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A note about the rate-and-state-dependent friction model in
a thermodynamical framework of the Biot-type equation

TOMÁŠ ROUBÍČEK1

Abstract: The conventional, phenomenological rate-and-state-dependent friction model of Dieterich-Ruina’s type is discussed
and slightly modified so that, after introducing an artificial internal variable (formally in a position like effective temperature)
on the fault, it is driven by a free and a dissipative energies. In contrast to the original model, it thus allows for a formulation
in the framework of rational thermodynamics, including theenergy balance, and for rigorous numerical analysis. This also
suggests an analogous rate-and-state-dependent plastic bulk model using damage/temperature as the state variable controlling
the plastic yield stress.

Keywords: Frictional contact, Dieterich-Ruina model, effective temperature, thermodynamics, damage, plasticity.

1 Introduction – abstract Biot-type structure

Mechanical models in general (and those used in geophysics in particular) are (or should be) typically
believed to be governed by energies and, most often, in a way that the conservative and the dissipative
parts are separated. In the isothermal variant, the systemshave a lucid abstract structure

M
′ ..q +∂ .

qR(q;
.
q)+∂E (q) = F (t,q) (1)

with a kinetic energyM , a (pseudo)potential of dissipative forcesR(q; ·), a stored energyE , and external
forcingF as a function of the stateq. This state typically involves, beside of the displacement, also some
internal parameters like the creep and the plastic strains,damage, etc., complying with the concept of
generalized standard materials with internal parameters[22]. The internal parameters vary in time and
space in general, and thus conventionally (although not consistently e.g. with [22]) we should and will
rather speak about internal variables. The inertial termM ′ ..q acts typically only on displacement, not on
the internal variables and, disregarding this term, (1) is (after a series of works, cf. e.g. [6]) called aBiot
(or Biot-type)equation. Actually, as indicated in the title, the main emphasis of this article holds with

M ≡ 0, as well. In (1), we use the notation
.
q= dq

dt and
..
q = d2q

dt2 , and(·)′ denotes the differential while
“∂” denotes a generalized differential (typically a convex subdifferential) of functionals which can be
nondifferentiable typically because they describe some unilateral, unidirectional, or activated phenomena
– then (1) is an inclusion rather than an equation, cf. e.g. [47] for a brief survey of the corresponding
mathematical formalism and tools.

This energy-governed structure (1) allows to control the energetics: indeed, testing (1) by
.
q, we arrive

(at least formally) to the energy balance on a time interval[0, t]:

M (
.
q(t))+E (q(t))

︸ ︷︷ ︸

kinetic + stored energy
at timet

+
∫ t

0
Ξ(q(t); .q(t))dt

︸ ︷︷ ︸

dissipated energy over
the time interval[0, t]

= M (
.
q(0))+E (q(0))

︸ ︷︷ ︸

kinetic+stored energy
at time 0

+
∫ t

0

〈
F (t,q),

.
q
〉

dt
︸ ︷︷ ︸

work done by loading
over time interval[0, t]

(2a)

with the dissipation rate

Ξ
(
q(t);

.
q(t)

)
=

〈
∂ .

qR(q;
.
q(t)),

.
q(t)

〉
; (2b)

in both (2a) and (2b), the notation〈·, ·〉 stands for a scalar product (or, more precisely, a duality pairing
between relevant linear spaces). More precisely but without any details, (2a) is usually obtained from
the sub-differential formulation rather as an inequality only, while the equality in (2a) needs some data
qualification.

Moreover, this structure allows for numerically stable time discretisation, and for rigorous analy-
sis as far as convergence and existence of solutions to (1) concerns. Also, it allows for an extension
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for anisothermal situations which is simultaneously thermodynamical consistent, i.e. comply with the
total-energy conservation, nonnegativity of temperature, and the Clausius-Duhem entropy inequality, cf.
Section 4 below. In particular, the dissipation rateΞ = Ξ(q;

.
q) should be non-negative even locally for

subsystems.
The structure (1) withΞ ≥ 0 is largely ignored in usual geophysical models and cannot be explic-

itly identified. Typically, no energetics like (2a) is computationally verified, neither it is even explicitly
formulated. Thus, likely, a possibility to devise numerically stable or even convergent computational
algorithms is lost. Numerical algorithms thus often exhibit mesh dependency, indicating their non-
convergence or even lack of solutions of the particular model so that there is nothing to converge to.

