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A note about the rate-and-state-dependent friction modeln
a thermodynamical framework of the Biot-type equation

ToMAS RouBICEK?!

Abstract The conventional, phenomenological rate-and-statetignt friction model of Dieterich-Ruina’s type is discss
and slightly modified so that, after introducing an artificigernal variable (formally in a position like effectivernperature)
on the fault, it is driven by a free and a dissipative energiesontrast to the original model, it thus allows for a fotation

in the framework of rational thermodynamics, including #rergy balance, and for rigorous numerical analysis. Tikiz a
suggests an analogous rate-and-state-dependent plalgtimbdel using damage/temperature as the state variahteotiong
the plastic yield stress.

Keywords Frictional contact, Dieterich-Ruina model, effectivengerature, thermodynamics, damage, plasticity.

1 Introduction — abstract Biot-type structure

Mechanical models in general (and those used in geophysigarticular) are (or should be) typically
believed to be governed by energies and, most often, in a nathe conservative and the dissipative
parts are separated. In the isothermal variant, the sydiawesa lucid abstract structure

MG +04%(94) +06(a) = F (t,0) 1)

with a kinetic energy# , a (pseudo)potential of dissipative forc#sq; - ), a stored energy, and external
forcing .# as a function of the statg This state typically involves, beside of the displacemalsb some
internal parameters like the creep and the plastic strd@siage, etc., complying with the concept of
generalized standard materials with internal paramef@2]. The internal parameters vary in time and
space in general, and thus conventionally (although nosistamtly e.g. with [22]) we should and will
rather speak about internal variables. The inertial te#ffij acts typically only on displacement, not on
the internal variables and, disregarding this term, (1afe( a series of works, cf. e.g. [6]) calledB#ot
(or Biot-type)equation Actually, as indicated in the title, the main emphasis @ #rticle holds with

A =0, as well. In (1), we use the notatign= % and§ = ‘i—g, and(-)" denotes the differential while
“0” denotes a generalized differential (typically a convebditferential) of functionals which can be
nondifferentiable typically because they describe sonilatenal, unidirectional, or activated phenomena
—then (1) is an inclusion rather than an equation, cf. e.g] figr a brief survey of the corresponding
mathematical formalism and tools.

This energy-governed structure (1) allows to control thergetics: indeed, testing (1) by we arrive
(at least formally) to the energy balance on a time intej@4l:

t t
AED)+E@ED) + [ Z@iido)d = #(@0)+6@o) + [(Frada  @a)
kinetic + stored energy dissipated energy over kinetic+stored energy work dongby loading
at timet the time interva(0, ] attime 0 over time interval0, t]

with the dissipation rate
=(q(t);d(1) = (952(a: (1)), 4(1)); (2b)

in both (2a) and (2b), the notatidn, -) stands for a scalar product (or, more precisely, a dualitsroa
between relevant linear spaces). More precisely but withoy details, (2a) is usually obtained from
the sub-differential formulation rather as an inequalityyowhile the equality in (2a) needs some data
qualification.

Moreover, this structure allows for numerically stable dimliscretisation, and for rigorous analy-
sis as far as convergence and existence of solutions to (iteoas. Also, it allows for an extension
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for anisothermal situations which is simultaneously thedgmamical consistent, i.e. comply with the
total-energy conservation, nonnegativity of temperatanel the Clausius-Duhem entropy inequality, cf.
Section 4 below. In particular, the dissipation rate- =(q;q) should be non-negative even locally for
subsystems.

The structure (1) witte > 0 is largely ignored in usual geophysical models and canaaXplic-
itly identified. Typically, no energetics like (2a) is comationally verified, neither it is even explicitly
formulated. Thus, likely, a possibility to devise numeligatable or even convergent computational
algorithms is lost. Numerical algorithms thus often exhimesh dependency, indicating their non-
convergence or even lack of solutions of the particular rhsd¢hat there is nothing to converge to.

The goal of this contribution is to revisit from this perstiee the conventional rate-and-state-
dependent friction model of the Dieterich-Ruina’s type,[3d], presented briefly in Section 2, which
is used widely in modelling of stick-slip motion of lithosptic faults, see e.g. in [9, 16, 21, 26, 29, 32],
or also [17] for a survey. Except Section 6, we carry out trseutision by using a usual ansatz of a
so-called single degree-of-freedom slider, i.e. in terfnardinary (instead of) partial differential equa-
tions. In Section 3, we then discuss a variant of this modéthvhses a given friction (=a so-called
Tresca friction) and difficulties with putting the rate-asiite model into the Biot-equation context. In
view of these difficulties, we attempt to modify a bit the amig friction model to fit with the abstract
Biot-equation context at least if augmented in a full thedgnamical concept which we abstractly for-
mulate in Section 4. Then we use it in Section 5 to modify the-ead-state model in a way that
the evolution of the ageing variable is governed by enengigige imitating arbitrarily precisely the re-
sponse of the conventional rate-and-state-dependetiofrimodel. Eventually, in Section 6, we devise
a bulk analog of the friction model combining conventionahcepts of Prandtl-Reuss plasticity with
rate-and-state-dependent plastic yield stress, gradaénage with healing, and thermodynamically con-
sistent heat transfer with presumably the capacity to precharrow shear bands (=faults) with slip
response like in the rate-and-state-dependent frictidms Yields a hint how to transfer the sound con-
ventional rate-and-state-dependent friction interfagiadel to the conventional thermo-plastic model
with temperature-dependent damage with healing.

