14] Å. Björck. Numerical methods for Least Squares Problems. SIAM, Philadelphia, PA, 1996.
[15] A. Björck and J. Y. Yuan. Preconditioners for least squares problems by LU factorization.

Electron. Trans. Numer. Anal., 8:26–35, 1999.
[16] M. Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the inverse

factors. Linear Algebra and its Applications, 338:201–218, 2001.
[17] M. Bollhöfer. A robust and efficient ILU that incorporates the growth of the inverse triangular

factors. SIAM J. on Scientific Computing, 25(1):86–103, 2003.
[18] M. Bollhöfer and Y. Saad. On the relations between ILUs and factored approximate inverses.

SIAM J. on Matrix Analysis and Applications, 24(1):219–237, 2002.
[19] R. Bru, J. Cerdán, J. Maŕın, and J. Mas. Preconditioning sparse nonsymmetric linear systems

with the Sherman-Morrison formula. SIAM J. on Scientific Computing, 25(2):701–715,
2003.

[20] R. Bru, J. Maŕın, J. Mas, and M. Tůma. Balanced incomplete factorization. SIAM J. on
Scientific Computing, 30(5):2302–2318, 2008.

[21] R. Bru, J. Maŕın, J. Mas, and M. Tůma. Improved balanced incomplete factorization. SIAM
J. on Matrix Analysis and Applications, 31(5):2431–2452, 2010.

[22] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM, Philadelphia, PA,
2009.

[23] S. L. Campbell and C. D. Meyer, Jr. Generalized Inverses of Linear Transformations. Pitman,
London, San Francisco and Melbourne, 1979.

[24] X.-W. Chang, C.C. Paige, and D . Titley-Péloquin. Stopping criteria for the iterative solution
of linear least squares problems. SIAM J. Matrix Anal. Appl., 31(2):831–852, 2009.

[25] M. T. Chu, R. E. Funderlic, and G. H. Golub. A rank-one reduction formula and its applications
to matrix factorizations. SIAM Review, 37:512–530, 1995.

[26] X. Cui. Approximate Generalized Inverse Preconditioning Methods for Least Squares Problems.
PhD thesis, Department of Informatics, School of Multidisciplinary Sciences, The Graduate
University for Advanced Studies (Sokendai), 2009.

[27] X. Cui and K. Hayami. Generalized approximate inverse preconditioners for least squares
problems. Japan Journal of Industrial and Applied Mathematics, 26:1–14, 2009.

[28] X. Cui, K. Hayami, and J.-F. Yin. Greville’s’ method for preconditioning least squares problems.
In Proceedings of Algoritmy 2009 Conference on Scientific Computing, pages 440–448,
2009.

[29] X. Cui, K. Hayami, and J.-F. Yin. Greville’s’ method for preconditioning least squares problems.
Advances in Computational Mathematics, 35:243–269, 2011.

[30] T. A. Davis. Algorithm 915: Multifrontal multithreaded rank-revealing sparse QR factorization.
ACM Transactions on Mathematical Software, 38(1):8(1)–8(22), 2011.

[31] T. A. Davis. University of Florida Sparse Matrix Collection. available online at
http://www.cise.ufl.edu/∼davis/sparse/, NA Digest, vol. 94, issue 42, October 1994.

[32] I. S. Duff, K. Kaya, and B. Uçar. Design, implementation, and analysis of maximum transversal

20

algorithms. ACM Transactions on Mathematical Software, 38(2):13:1–13:31, 2011.
[33] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the

diagonal of sparse matrices. SIAM J. Matrix Anal., 20:889–901, 1999.
[34] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse

matrix. SIAM J. Matrix Anal., 22:973–996, 2001.
[35] I. S. Duff and S. Pralet. Towards stable mixed pivoting strategies for the sequential and

parallel solution of sparse symmetric indefinite systems. SIAM J. on Matrix Analysis and
Applications, 29(3):1007–1024, 2007.

[36] I. S. Duff and T. Wiberg. Remarks on implementations of O(n1/2τ) assignment algorithms.
ACM Transactions on Mathematical Software, 14(3):267–287, 1988.

[37] V. Eijkhout. On the existence problem of incomplete factorisation methods, 1999.
[38] A. M. Erisman, R. G. Grimes, J. G. Lewis, and W. G. Jr. Poole. A structurally stable mod-

ification of Hellerman- Rarick’s P4 algorithm for reordering unsymetric sparse matrices.
SIAM J. on Numerical Analysis, 2:369–385, 1985.

[39] R. Freund. A note on two block-SOR methods for sparse least squares problems. Linear Algebra
and its Applications, 88/89:211–221, 1987.

[40] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, Maryland, 1983.

[41] N. I. M. Gould and J. K. Reid. New crash procedures for large systems of linear constraints.
Math. Prog., 45(1):475–501, 1989.

[42] T. N. E. Greville. Some applications of the pseudoinverse of a matrix. SIAM Review, 2(1):15–22,
January 1960.