The goal of this contribution is to revisit from this perspective the conventional rate-and-state-
dependent friction model of the Dieterich-Ruina’s type [14, 50], presented briefly in Section 2, which
is used widely in modelling of stick-slip motion of lithospheric faults, see e.g. in [9, 16, 21, 26, 29, 32],
or also [17] for a survey. Except Section 6, we carry out the discussion by using a usual ansatz of a
so-called single degree-of-freedom slider, i.e. in terms of ordinary (instead of) partial differential equa-
tions. In Section 3, we then discuss a variant of this model which uses a given friction (= a so-called
Tresca friction) and difficulties with putting the rate-and-state model into the Biot-equation context. In
view of these difficulties, we attempt to modify a bit the original friction model to fit with the abstract
Biot-equation context at least if augmented in a full thermodynamical concept which we abstractly for-
mulate in Section 4. Then we use it in Section 5 to modify the rate-and-state model in a way that
the evolution of the ageing variable is governed by energieswhile imitating arbitrarily precisely the re-
sponse of the conventional rate-and-state-dependent friction model. Eventually, in Section 6, we devise
a bulk analog of the friction model combining conventional concepts of Prandtl-Reuss plasticity with
rate-and-state-dependent plastic yield stress, gradientdamage with healing, and thermodynamically con-
sistent heat transfer with presumably the capacity to produce narrow shear bands (= faults) with slip
response like in the rate-and-state-dependent friction. This yields a hint how to transfer the sound con-
ventional rate-and-state-dependent friction interfacial model to the conventional thermo-plastic model
with temperature-dependent damage with healing.

2 Rate-and-state-dependent friction model

The original dry-friction law by Dieterich and Ruina [14, 50] uses the friction coefficient (also called
sliding resistance) µ= µ(v,θ) in the form

µ(v,θ) = µ0+aln
v

vref
+bln

vrefθ
dc

(3)

and then balances the normal stressσn =~n⊤σ~n with the tangential stressσt = σ~n−σn~n standardly as

σt = σt(v,θ) = σnµ(v,θ); (4)

hereσ is the stress tensor and~n=~n(x) the unit normal vector to acontact interface(= a fault) at a point
x, and

v = |
.
u| (5)

with u denoting the difference of displacements on two sides of thecontact interface whileθ is an
internal variable (or possibly a vector of internal variables) on the interface. This internal variableθ
(being interpreted as anageingparameter) is governed by a specific flow rule typically of theform of an
ordinary differential equation at each spot of the fault, say:

.
θ = f0(θ)− f1(θ)v (6)

with some continuous nonnegative functionsf0 and f1. More specifically,f0(θ) = 1 and f1(θ) = θ/dc

with dc > 0 was considered e.g. in [4,5,8,13,26,44]; then for the static casev = 0, the ageing variableθ
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grows linearly in time and has indeed the meaning of an “age” as a time elapsed from the time when the
fault ruptured in the past. Alternatively, one can considersome modified flow rulef0(θ) = (1−θ/θ∞)

+

and f1(θ) = θ/dc, cf. [40], and thenθ stays bounded and asymptotically approachesθ∞ in the steady
state, which suggests to interpretθ rather as a certain hardening or “gradual locking” of the fault in the
“calm” steady statev = 0.

The parametersa, b, µ0, andvref in (3) are given. Ifa−b> 0, we speak about velocity strengthening
while, if a−b< 0, we speak aboutvelocity weakening– the latter case may lead to instabilities and is
used for earthquake modelling.

The difference of displacements (as three-dimensional vectors) occurring in (5) is governed by spe-
cific evolution partial differential equation in the bulk material, involving possibly also some other in-
ternal variables as the creep or various other inelastic strains. Here, however, for our purposes and for
simplicity, we will rather (use what is in geophysical modelling literature often calledsingle degree-of-
freedom sliderand) reduce it to an ordinary differential equation for a single scalar variableu:

ρ..
u+σt(v,θ)sign

.
u+Cu= CuD(t) (7)

with v from (5), and with a mass-like densityρ > 0, an elasticity coefficientC > 0, and a prescribed
displacementuD varying in time; needless to say, the physical units are considered appropriate so that
the physical dimension of all terms in (7) matches. In fact, “sign” in (7) denotes the set-valued signum
(i.e. sign(±v) = ±1 for v> 0 and sign(0) = [−1,1]) so that, more precisely, (7) should be written as an
inclusion rather than an equation. The stateq considered in (1) is then the couple(u,θ).

An obvious undesired attribute of (3) is, as already noted in[17, p.108], that, “asv or θ approach zero,
eqn. (3) yields unacceptably small (or negative) values of sliding resistance”µ. The energy-dissipation
rate related to the friction (3) isσtv = µ0σnv+aσnln(v/vref)v+bln(vrefθ/dc)v. In particular, as always
σn > 0 due to big lithostatic pressure, ifa 6= 0, the energy-dissipation rateσtv may become negative,
which means that some energy is artificially pumped into the interface – this might be apparently advan-
tageous to nucleate numerically the sliding in such a model but it violates the Clausius-Duhem inequality
and is thus not physically relevant, and, after all, it also would likely destroy rigorous mathematical anal-
ysis of such a model, if any.