2 Rate-and-state-dependent friction model

The original dry-friction law by Dieterich and Ruina [14,]5@ses the friction coefficient (also called
sliding resistanceu = W(v,8) in the form

Vief®

%
V,0) = o+ aln— +bin
K(v,8) = ko o o

3)

and then balances the normal stregs= i ofi with the tangential stress = ofi — ol standardly as
Ot = Gt(v> e) =0On l.l(V, 6)1 (4)

hereao is the stress tensor amid= ri(x) the unit normal vector to eontact interfacg= afault) at a point
X, and

V=10 ()

with u denoting the difference of displacements on two sides ofcth@act interface whild is an
internal variable (or possibly a vector of internal vared)l on the interface. This internal varialfle
(being interpreted as ageingparameter) is governed by a specific flow rule typically offdren of an
ordinary differential equation at each spot of the fauly; sa

6= fo(6) — fa(O)v (6)

with some continuous nonnegative functiofgsand f;. More specifically,fo(8) = 1 and f1(0) = 6/d.
with d. > 0 was considered e.g. in [4,5, 8,13, 26, 44]; then for thécstasev = 0, the ageing variablé
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grows linearly in time and has indeed the meaning of an “aged time elapsed from the time when the
fault ruptured in the past. Alternatively, one can consiteme modified flow rulefp(6) = (1-6/6.)"
and f1(6) = 8/d,, cf. [40], and therf stays bounded and asymptotically approadhgsn the steady
state, which suggests to interpfetather as a certain hardening or “gradual locking” of thdtfauthe
“calm” steady state = 0.

The parameters, b, po, andvies in (3) are given. lfa—b > 0, we speak about velocity strengthening
while, if a—b < 0, we speak aboutelocity weakening the latter case may lead to instabilities and is
used for earthquake modelling.

The difference of displacements (as three-dimensiondbr&coccurring in (5) is governed by spe-
cific evolution partial differential equation in the bulk tedal, involving possibly also some other in-
ternal variables as the creep or various other inelast&nstr Here, however, for our purposes and for
simplicity, we will rather (use what is in geophysical mduhgj literature often calledingle degree-of-
freedom sliderand) reduce it to an ordinary differential equation for ayl@rscalar variable:

p U+ oi(v,0)signi+ Cu= Cu,(t) (7)

with v from (5), and with a mass-like density> 0, an elasticity coefficientC > 0, and a prescribed
displacementi, varying in time; needless to say, the physical units areidensd appropriate so that
the physical dimension of all terms in (7) matches. In fasigfi” in (7) denotes the set-valued signum
(i.e. sign+v) = £1 for v> 0 and sigii0) = [—1,1]) so that, more precisely, (7) should be written as an
inclusion rather than an equation. The statmnsidered in (1) is then the cougle 0).

An obvious undesired attribute of (3) is, as already notddi7np.108], that, “as or 6 approach zero,
egn. (3) yields unacceptably small (or negative) valuediding resistance’l. The energy-dissipation
rate related to the friction (3) isiv = PoOnV + aonIn(v/vier)v + bin(ve®/dc)v. In particular, as always
o, > 0 due to big lithostatic pressure, af 0, the energy-dissipation ratgv may become negative,
which means that some energy is artificially pumped into bherface — this might be apparently advan-
tageous to nucleate numerically the sliding in such a maatat biolates the Clausius-Duhem inequality
and is thus not physically relevant, and, after all, it alsuid likely destroy rigorous mathematical anal-
ysis of such a model, if any.

Such a physically nonrealistic model has been (and stillssd in dozens of articles (cf. e.g. [8,9,11,
13,21, 26,32,34,37,42,44] or e.g. [25, 36] for a modifiedibdéfinite formula like (3)), relying that in
specific applications the solutions might not slide intasthphysically wrong regimes violating Clausius-
Duhem entropy inequality. Nevertheless, a regularizdgading tou > 0 and thus to a physically correct
non-negative dissipation is used, too, typically as [1b]eq. also [40]:

L= (8,v) = Ho+a(V)+B(8) with a(v) = aln (i+1) and B(6) = bin (erfe+1). ®)
Vref de
In what follows, we will therefore have in mind rather (8) th@). Thefrictional dissipation rates
then

&(6;v) = 0nl(6,V)V = on(po+0a(v)+B(6))v > 0. 9)

On top of it, it has been known from the beginning of this rabe-state model that it does not fit
well some experiments [49] and (rather speculative) maifios e.g. by using several ageing variables
(which naturally opens a space for fitting more experimehts)e been devised, cf. [50]. This indi-
cates that the standard phenomenological rate-and-stetierf model suffers, beside the conceptual
drawbacks, also some weak modeling points and its slightfioation is not any “crime” or even it is
desired.