[43] M. Hagemann and O. Schenk. Weighted matchings for preconditioning symmetric indefinite
linear systems. SIAM J. on Scientific Computing, 28(2):403–420, 2006.

[44] E. Hellerman and D. Rarick. The partitioned preassigned pivot procedure (P 4). In Rose, D.
J. and Willoughby, R. A., editors, Sparse Matrices and Their Applications, pages 67–76.
Plenum Press, New York, 1972.

[45] A. Holstad and I. Lie. On the computation of mass conservative wind and vertical velocity
fields. Technical Report No. 141, Oslo, Norway, The Norwegian Meteorological Institute,
September 2002.

[46] J. E. Hopcroft and R. M. Karp. A n5/2 algorithm for maximum matchings in bipartite graphs.
In Conference Record 1971 Twelfth Annual Symposium on Switching and Automata The-
ory, East Lansing, Michigan, USA, 1971. IEEE.

[47] D. James. Conjugate Gradient Methods for Constrained Least Squares Problems (Least
Squares). PhD thesis, University of North Carolina, 1990.

[48] A. Jennings and M. A. Ajiz. Incomplete methods for solving ATAx = b. SIAM J. on Scientific
and Statistical Computing, 5(4):978–987, 1984.

[49] I. E. Kaporin. High quality preconditioning of a general symmetric positive definite matrix
based on its UTU + UTR+RTU decomposition. Numerical Linear Algebra with Applica-
tions, 5:483–509, 1998.

[50] J. L. Kennington and R.A.K. Mohamed. Recovery from numerical instability during basis
reinversion. Comput. Opt. and Appl., 8:57–71, 1997.

[51] P. Läuchli. Jordan-Elimination und Ausgleichung nach kleinsten Quadraten. Numerische
Mathematik, 3:226–240, 1961.

[52] N. Li and Y. Saad. MIQR: A multilevel incomplete QR preconditioner for large sparse least-
squares problems. SIAM J. on Matrix Analysis and Applications, 28(2), 2006.

[53] A. Neumaier and M. Olschowka. A new pivoting strategy for Gaussian elimination. Linear
Algebra and its Applications, 240:131–151, 1996.

[54] A. T. Papadopoulus, I. S. Duff, and A. J. Wathen. A class of incomplete orthogonal factorization
methods. II: Implementation and results. BIT Numerical Mathematics, 45(1):159–179,
2005.

[55] G. Peters and J. H. Wilkinson. The least squares problem and pseudo-inverse. The Computer
Journal, 131:309–316, 1970.

[56] Y. Saad. Preconditioning techniques for nonsymmetric and indefinite linear systems. J. of
Computational and Applied Mathematics, 24(1-2):89–105, 1988.

[57] Y. Saad. ILUT: a dual threshold incomplete LU factorization. Numerical Linear Algebra with
Applications, 1(4):387–402, 1994.

[58] M. A. Saunders. Sparse least squares problems by conjugate gradients: a comparison of pre-
conditioning methods. In Proceedings of Computer Science and Statistics: Twelfth Annual
Conference on the Interface, Waterloo, Canada, 1979.

[59] M. A. Saunders. LUSOL: Sparse LU factorization package, 7.0, version 2008.
http://www.stanford.edu/group/SOL/software/lusol.html.

21

[60] O. Schenk, A. Wächter, and M. Hagemann. Matching-based preprocessing algorithms to the so-
lution of saddle-point problems in large-scale nonconvex interior-point optimization. Jour-
nal of Computational Optimization and Applications, 36(2-3):321–341, 2007.

[61] J. Scott and M. Tůma. The importance of structure in incomplete factorization preconditioners.
BIT Numerical Mathematics, 51:385–404, 2011.

[62] M. Suarjana and K. H. Law. A robust incomplete factorization based on value and space
constraints. Int. J. Numer. Methods Engrg., 38:1703–1719, 1995.

[63] M. Tismenetsky. A new preconditioning technique for solving large sparse linear systems.
Linear Algebra and its Applications, 154–156:331–353, 1991.

[64] X. Wang. Incomplete Factorization Preconditioning for Linear Least Squares Problems. PhD
thesis, Department of Computer Science, University of Illinois Urbana-Champaign, 1993.

[65] X. Wang, K. A. Gallivan, and R. Bramley. CIMGS: an incomplete orthogonal factorization
preconditioner. SIAM J. on Scientific Computing, 18(2):516–536, 1997.

[66] I. Yamazaki, Z. Bai, W. Chen, and R. Scalettar. A high-quality preconditioning technique
for multi-length-scale symmetric positive definite linear systems. Numerical Mathematics:
Theory, Methods and Applications, 2(4):469–484, 2009.

[67] Z. Zlatev. Computational Methods for General Sparse Matrices. Kluwer, Dordrecht, 1991.
[68] Z. Zlatev and H. B. Nielsen. Solving large and sparse linear least-squares problems by conjugate

gradient algorithms. Computers & Mathematics with Applications, 15(3):185–202, 1988.

22