Such a physically nonrealistic model has been (and still is)used in dozens of articles (cf. e.g. [8,9,11,
13,21,26,32,34,37,42,44] or e.g. [25,36] for a modified butindefinite formula like (3)), relying that in
specific applications the solutions might not slide into these physically wrong regimes violating Clausius-
Duhem entropy inequality. Nevertheless, a regularizationleading toµ> 0 and thus to a physically correct
non-negative dissipation is used, too, typically as [15], cf. e.g. also [40]:

µ= µ(θ,v) = µ0+α(v)+β(θ) with α(v) = aln
( v

vref
+1

)

and β(θ) = bln
(vrefθ

dc
+1

)

. (8)

In what follows, we will therefore have in mind rather (8) than (3). Thefrictional dissipation rateis
then

ξ(θ;v) = σnµ
(
θ,v

)
v = σn

(
µ0+α(v)+β(θ)

)
v ≥ 0. (9)

On top of it, it has been known from the beginning of this rate-and-state model that it does not fit
well some experiments [49] and (rather speculative) modifications e.g. by using several ageing variables
(which naturally opens a space for fitting more experiments)have been devised, cf. [50]. This indi-
cates that the standard phenomenological rate-and-state friction model suffers, beside the conceptual
drawbacks, also some weak modeling points and its slight modification is not any “crime” or even it is
desired.

3 Given friction - the Tresca model

The model (4)–(8) was designed to fit with laboratory experiments, cf. e.g. [14,17,34,36]. Its usage for
real earthquake modelling has some limitations. In particular, the friction-type model (4)–(8) itself with
very big compressive normal stressσn would obviously lead to enormous tangential stressesσt needed
to trigger deep earthquakes. Therefore, it seems well acceptable (or even more realistic) to takeσn in
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(4) as a prescribed parameterσeff
n (not even necessarily related with the lithostatic pressure and thus here

not necessarily related with the evolution ofu); this is sometimes called a given friction or also aTresca
friction model and, in geophysics, it is related with presence of fluids in pores and a concept of a so-
calledeffective normal stress. This is in a certain analogy with the plastic/damage bulk model (cf. [48]
or also (31) below) where a plastic strain is usually considered as a deviatoric tensor so that the spherical
part of the stress tensor (= the lithostatic pressure) does not directly influence the plastification processes
at all. For a comparison with the rate-and-state friction onan interface (fault) with a damage-plasticity
on a narrow stripe we refer also to [32], although an analog ofthe flow rule (6) for the ageing variable,
playing in the bulk the role of damage, is not explicit there.

Therefore, in what follows we focus on the Tresca model with

σn = σeff
n = fixed effective normal stress (10)

in (4) and withµ from (8). In geophysical models,σeff
n is considered rather low (say 30-100 MPa), which

also causes a relatively small frictional heat generated during stick-slip motion of the fault – which is
known as a so-called heat-flux paradox.

Moreover, the ambiguity of the dynamics (6) in literature (or even (29) below) indicates that this
model, even in its physically relevant variant (4)–(8), is very phenomenological and rather speculative.

The interpretation ofθ as a hardening or a reinforcement or a “quality of locking” ofthe fault indi-
cates thatθ shouldcontribute to the stored energyE , cf. theΦ-terms in (23a) below. Then, vice versa,
such contribution should give a driving force for the evolution of θ through the Biot structure (1).

Yet, it seems difficult or rather impossible to put the model (4)–(8) directly into the framework of the
materials with internal variables and in particular the isothermal Biot equation from Section 1. This is
likely the reason that the energetics of the model (4)–(8) inthe sense (2) has never been scrutinized in the
literature; cf. e.g. [51] where (as a positive exception) the energetics of the rate-and-state-dependent fric-
tion has been performed but eventually only the stress equilibrium like (7) without explicit involvement
of the flow rule for the internal variable (like here (6)) has been balanced.

For (an unsuccessful) example, one might have an idea to re-write (6) in terms of a rescaled ageing
variableΘ = g(θ) with g a primitive function to 1/ f1. Then, by taking (5) into account, one gets

.
Θ+ |

.
u|=

f0(θ)
f1(θ)

=
f0 ◦g−1(Θ)

f1 ◦g−1(Θ)
=: F(Θ) . (11)

Introducing further a (presumably small) “nonlinear coefficient” ε= ε(Θ, ·)> 0 monotonically dependent
on the second argument and the new variablew= Θ+u, (11) transforms to

ε(w−u,
.
w) = E(w−u) with E(Θ) := ε(Θ,F(Θ)) (12)

provided thatu is monotone (non-decreasing) so that|
.
u|=

.
u. The natural requirement thatε(Θ,

.
w)

.
w≥ 0

and thatE is nondecreasing andE(0) = 0 so that its potential, let us denote it byE, is convex with
its minimum at 0, can be satisfied. The stored energy which would generate the driving force∂uE

for (7) and∂wE for (12) is thenE (u,w) = E(w− u) + 1
2Cu2 while F (t) = CuD(t) in (1), the dissi-

pation rate isΞ
(
u,w;

.
u,

.
w
)
= ξ(g−1(w−u);v)+ ε(w−u,

.
w)

.
w with ξ from (9), and the kinetic energy is

M (
.
u,

.
w) = ρ

2 |
.
u|2. Of course,Ξ determines also the corresponding (pseudo) potential of dissipative forces