3 Given friction - the Tresca model

The model (4)—(8) was designed to fit with laboratory experits, cf. e.g. [14,17, 34, 36]. Its usage for
real earthquake modelling has some limitations. In pddicthe friction-type model (4)—(8) itself with
very big compressive normal stresg would obviously lead to enormous tangential stresgaseeded
to trigger deep earthquakes. Therefore, it seems well &aolep(or even more realistic) to takg in
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(4) as a prescribed parametef’ (not even necessarily related with the lithostatic pressimd thus here
not necessarily related with the evolutionwf this is sometimes called a given friction or alsdrasca
friction model and, in geophysics, it is related with presence of $lindpores and a concept of a so-
calledeffective normal stressThis is in a certain analogy with the plastic/damage bulldetdcf. [48]
or also (31) below) where a plastic strain is usually considas a deviatoric tensor so that the spherical
part of the stress tensor (=the lithostatic pressure) doegirectly influence the plastification processes
at all. For a comparison with the rate-and-state frictioraarinterface (fault) with a damage-plasticity
on a narrow stripe we refer also to [32], although an analadp®flow rule (6) for the ageing variable,
playing in the bulk the role of damage, is not explicit there.

Therefore, in what follows we focus on the Tresca model with

On= Gﬁﬁ = fixed effective normal stress (20)

in (4) and withp from (8). In geophysical modelsg™ is considered rather low (say 30-100 MPa), which
also causes a relatively small frictional heat generatathgustick-slip motion of the fault — which is
known as a so-called heat-flux paradox.

Moreover, the ambiguity of the dynamics (6) in literature éwen (29) below) indicates that this
model, even in its physically relevant variant (4)—(8), &@wphenomenological and rather speculative.

The interpretation 06 as a hardening or a reinforcement or a “quality of locking'thad fault indi-
cates thab shouldcontribute to the stored energy, cf. the d-terms in (23a) below. Then, vice versa,
such contribution should give a driving force for the evimatof 6 through the Biot structure (1).

Yet, it seems difficult or rather impossible to put the modg+(8) directly into the framework of the
materials with internal variables and in particular thahigomal Biot equation from Section 1. This is
likely the reason that the energetics of the model (4)—(&)a@sense (2) has never been scrutinized in the
literature; cf. e.g. [51] where (as a positive exceptio®) ¢hergetics of the rate-and-state-dependent fric-
tion has been performed but eventually only the stressibguiin like (7) without explicit involvement
of the flow rule for the internal variable (like here (6)) haseh balanced.

For (an unsuccessful) example, one might have an idea toite{8) in terms of a rescaled ageing
variable® = g(0) with g a primitive function to ¥ f;. Then, by taking (5) into account, one gets

fo(8) _ foog*(0)
fl(G) flog—l(e)

O+t = —F(O). (11)
Introducing further a (presumably small) “nonlinear cagéint” € = £(©, -) > 0 monotonically dependent
on the second argument and the new variabte © + u, (11) transforms to

e(w—u,Ww) = E(w—u) with E(®):=¢(0,F(0)) (12)

provided thau is monotone (non-decreasing) so that= u. The natural requirement tha®, w)w > 0
and thatE is nondecreasing and(0) = 0 so that its potential, let us denote it By is convex with
its minimum at 0, can be satisfied. The stored energy whichldvganerate the driving forcé,&
for (7) anddu& for (12) is then (u,w) = &(w—u) + 3Cu? while .Z(t) = Cuy(t) in (1), the dissi-
pation rate is= (u,w;U,W) = &(g~t(w—u);Vv) + &(w—u, W)W with & from (9), and the kinetic energy is
A (0, W) = %|L’J|2. Of course = determines also the corresponding (pseudo) potentiakeipditive forces
Z(u,w;U,W). Such a presentation of the model (4)—(8) in the Biot franré&warings however a (pre-
sumably small) modification of the original equilibrium lawm the interface due to the contribution from
& (u,w), namely as a certaiback-force(as an analog of back-stress in plasticity with hardenioghat
the force equilibrium (4) is rather

o+ ¢ (w—u)=opn (13)

As € > 0 can be chosen small, alsth can be considered small, and thus this “regularization”hmig
not have an essential influence on the response of this mozletlpd |U] = u. Although |u| = U might
be possibly expected during a typical stick-slip motion iore-dimensional model of a fault without
inertia, the general multidimensional situation does mobply with this assumption.
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Another example of an unsuccessful attempt of a directpné¢ation of such model is in [52], facing
difficulties with non-negativity of the dissipation rate.

Both these attempts meet the structural problem that (&) wit |U] and thus also (11) are not
monotonically dependent on the rates, which is standaitgidered as an ultimate requirement. Other
objection might be an inconsistency with the philosoph&taindpoint that instantaneous variation of
“controllable” variables (i.e. here the displacemehtshould not cause any instantaneous variation of
internal variables (i.e. here the ageig as articulated in [35, Sect. A.1.3.3]. This last pointehaould
mean exactlyf; = 0 in (6) but it would completely degenerate the model whiclutdghen become of
no interest at all.

Of course, one can easily consider both evolution problegghsuid (7) to have their own stored-
energy potential, cf. [41], but this (rather trivial andrfwal) structure does not have any deeper physical
meaning.

4 Biot equation in thermodynamic context

In view of the above mentioned difficulties, our goal now isfittd some (small) modification of the
model (4)—(8) that would exhibit the structure of the Bigpeé equation (1) and allow for a reasonable
interpretation. A noteworthy “side effect” will be a posiitly for a rigorous mathematical analysis and
design of numerically stable and convergent algorithnmatsgies, cf. (26) below. To this goal, we first
augment the abstract general Biot-type model (1) to a felittodynamical framework, however.

If the stored (or now rathdree) energyé = &(q, T) and the dissipation potenti&#(q, T; ) depend
also ontemperature Tthe Biot-type equation (1) should be augmented to a futhtieelynamical system

MG +04%(0,T;0) +046(q,T) > F(t,0), (14a)

wherej is the abstract “heat-flux production” energy rate. Actydte heat equation (14b) arises from
the entropy equation

TS+ j = dissipation rate (15)
where theentropyis defined by the Gibbs relation as
s=s(q,T)=—0r&(q,T). (16)
From (15), we indeed obtain the heat equation (14b) just xtain-rule
§=—(016(q,T))" = —95r&(q,T)4— 03&(a, T)T.
Furthermore, defining thiaternal energy?” = #'(q,T) by
7(QT)=&(a,T)+s(q,T)T, A7)

and using (16), we have
W =0qEG+0rET + 8T+ T =066+ 8T

so that, by substituting (15) we obtain teeergy balanceas

AG)+H (EO.TO) + [k = AGO)H @O, TO)+ [(Fra.da. a9
——

kinetic + internal energy heat flux over the kinetic+internal energy work by loading over
at timet time interval[0,t] attime 0 the time interval0,t]
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5 Model (4)A8) in thermodynamic context

The anisothermal framework (14) suggests as a first appedgiamto introduce, in addition to the me-
chanical state variables= (u,0), an auxiliary internal variable, let us denote it By formally in a
position of aneffective temperatureshich will be (approximately) dependent on the slip velpcaitag-
nitudev such thafl ~ Kv with some coefficienK. The interpretation of this variable is the temperature
of a virtual layer on the contact interface between two atjiabulk domains which have its own tem-
perature (here considered constant). This two-temperadi@a has occasionally been used in physical
and engineering literature, cf. [10] and references themsid recently in mathematical literature, too,
cf. Bonettiet al. 2009,2011.

In geophysical literature, the heat produced during fiiwdl sliding is believed “to produce signifi-
cant changes in temperature, thus the change of streng#ults fiuring seismic slip will be a function
of ... also temperature”, cf. [11, p.7260]. The usage of dfe¢dve) interfacial temperature occurs
in [12, Chap.2], cf. also [13], following ideas from [28],aiining that the “effective temperature de-
scribes the configurational disorder in the material”, t2,[p.29], and that the “effective temperature is
different from the thermal temperature, but it evolves imnailar manner” and “unlike state variables in
friction laws such as Dieterich-Ruina, which are governgaib ordinary differential equation, effective
temperature follows a partial differential equation” a8)(Below, cf. [12, p.32].

Such effective temperature can also be linked with the iplastain rate like in (31) below, which
in some idealization (and localization) can be understaodrainterfacial plastic rate which is actually
(after a regularization) more or less just the magnituddefdip velocityv, cf. [48, Remark 3.1].

Here, in a certain approximation, one can borrow an ideamgdernal constant temperature reser-
voir” from [5, p.483]. In literature, cf. e.g. [8, 9, 37], du@n “interfacial temperature” is known (or
considered) indeed to vary in many hundreds of degrees da@eoy fast slip during earthquakes even
exceeding 100CC, cf. [7, 42], while obviously the bulk temperature cannatysubstantially in this
relatively short moment, so there is even some experimembtivation of this scenario. Sometimes, a
microscopical explanation is by so-called “flash heatinfagperities in the fault core, cf. e.g. [4, 42].
The heat source during the slip (earthquake) exhibit anréex¢ localization to a a zone 1-5 mm
wide within a finely granulated fault core”, see [43].

The modelling assumption which we adopt is that coeffickeris large so that the effective tem-
peratureT, which later in this section (as the simplest option) willdmt approximately t&v, ranges
such big values so that the constant temperature of an ektautk can be considered just 0. (Heétds
considered constant, yet it may be made depend e.g. erand6, yielding a more general dependence
of T onKv and also or®, cf. (28) below.)

The heat production rate due to the friction (= fhietional hea) is just§ = &(6;v) from (9). Con-
sidering the heat-transfer coefficient= k(6, T) between the contact interfacial layer and the adjacent
bulk and the heat capacity of this interfacial lagge= c,(6,T) > 0, the heat equation (14b) is then

o (8,T)T +k(6,T)T = E(6;v)+£(0)6]> + T (6)6 (19)
- - / — %,_/
dissipation rate adiabatic heaT 037¢'(q,T))q

from (23b) below determined by (23a) below

with € and@; from (21) below.