R(u,w;
.
u,

.
w). Such a presentation of the model (4)–(8) in the Biot framework brings however a (pre-

sumably small) modification of the original equilibrium lawon the interface due to the contribution from
E (u,w), namely as a certainback-force(as an analog of back-stress in plasticity with hardening) so that
the force equilibrium (4) is rather

σt +E′(w−u) = σeff
n µ. (13)

As ε > 0 can be chosen small, alsoE′ can be considered small, and thus this “regularization” might
not have an essential influence on the response of this model provided|

.
u| =

.
u. Although |

.
u| =

.
u might

be possibly expected during a typical stick-slip motion in aone-dimensional model of a fault without
inertia, the general multidimensional situation does not comply with this assumption.
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Another example of an unsuccessful attempt of a direct interpretation of such model is in [52], facing
difficulties with non-negativity of the dissipation rate.

Both these attempts meet the structural problem that (6) with v = |
.
u| and thus also (11) are not

monotonically dependent on the rates, which is standardly considered as an ultimate requirement. Other
objection might be an inconsistency with the philosophicalstandpoint that instantaneous variation of
“controllable” variables (i.e. here the displacementu) should not cause any instantaneous variation of
internal variables (i.e. here the ageingθ), as articulated in [35, Sect. A.1.3.3]. This last point here would
mean exactlyf1 = 0 in (6) but it would completely degenerate the model which would then become of
no interest at all.

Of course, one can easily consider both evolution problems (6) and (7) to have their own stored-
energy potential, cf. [41], but this (rather trivial and formal) structure does not have any deeper physical
meaning.

4 Biot equation in thermodynamic context

In view of the above mentioned difficulties, our goal now is tofind some (small) modification of the
model (4)–(8) that would exhibit the structure of the Biot-type equation (1) and allow for a reasonable
interpretation. A noteworthy “side effect” will be a possibility for a rigorous mathematical analysis and
design of numerically stable and convergent algorithmic strategies, cf. (26) below. To this goal, we first
augment the abstract general Biot-type model (1) to a full thermodynamical framework, however.

If the stored (or now ratherfree) energyE = E (q,T) and the dissipation potentialR(q,T;
.
q) depend

also ontemperature T, the Biot-type equation (1) should be augmented to a full thermodynamical system

M
′ ..q +∂ .

qR(q,T;
.
q)+∂qE (q,T) ∋ F (t,q), (14a)

cv(q,T)
.
T + j=

(
∂ .

qR(q,T;
.
q)+T∂2

qTE (q,T)
).
q with cv =−T∂2

TTE (q,T), (14b)

wherej is the abstract “heat-flux production” energy rate. Actually, the heat equation (14b) arises from
theentropy equation

T
.
s+ j= dissipation rate, (15)

where theentropyis defined by the Gibbs relation as

s= s(q,T) =−∂TE (q,T). (16)

From (15), we indeed obtain the heat equation (14b) just by the chain-rule

.
s=−(∂TE (q,T))

.
=−∂2

qTE (q,T)
.
q−∂2

TTE (q,T)
.
T.

Furthermore, defining theinternal energyW = W (q,T) by

W (q,T) = E (q,T)+s(q,T)T, (17)

and using (16), we have .
W = ∂qE

.
q+∂TE

.
T +

.
sT+s

.
T = ∂qE

.
q+

.
sT

so that, by substituting (15) we obtain theenergy balanceas

M (
.
q(t))+W

(
q(t),T(t)

)

︸ ︷︷ ︸

kinetic + internal energy
at timet

+

∫ t

0
j dt

︸ ︷︷ ︸

heat flux over the
time interval[0, t]

= M (
.
q(0))+W

(
q(0),T(0)

)

︸ ︷︷ ︸

kinetic+internal energy
at time 0

+

∫ t

0

〈
F (t,q),

.
q
〉

dt
︸ ︷︷ ︸

work by loading over
the time interval[0, t]

. (18)
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5 Model (4)–(8) in thermodynamic context

The anisothermal framework (14) suggests as a first approximation to introduce, in addition to the me-
chanical state variablesq = (u,θ), an auxiliary internal variable, let us denote it byT, formally in a
position of aneffective temperaturewhich will be (approximately) dependent on the slip velocity mag-
nitudev such thatT ∼ Kv with some coefficientK. The interpretation of this variable is the temperature
of a virtual layer on the contact interface between two adjacent bulk domains which have its own tem-
perature (here considered constant). This two-temperature idea has occasionally been used in physical
and engineering literature, cf. [10] and references therein, and recently in mathematical literature, too,
cf. Bonettiet al. 2009,2011.

In geophysical literature, the heat produced during frictional sliding is believed “to produce signifi-
cant changes in temperature, thus the change of strength of faults during seismic slip will be a function
of ... also temperature”, cf. [11, p.7260]. The usage of an (effective) interfacial temperature occurs
in [12, Chap.2], cf. also [13], following ideas from [28], claiming that the “effective temperature de-
scribes the configurational disorder in the material”, cf. [12, p.29], and that the “effective temperature is
different from the thermal temperature, but it evolves in a similar manner” and “unlike state variables in
friction laws such as Dieterich-Ruina, which are governed by an ordinary differential equation, effective
temperature follows a partial differential equation” as (30) below, cf. [12, p.32].

Such effective temperature can also be linked with the plastic strain rate like in (31) below, which
in some idealization (and localization) can be understood as an interfacial plastic rate which is actually
(after a regularization) more or less just the magnitude of the slip velocityv, cf. [48, Remark 3.1].

Here, in a certain approximation, one can borrow an idea of “an external constant temperature reser-
voir” from [5, p.483]. In literature, cf. e.g. [8, 9, 37], such an “interfacial temperature” is known (or
considered) indeed to vary in many hundreds of degrees due toa very fast slip during earthquakes even
exceeding 1000◦C, cf. [7, 42], while obviously the bulk temperature cannot vary substantially in this
relatively short moment, so there is even some experimentalmotivation of this scenario. Sometimes, a
microscopical explanation is by so-called “flash heating” of asperities in the fault core, cf. e.g. [4, 42].
The heat source during the slip (earthquake) exhibit an “extreme localization to a a zone< 1−5 mm
wide within a finely granulated fault core”, see [43].

The modelling assumption which we adopt is that coefficientK is large so that the effective tem-
peratureT, which later in this section (as the simplest option) will beset approximately toKv, ranges
such big values so that the constant temperature of an external bulk can be considered just 0. (HereK is
considered constant, yet it may be made depend e.g. on onv andθ, yielding a more general dependence
of T on Kv and also onθ, cf. (28) below.)

The heat production rate due to the friction (= thefrictional heat) is justξ = ξ(θ;v) from (9). Con-
sidering the heat-transfer coefficientκ = κ(θ,T) between the contact interfacial layer and the adjacent
bulk and the heat capacity of this interfacial layercv = cv(θ,T)> 0, the heat equation (14b) is then

cv(θ,T)
.
T +κ(θ,T)T = ξ(θ;v)+ ε(θ)|

.
θ|2

︸ ︷︷ ︸

dissipation rateΞ
from (23b) below

+ T φ1(θ)
.
θ

︸ ︷︷ ︸

adiabatic heatT∂2
qTE (q,T)

).
q

determined by (23a) below

(19)

with ε andφ1 from (21) below.
Rather as an artificial but simple example, we further adopt avery special choice and, for a fixedK,

consider the heat-transfer coefficient as

κ(θ,T) =
1
K

σeff
n µ

(

θ,
T
K

)

(20)

with µ from (8); a more general ansatz is discussed in the paragrapharound (28)–(29) below. The
philosophy of the ansatz (20) relies on that the heat capacity cv of this (infinitesimally thin) layer is
naturally to be considered very small, as well as the coefficientsε > 0 andφ1 > 0 occurring in (19) are
small, and then (19) with (9) is approximatelyκ(θ,T)T .

= ξ(θ;v) =σeff
n µ(θ,v)v so that, fromκ(θ,T)T .

=
σeff

n µ(θ, T
K )

T
K , we have approximatelyT

.
=Kv providedv 7→µ(θ,v)v is monotonically increasing and thus

the inverse of this function does exist. Note that this monotonicity does not need monotonicity ofµ(θ, ·)
itself, and thus does not exclude slip weakening.
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Having in mind the above mentioned scenario of suppression of the adiabatic effect and the influence
of the heat capacity and conductivity of the interfacial layer, we can rely onT ∼ Kv and we now replace
v in (6) byT and write the ageing flow rule in the form

ε(θ)
.
θ = φ0(θ)−φ1(θ)T (21a)

with φ0(θ) = ε(θ) f0(θ) (21b)

and φ1(θ) = ε(θ) f1(θ)/K (21c)

with someε(θ) > 0 to be chosen arbitrarily (and presumably small). Note thatthe last term in (19) is
approximately

Tφ1(θ)
.
θ .
= Kv

ε(θ) f1(θ)
K

.
θ = vε(θ) f1(θ)

.
θ (22)

so that, by choosingε small, both termsε(θ)|
.
θ|2 andTφ1(θ)

.
θ in the right hand side of (19) can indeed be

made negligible provided the slip velocityv and the ageing rate
.
θ stay bounded. This scaling suppresses

the influence of the ageing flow rule (21) to the overall energetics but anyhow does not totally ignore it,
in contrast to the standing rate-and-state geophysical models.

Let us still assume, for simplicity, that the heat capacitycv(θ,T) = cv(T) depends only on tempera-
tureT. The overall free energy, the dissipation rate, and kineticenergy are

E (u,θ,T) =
1
2
Cu2+Φ1(θ)T −Φ0(θ)+Ψ(T), (23a)

Ξ(θ;
.
u,

.
θ) = ξ(θ; |

.
u|)+ ε(θ)|

.
θ|2, (23b)

M (
.
u) =

ρ
2
|
.
u|2, (23c)

andF = CuD(t). In (23a),Φ0 andΦ1 are primitive functions toφ0 andφ1 from (21), respectively. Note
that, asφ0 > 0, the contribution−Φ0(·) into the interfacial energy is a decreasing function so that, if the
ageing variableθ increases, this energy decreases. The functionΨ is determined (up to an unimportant
affine term) fromΨ′′(T) = cv(T)/T.