Rather as an artificial but simple example, we further adogra special choice and, for a fixéd
consider the heat-transfer coefficient as

€(0.7) = 05" u(6. ) (20)

with p from (8); a more general ansatz is discussed in the paragrapind (28)—(29) below. The
philosophy of the ansatz (20) relies on that the heat capagibf this (infinitesimally thin) layer is
naturally to be considered very small, as well as the coefftse > 0 and¢, > 0 occurring in (19) are
small, and then (19) with (9) is approximatedy®, T)T = &(8;v) = oS u(8,v)v so that, fronk (8, T)T =
o™ (8, & )&, we have approximatel} = Kv providedv — (6, v)v is monotonically increasing and thus
the inverse of this function does exist. Note that this monigity does not need monotonicity pf®, -)
itself, and thus does not exclude slip weakening.
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Having in mind the above mentioned scenario of suppresditire@diabatic effect and the influence
of the heat capacity and conductivity of the interfaciaklayve can rely o ~ Kv and we now replace
v in (6) by T and write the ageing flow rule in the form

£(0)8 = @(8) ~@u(O)T (212)
with @ (0) = €(8)fo(0) (21b)
and @ (8) =¢(0)f1(0)/K (21c)

with someg(0) > 0 to be chosen arbitrarily (and presumably small). Note thatast term in (19) is
approximately

Teu(0)6 = Kv%é = ve(0)1(0)0 (22)

so that, by choosingsmall, both terms(e)|é|2 andT(pl(e)é in the right hand side of (19) can indeed be

made negligible provided the slip velocityand the ageing rate stay bounded. This scaling suppresses
the influence of the ageing flow rule (21) to the overall engrgéout anyhow does not totally ignore it,
in contrast to the standing rate-and-state geophysicatsod

Let us still assume, for simplicity, that the heat capacit{p, T) = c,(T) depends only on tempera-
ture T. The overall free energy, the dissipation rate, and kiretiergy are

&(u,8,T) = %Cu2+d31(6)T — ®p(8) +¥(T), (23a)
=(6;0,6) = &(8; |U]) +£(6)|6]2, (23b)
(&) = D16, (230)

and.# = Cu,(t). In (23a),99 and®; are primitive functions tap and@; from (21), respectively. Note
that, aspy > 0, the contribution—®g(+) into the interfacial energy is a decreasing function sq, théte
ageing variabl® increases, this energy decreases. The funétas determined (up to an unimportant
affine term) fromW”(T) = ¢,(T)/T.

The advantageous feature of this setting is that the ens@y ) = —®;(0) — W (T) separates the
mechanical and the thermal variables, so that the resuttatidapacityc, (6,T) = —TW’(T) is indeed
only temperature dependent. Yet, a general coupi@, T ) is also possible, and modern techniques
are developed for treating general situations even in thteilolited-parameter setting like (30) below, cf.
e.g. [45, Sect. 13.9].

The resulted system (4)—(5)—(7)—(19)—(21) is to be soleedhe initial conditions at timé= 0:

U(O) = Up, U(O) =V, 9(0) = 60, T(O) =T (24)

with (uo, Vo, 8g, To) prescribed. The abstract energy balance (18) is now olot@ipnéesting (7) byd, (21)
by 6, and (19) by 1. Denoting b@, the primitive function to the heat capacity, one thus gets

PG+ Cu(T (1) + 5 Cu(t)? — @o(8(1) = & ol
+CV(T0)+%Cu%—¢0(60)+/0tCuDlJ+ K(8,T)T c. (25)

The asymptotics fofC — o leads tou ~ u, and (19)—(21) decouples from the rest of the system,
and allows directly for a “canonical” experiment with jumpgi piece-wise constant velocity of the slip
u=u, = U, (t) to obtain a typical jumping response of the sliding resistan= (6, T) with T = Kv=
Ku, like this one presented in literature, cf. e.g. [14,17,3258], cf. also Fig. 1 below. Philosophically,
letting the sliding resistance dependent also on temper@iua way that it increases when temperature
increasing is compatible with some computational and exptal studies, cf. e.g. [8, 37].
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Considering an equidistant time partition with the timgogte- 0, and denoting by the approximate
value ofu(kr), and similarly forTX etc., a semi-implicitime discretisatiorof the system (4)-(5)-(7)-(19)-
(21) can be done by the formula:

uk—2uk- 142

= +Cul + of sign(ul—u 1) = Cu, (kr), (26a)
N k KTk
E(eT )7 = qb(el') - (pl(eT)TT ) (26b)
Tk_kal 3 3 ek_ekfl 2 ek_ekfl
Cv(Trk)% + (O T TE =& (O V) (8 ) %\ +Trk<m(9'§)%, (26¢)
- K k-1
o = oaT ek T, = \u\ (26d)

The system (26) is to be solved recursively kot 1,2, ..., starting from the initial conditions? = up,
urt = W — v, 89 = B, andT? = Ty, cf. (24). Existence of a solution to this fully coupled systis
usually to be proved by a fixed-point argument and the contiput implementation is by an iterative
numerical procedure. Assuming naturally> 0, we haveTX > 0 for all k. Other natural assumptions
8o > 0 and f1(0) = 0 yields that8X > 0 for all k. Yet, it should be emphasized that usage of (26) for
computational purposes is practically limited to quaatistcase (i.ep = 0) due to typically unacceptably
large numerical attenuation of elastic waves in this thiezakdiscretisation scheme, i.e. the conservation
of energy of the type (18) with a reasonably good accuracisd mertial effects are counted requires
unacceptably small time stap> 0. Threrefore, more sophisticated time-integration stigis are to
be used, although usually their theoretical convergencgemeral cases is not studied. Examples of
efficient methods used in seismic-wave modelling are ani@kplcceleration Newmark scheme [26]
or an arbitrarily high-order derivative (ADER) time intedion method [19, 27] combined with various
spatial discretisation in the distributed-parameter gasay. discontinuous Galerkin method, as also in
[39], or finite differences as e.g. in [44], etc.