The advantageous feature of this setting is that the entropys(θ,T) =−Φ1(θ)−Ψ′(T) separates the
mechanical and the thermal variables, so that the resulted heat capacitycv(θ,T) = −TΨ′′(T) is indeed
only temperature dependent. Yet, a general couplingΦ(θ,T) is also possible, and modern techniques
are developed for treating general situations even in the distributed-parameter setting like (30) below, cf.
e.g. [45, Sect. 13.9].

The resulted system (4)–(5)–(7)–(19)–(21) is to be solved for the initial conditions at timet = 0:

u(0) = u0,
.
u(0) = v0, θ(0) = θ0, T(0) = T0 (24)

with (u0,v0,θ0,T0) prescribed. The abstract energy balance (18) is now obtained by testing (7) by
.
u, (21)

by
.
θ, and (19) by 1. Denoting byCv the primitive function to the heat capacitycv, one thus gets

ρ
2
|
.
u(t)|2+Cv(T(t))+

1
2
Cu(t)2−Φ0(θ(t)) =

ρ
2
|v0|

2

+Cv(T0)+
1
2
Cu2

0−Φ0(θ0)+

∫ t

0
CuD

.
u+κ(θ,T)T dt. (25)

The asymptotics forC → ∞ leads tou ∼ uD and (19)–(21) decouples from the rest of the system,
and allows directly for a “canonical” experiment with jumping piece-wise constant velocity of the slip
u
.
= uD = uD(t) to obtain a typical jumping response of the sliding resistanceµ= µ(θ,T) with T

.
= Kv=

K
.
uD like this one presented in literature, cf. e.g. [14,17,32,34,50], cf. also Fig. 1 below. Philosophically,

letting the sliding resistance dependent also on temperature in a way that it increases when temperature
increasing is compatible with some computational and experimental studies, cf. e.g. [8,37].
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Considering an equidistant time partition with the time step τ> 0, and denoting byuk
τ the approximate

value ofu(kτ), and similarly forTk
τ etc., a semi-implicittime discretisationof the system (4)-(5)-(7)-(19)-

(21) can be done by the formula:

ρ
uk

τ−2uk−1
τ +uk−2

τ
τ2 +Cuk

τ +σk
t,τ sign(uk

τ−uk−1
τ ) = CuD(kτ), (26a)

ε(θk−1
τ )

θk
τ−θk−1

τ
τ

= φ0(θk
τ)−φ1(θk

τ)T
k

τ , (26b)

cv(T
k

τ )
Tk

τ −Tk−1
τ

τ
+κ(θk

τ,T
k−1

τ )Tk
τ = ξ(θk

τ;vk
τ)+ ε(θk−1

τ )
∣
∣
∣
θk

τ−θk−1
τ

τ

∣
∣
∣

2
+Tk

τ φ1(θk
τ)

θk
τ−θk−1

τ
τ

, (26c)

σk
t,τ = σeff

n µ(θk
τ,T

k−1
τ ), vk

τ =
∣
∣
∣
uk

τ −uk−1
τ

τ

∣
∣
∣. (26d)

The system (26) is to be solved recursively fork = 1,2, ..., starting from the initial conditionsu0
τ = u0,

u−1
τ = u0

τ − τv0, θ0
τ = θ0, andT0

τ = T0, cf. (24). Existence of a solution to this fully coupled system is
usually to be proved by a fixed-point argument and the computational implementation is by an iterative
numerical procedure. Assuming naturallyT0 ≥ 0, we haveTk

τ ≥ 0 for all k. Other natural assumptions
θ0 ≥ 0 and f1(0) = 0 yields thatθk

τ ≥ 0 for all k. Yet, it should be emphasized that usage of (26) for
computational purposes is practically limited to quasi-static case (i.e.ρ= 0) due to typically unacceptably
large numerical attenuation of elastic waves in this theoretical discretisation scheme, i.e. the conservation
of energy of the type (18) with a reasonably good accuracy if also inertial effects are counted requires
unacceptably small time stepτ > 0. Threrefore, more sophisticated time-integration strategies are to
be used, although usually their theoretical convergence ingeneral cases is not studied. Examples of
efficient methods used in seismic-wave modelling are an explicit acceleration Newmark scheme [26]
or an arbitrarily high-order derivative (ADER) time integration method [19, 27] combined with various
spatial discretisation in the distributed-parameter cases, e.g. discontinuous Galerkin method, as also in
[39], or finite differences as e.g. in [44], etc.

The analog of the energy balance (25) at least as an inequality can be obtained by testing (26a,b,c)
respectively byuk

τ−uk−1
τ , θk

τ−θk−1
τ , andτ. By summation, we can enjoy cancellation of the dissipative

terms±ε(θk−1
τ )|θk

τ−θk−1
τ

τ |2 as well as the adiabatic terms±Tk
τ φ1(θk

τ)
θk

τ−θk−1
τ

τ . Assumingφ1 nondecreasing
(so thatΦ1 is convex),φ0 nonincreasing (so thatΦ0 concave), andcv nondecreasing (so thatCv is convex),
we thus obtain an analog of (25), namely

ρ
2

∣
∣vk

τ
∣
∣2+Cv(T

k
τ )+

1
2
C(uk

τ)
2−Φ0(θk

τ) =
ρ
2
|v0|

2+Cv(T0)+
1
2
Cu2

0−Φ0(θ0)

+
k

∑
l=1

CuD(lτ)
ul

τ −ul−1
τ

τ
+κ(θl

τ,T
l

τ )T
l

τ . (27)

Without going into technical (but standard) details, let usonly mention that, by using the discrete Gron-
wall inequality, (27) yields a-priori estimates of both thestored and the internal energies uniformly in
time, and then by modifying the above test also of the dissipated energy. This makes a rigorous base for
numerical stability of the algorithm (26) and also the convergence forτ → 0 in such a way that it allows
for an extension on the distributed-parameter variants as outlined in Section 6 below.

The above interpretation allows also for various generalizations: e.g. one can consider another ansatz
than (20), e.g. justκ > 0 a (small) constant. Then the effective temperatureT would, instead ofKv,
be (in a nonlinear way) dependent approximately on bothv and also onθ. Vice versa,v would depend
nonlinearly onθ andT, and then the flow rule (21) would take a more general form, say

ε(θ)
.
θ = φ(θ,T). (28)

Then, in (23a),T could be coupled withθ in a general nonlinear manner, so that the entropy would
not separate temperature and mechanical variables, and theheat capacity would depend also on that
mechanical variables and the treatment of such models wouldbe more complicated, cf. [45, Sect. 13.9].
Such nonlinear variant of (21) suggests to consider directly a nonlinear variant of (6). Examples for it
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might be

.
θ =−

vθ
dc

ln
(vθ

dc

)

or
.
θ = 1−

( vθ
2dc

)2
(29)

devised in [50] or [40], cf. also for [34] for comparison with(6). For some others, see e.g. [51]. Some-
times even more general dynamics e.g. involving

.
v can be found in literature, cf. [36, Formula (20)].

Another generalization might consist in
.
θ acting nonlinearly in (21a) similarly as used in engineering

models for the bulk damage, cf. (31c,d) below; this can also capture activation phenomena for ageing.

6 Towards distributed-parameter models

The “full” distributed-parameter variant of the above presented model should considerT = T(t,x) and
v = v(t,x) with x ranging the 2-dimensional interface (the fault), and the heat equation (19) is then

cv(θ,T)
.
T +κ(θ,T)T −divS(κs∇ST) = ξ(θ;v)+ ε(θ)|

.
θ|2+Tφ1(θ)

.
θ, (30)

where “divS” and ∇S denotes the surface divergence and gradient operators, respectively. Assuming that,
likewisecv, also the heat conductivityκs > 0 of the (infinitesimally thin) interface is very small, we can
again rely on the scenarioT

.
= Kv. As for u= u(t,x), x ranges the 3-dimensional bulk around the fault.

Then (7) should be replaced by the force equilibrium in the bulk ρ..
u−divσ = f with the visco-elastic

stressσ = De(
.
u)+Ce(u) with the small-strain tensore(u) = 1

2(∇u)⊤+ 1
2∇u, the visco- and the elastic-

moduli tensorsD andC, and f the gravity force. It is to be accompanied by the boundary conditions
u = uD and the Coulomb friction law (in the Tresca simplification) on the fault[[u]]n = 0 and[[

.
u]]t = 0

if |σt| < σeff
n µ(θ,T) and σt = σeff

n µ(θ,T/K)[[
.
u]]t/|[[

.
u]]t|, where [[u]]n = [[u]]·~n, [[u]]t = [[u]] − [[u]]n~n, and

σt = σ~n− (~n⊤σ~n)~n with the unit normal~n to the interface, while (5) should be replaced byv = |[[
.
u]]|

where[[·]] denotes the difference of the traces from both sides of the interface. In fact, some (“enough
dissipating” variant of) Maxwellien-type rheology can rather be used for the stressσ, e.g. the Jeffreys’
one, cf. [33, 48]. The Tresca variant represents certain simplification allowing, in particular, for an
analysis of the model. Another variant is to allow for a real non-constant normal stressσeff

n = |~n⊤σ~n| but
make an adhesive-contact regularization like in Bonettiet al. 2012.