The analog of the energy balance (25) at least as an inggualit be obtained by testing (26a,b,c)
respectively byuk—uk—1, 8-~ andt. By summation, we can enjoy cancellation of the dissipative

k__gk— . . K__gk— . .
termsis(e'r‘*l)\eT%erl\z as well as the adiabatic terrﬁsTrk(pl(eﬁ)erfeTl. Assuming@; nondecreasing
(so thatd, is convex) @ nonincreasing (so th&ty concave), and, nondecreasing (so th@y is convex),
we thus obtain an analog of (25), namely

1 1
B VA 4+ Cu(TE) + S C ()% — o(8) = Elvol? +Co(To) + 5CL8 — Po(8o)

K |01
+ Y Cup (1) == k(8L THT, @7)
=1

Without going into technical (but standard) details, lebans/ mention that, by using the discrete Gron-
wall inequality, (27) yields a-priori estimates of both thtered and the internal energies uniformly in
time, and then by modifying the above test also of the dissghanergy. This makes a rigorous base for
numerical stability of the algorithm (26) and also the cageace fort — 0 in such a way that it allows
for an extension on the distributed-parameter variantaii;med in Section 6 below.

The above interpretation allows also for various geneaiibns: e.g. one can consider another ansatz
than (20), e.g. jusk > 0 a (small) constant. Then the effective temperaflireould, instead oKy,
be (in a nonlinear way) dependent approximately on kadihd also or. Vice versay would depend
nonlinearly or® andT, and then the flow rule (21) would take a more general form, say

£(6)6 = (6, T). (28)

Then, in (23a),T could be coupled witl® in a general nonlinear manner, so that the entropy would
not separate temperature and mechanical variables, arfiefiiecapacity would depend also on that
mechanical variables and the treatment of such models Wimuldore complicated, cf. [45, Sect. 13.9].
Such nonlinear variant of (21) suggests to consider directhonlinear variant of (6). Examples for it
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might be

é:—\é—fln(g) or 6=1— (;/_dGC)Z (29)

devised in [50] or [40], cf. also for [34] for comparison wiB). For some others, see e.g. [51]. Some-
times even more general dynamics e.g. involvingan be found in literature, cf. [36, Formula (20)].

Another generalization might consist éhacting nonlinearly in (21a) similarly as used in enginegrin
models for the bulk damage, cf. (31c,d) below; this can atgmiuwre activation phenomena for ageing.

6 Towards distributed-parameter models

The “full” distributed-parameter variant of the above @neted model should consid&r= T(t,x) and
v = Vv(t,Xx) with x ranging the 2-dimensional interface (the fault), and thet leguation (19) is then

(0, T)T +K(6,T)T — divs(Ks[LT) = £(6;v) +£(8) |62+ Ty (0)8, (30)

where “div” and [, denotes the surface divergence and gradient operatopgctesly. Assuming that,
likewisec,, also the heat conductivitys > 0 of the (infinitesimally thin) interface is very small, werca
again rely on the scenarib = Kv. As for u = u(t,x), x ranges the 3-dimensional bulk around the fault.
Then (7) should be replaced by the force equilibrium in thi Ipii — divo = f with the visco-elastic
stresso = De(Ul) + Ce(u) with the small-strain tensa(u) = 3(0u) "+ 20u, the visco- and the elastic-
moduli tensordD andC, and f the gravity force. It is to be accompanied by the boundaryditmms

u = u, and the Coulomb friction law (in the Tresca simplificatiom) the fault[u], = 0 and[u]; =0

if |ot] < ou(®,T) and oy = o (8, T/K)[u]:/|[u]:], where [u]n = [u]-A, [u]; = [u] — [u]nAi, and
oy = ol — (i'of)f with the unit normalf to the interface, while (5) should be replaced by |[U] |
where[-] denotes the difference of the traces from both sides of tieefate. In fact, some (“enough
dissipating” variant of) Maxwellien-type rheology canhrat be used for the stress e.g. the Jeffreys’
one, cf. [33,48]. The Tresca variant represents certaimpldication allowing, in particular, for an
analysis of the model. Another variant is to allow for a reah+onstant normal stres§™ = |fi'ofi| but
make an adhesive-contact regularization like in Boredtél. 2012.

The semi-implicit discretisation of the type (26) combingith a spatial discretisation can yield a
numerically stable and convergent computational schene. ahalysis of the parabolic heat equation
(30) needs a rather sophisticated estimation of the ternpergradient by using a “nonlinear test” by
1—(1+T) % with > 0 and an interpolation by means of the Gagliardo-Nirenbeequality; cf. e.g. [45,
Ch. 9] for rather complicated details.

Eventually, one can take inspiration from the above thegmathically consistent modification of
the rate-and-state friction and formulate a corresponbirk model using a very conventional concepts.
More specifically, one can replace the concept of frictiawitact by the concept @lasticity without
hardening which, in the rate-independent variant typjcgiVe rise to infinitesimally thirshear bands
which then yield the same effects as interfaces (= faultisg ffictional stress€f (8, T) then becomes a
rate-and-state-dependent plastic yield streghkile the ageing variablé stands in a position alamage
which allows also fohealing cf. also [48, Remark 3.2]. Using a deviatoric (i.a1te 0) plastic straint
as another internal variable so that the mechanical stditben = (u, 8, 1), such model reads as

pli—divo=f with o=D(e(t)—T1) +C(e(u)—T), (31a)
0:1(8,T;T0) = devo, (31b)
£(6,T;60) = @(B) — @1 (6)T +yAb, (31¢)
& (T)T —div(k(0.T)OT) = £(6,T;0,7) + (£(6,T;6) + Tu(8) ), (31d)

with devo = o — %(tro)]l denoting the deviatoric part of the stress tensawith the dissipation rate

£(6,T; 0,70 = D(e(t)—T0):(e(()—T1) + 0, (8, T; ):1T (31e)
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The notation “:” in (31e) means scalar product of twe 3tensors, summing them over two indexes.
The coefficienty > 0 in (31c) measures, roughly speaking, influence of the daragg@ material point
on/from its vicinity and, in this way, determines the lengtlale of the damage (i.e. the width of the
typical damage zone of a fault, usually 1-100 m). This is &alted gradient damageheory (cf. e.g.
[3, 20, 38]), used in geophysical models e.qg. in [33]. Biggwiill lead to wider damage zone and vice
versa, and a particular value pfs a vital part of phenomenology related, within the framegkaf this
model, to a particular fault modelled.

Like in (7),0;r(8,T;-) is typically set-valued due to non-smoothness(6fT;-) at 0, describing an
activated character of the plastification process, cf. @3dw. Thus (31b) is to be rather an inclusion
than the equation.

The energy balance of the type (25) can be obtained by myitipithe particular equations in (31)

respectively by, 11, 8, and 1, integrating over the considered spatial domairu@etenote it by) and
using Green formula and specific boundary conditions (hetespecified, however). This leads to the
energy balance of the type (18) with the free energy

1
£(u,m6,T) = /Q SC((U)—T0:(6(1)—) + 1 (B)T — @o(6) + W(T) + Y[T6Pdx  (322)
cf. (23a) ford’'s andW¥, so that the internal energy (17) is then

#(u,16,T)=¢E(U,m6,T) +/ (g, T)Tdx
- [ 5e ((u)—T) — @o(8) + Cy(T) + |18dx (32b)

and the kinetic energy is now? (U) = [, §|U[?dx, so that, up to external heat/mechanical sources, (18)
leads toconservation of the total energgy the form

A+ (uneT) = [ L1+ 2C(e(u)—T:(e(u) 10 — Po(8) + Cy(T) + ¥ 0P

Let us note the analog of (31c) and (30) with (21a) and (3X$pectively. Note also that, likewise

d.r andcy, alsoe = ¢(6,T;0) in (31c,d) depends on temperatufe such type of dependence is used
in geophysical modelling e.qg. in [31, 32]. Moreover, inste#d a mere positive coefficient, is con-

sidered in (31) as possibly a nonlinear operator acting oé,umhich allows for modelling activation
phenomena as typically desirable (and usual) in damagean&sh On the other hand, in contrast to

the damage-controlled plastification flow rag = (8) "devo with c so-called effective damage-related
viscosity frequently used in geophysical models (cf. €28, B0, 32, 33]) with only limited validity ba-
cause plastification obviously stops when damage is coetpleur flow rule (31b) follows the standard
and widely used concept of plasticity at small strains, gf. 4, 35] or also [1, 46]. Such plastic model
combined with damage was tested computationally (in a madbthe single degree-of-freedom slider)
to demonstrate a capacity to simulate stick-slip type nmo#éiod reoccurring earthquakes in [48] under
external loading with a constant rate even already in ahésotal variant. Further tests of the full model
(31) to demonstrate ability to develop narrow shear bandisults) and imitating the typical response of
the rate-and-state friction model on them is desirable apéated in future work. Of course, computa-
tional implementation of narrow shear bends with not atprimown position (as e.g. in nucleation of a
new fault) is not easy; cf. [2] for a 2-dimensional perfeartho-plasticity without damage, however.
Imitating the frictional force o; considered before asse(po+a(|[ul|)+B(0))[u]t/|[0]]
or, nearly equivalently, temperature-dependent (foynakimilarly as in [5, 11]) as
o (uo+-a (T /K)+B(8))[u]t/|[U]:], the (pseudo) potential of dissipative forces in (31b) cam<
bine both options and be considered as

r(8,T;1) = o (Ho+0to(|7K)+0a1(T)+B(8)) |7 (33)

rate-and-state-dependent
plastic yield stress
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prescribed slip rate on the fault

L.JD / i {
h core (essentially equals
rate of externa \ ( yed 9

loading :

time t

T 3 temperature governed by (31d) on

/ the fault core indicates nearly im-
‘ ; mediately the slip velocity,

t

damage (=ageing) governed
3 [ — by (31c) on the fault reacts
; on varyingT with a delay

t

M= Ho+0+p
= yield stress
~ sliding resitance

influence of vary- influence of varyind3 dominates
ing o dominates t

Fig. 1. A schematic illustration of the response of the dispment-driven experiment
of the single-degree-of-freedom-slider type on the jurgpielocity of the load-
ing, assuming rigid rock blocks sliding by prescribgg imitating the standard
laboratory experimentas e.g. in[5,11,14,17,18, 25,353 5&howing a typical
nonmonotone response of the sliding resistgnce

with suitableay, az, B > 0, and a fixeds€™. The dependence of the coefficiang on |1 makes the
flow rule (31b) rate dependent and determines the lengtle-séghe core of the fault (usually much
narrower than the damage zone) related to slide velocityig K= 0, we would get perfect plasticity;
the mathematical difficulties can be seen from [46] and waalflire here also; = 3 = O to justify
rigorously such model. Therefore, one should consmgr- O and then we get the rate-dependent
plasticity with the temperature-dependent yield-sta¥¢y+0a1(T)), like that one mathematically and
computationally scrutinized in [1], here additionally dage dependent like in [48], combined with the
gradient-damage model. The combination of plasticity aahage is indeed a very classical concept,
cf. e.g. [35, Ch. 10]. For conceptually similar plasticitgmage model and its scaling and comparison
with the rate-and-state-dependent friction see also [B0,IB also the elastic response were influenced
by damage, i.e. it = C(6), then the termyC’(8)(e(u)—m)? would contribute to the driving force in
(31c), cf. [48]. Furthermore, a stored energy which is naadjatic and even non-convex in terms of the
elastic straire(u)—T1tas proposed and used in [31] and then also e.qg. in [23, 30]trbegbonsidered but
rigorous mathematical treatment would then require tauighelthe concept of non-simple materials, cf.
e.g. [45, Sect. 13.9].

Let us very schematically explain the desired functionifighe model (31) on the displacement-
driven experiment for which the state-and-rate frictiondelohas been originally devised in [14, 49].
It consists of two sliding rock blocks which are consideradnaarly rigid (i.e.C very large) so that
the displacement of the controlled boundary is right tramsfl on the flat contact boundary (i.e. in our
model (31) the thin fault core) and the bulk model (31) theitdatas the one-degree-of-freedom slider
from Section 5. An important phenomenon is that the heat wctivdty K is influenced by damagg,
cf. (20), reflecting in a rough way the natural expectaticat thore damaged rock conducts heat harder
(and, vice versa, less damaged rock is a better heat compigotthat varying the heat production due
to 8 does not substantially influendewhich stays approximately reflecting the sliding veloaity U,

(in the simplest scenario ds~ Kv). The delay in the response &fimportant for getting qualitatively
the desired nonmonotone response of the yield stiegsich is in the position of sliding resistance in
this experiment, is due to the “inertia coefficient®, -) in (31c) and also due to the diffusign® which
causes a certain delay by damaging or healing also a bit widiaity of the narrow fault core.
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7 Conclusion

The modification (or, one can say a regularization) of theventional rate-and-state-dependent fric-
tion model in order to comply with standard framework of eatil thermodynamics and to allow for
formulation of an energy balance and a rigorous numericalyais has been addressed.

A simplified lumped-parameter setting admitting the intetation as a single degree-of-freedom
slider (leading to a system of ordinary differential eqoasi instead of partial differential equations)
with a given normal force (called the Tresca friction) hasrbased to explain an essence of the model in
alucid way. Some physically inconsistent attributes of fliction model, as also sometimes presented in
literature, have been discussed. Lacking attempts irtitee to identify thermodynamical driving forces
governing the model and to derive an explicit energeticevpainted out, together with presentation of
some unsuccessful attempts documenting the difficultiéispwgh the clear proof of impossibility of
thermodynamically consistent formulation has not beed @oes not seem easy to be) casted.

Due to these difficulties in particular in isothermal sajtimn auxiliary internal variable (perhaps
only formally) in a position of an interfacial effective t@eratureT governed by the heat-transfer
equation (19) has been introduced. For some coefficientisnequation chosen small, we could
use that, from (19) with (9), the heat flux6, T)T is approximately the frictional heat production rate
€(8;v) = oS u(8,v)v, and for this heat productios” (8, v)v depending monotonically on the velocity
magnitudev, we could therefore consider approximatély~ Kv. On such conditions, we can use such
auxiliary temperaturd instead ofv in the flow rule for ageing variable. With this (small) modétmon,
we recover (approximately) the original Dieterich-Rus&/pe model (4)—(8) in the mentioned Tresca
variant, i.e. witha€™ given, but now in the rational-thermodynamical context. Wnerically stable
semi-implicit time discretisation has been devised.

The corresponding partial-differential-equation vatiahthis frictional contact can serve to devise
a bulk model combining standard perfect, rate-indepen@talled Prandtl-Reuss) plasticity and gra-
dient damage (which itself is very standard concept in ergging, cf. e.g. [3] for a survey) allowing
for healing, which itself can already model re-occurringtieguakes, as shown in [48], and which is
still completed here in a thermodynamically consistent Wwgya heat-transfer equation to allow for
modelling the typical response of the sliding resistancecasmatically depicted on Figure 1. While in-
fluence of the damage (representing an analog of ageing)eagldbtic response is not pronounced (like
in the isothermal tests in [48]) or, more precisely, herenes@mpletely suppressed, its influence on the
dissipation through the yield stress for plastificationgsantial and at this point the bulk model advanta-
geously transfers the phenomenology from the rate-arid-tation model. One can perhaps interprete
this yield-stress decay within the rising temperature agchgling damage/ageing (at least partly) as a
melting of the fault core, which is the effect well advocatedhe literature, cf. e.qg. [4,7,42].
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