The semi-implicit discretisation of the type (26) combinedwith a spatial discretisation can yield a
numerically stable and convergent computational scheme. The analysis of the parabolic heat equation
(30) needs a rather sophisticated estimation of the temperature gradient by using a “nonlinear test” by
1−(1+T)−δ with δ> 0 and an interpolation by means of the Gagliardo-Nirenberg inequality; cf. e.g. [45,
Ch. 9] for rather complicated details.

Eventually, one can take inspiration from the above thermodynamically consistent modification of
the rate-and-state friction and formulate a correspondingbulk model, using a very conventional concepts.
More specifically, one can replace the concept of frictionalcontact by the concept ofplasticity without
hardening which, in the rate-independent variant typically give rise to infinitesimally thinshear bands
which then yield the same effects as interfaces (= faults). The frictional stressσeff

n µ(θ,T) then becomes a
rate-and-state-dependent plastic yield stress, while the ageing variableθ stands in a position ofdamage
which allows also forhealing, cf. also [48, Remark 3.2]. Using a deviatoric (i.e. trπ ≡ 0) plastic strainπ
as another internal variable so that the mechanical state will be q= (u,θ,π), such model reads as

ρ..
u−divσ = f with σ = D(e(

.
u)−

.
π)+C(e(u)−π), (31a)

∂ .
πr(θ,T;

.
π) = devσ, (31b)

ε(θ,T;
.
θ) = φ0(θ)−φ1(θ)T + γ∆θ, (31c)

cv(T)
.
T −div(κ(θ,T)∇T) = ξ(θ,T;

.
u,

.
π)+

(

ε(θ,T;
.
θ)+Tφ1(θ)

).
θ, (31d)

with devσ = σ− 1
3(trσ)I denoting the deviatoric part of the stress tensorσ, with the dissipation rate

ξ(θ,T;
.
u,

.
π) = D(e(

.
u)−

.
π):(e(.u)− .

π)+∂ .
πr(θ,T;

.
π):

.
π. (31e)
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The notation “ : ” in (31e) means scalar product of two 3×3-tensors, summing them over two indexes.
The coefficientγ > 0 in (31c) measures, roughly speaking, influence of the damage at a material point
on/from its vicinity and, in this way, determines the length-scale of the damage (i.e. the width of the
typical damage zone of a fault, usually 1-100 m). This is a so-calledgradient damagetheory (cf. e.g.
[3, 20, 38]), used in geophysical models e.g. in [33]. Biggerγ will lead to wider damage zone and vice
versa, and a particular value ofγ is a vital part of phenomenology related, within the framework of this
model, to a particular fault modelled.

Like in (7), ∂ .
πr(θ,T; ·) is typically set-valued due to non-smoothness ofr(θ,T ; ·) at 0, describing an

activated character of the plastification process, cf. (33)below. Thus (31b) is to be rather an inclusion
than the equation.

The energy balance of the type (25) can be obtained by multiplying the particular equations in (31)

respectively by
.
u,

.
π,

.
θ, and 1, integrating over the considered spatial domain (letus denote it byΩ) and

using Green formula and specific boundary conditions (here not specified, however). This leads to the
energy balance of the type (18) with the free energy

E (u,π,θ,T) =

∫
Ω

1
2
C(e(u)−π):(e(u)−π)+Φ1(θ)T −Φ0(θ)+Ψ(T)+

γ
2
|∇θ|2dx (32a)

cf. (23a) forΦ’s andΨ, so that the internal energy (17) is then

W (u,π,θ,T) = E (u,π,θ,T)+

∫
Ω

s(q,T)Tdx

=
∫

Ω

1
2
C(e(u)−π):(e(u)−π)−Φ0(θ)+Cv(T)+

γ
2
|∇θ|2dx, (32b)

and the kinetic energy is nowM (
.
u) =

∫
Ω

ρ
2 |

.
u|2dx, so that, up to external heat/mechanical sources, (18)

leads toconservation of the total energyin the form

M (
.
u)+W (u,π,θ,T) =

∫
Ω

ρ
2
|
.
u|2+

1
2
C(e(u)−π):(e(u)−π)−Φ0(θ)+Cv(T)+

γ
2
|∇θ|2dx.

Let us note the analog of (31c) and (30) with (21a) and (31d), respectively. Note also that, likewise

∂ .
πr andcv, alsoε = ε(θ,T;

.
θ) in (31c,d) depends on temperatureT; such type of dependence is used

in geophysical modelling e.g. in [31, 32]. Moreover, instead of a mere positive coefficient,ε is con-

sidered in (31) as possibly a nonlinear operator acting on on
.
θ, which allows for modelling activation

phenomena as typically desirable (and usual) in damage mechanics. On the other hand, in contrast to

the damage-controlled plastification flow rulec
.
π = (

.
θ)+devσ with c so-called effective damage-related

viscosity frequently used in geophysical models (cf. e.g. [23, 30, 32, 33]) with only limited validity ba-
cause plastification obviously stops when damage is completed, our flow rule (31b) follows the standard
and widely used concept of plasticity at small strains, cf. e.g. [24,35] or also [1,46]. Such plastic model
combined with damage was tested computationally (in a variant of the single degree-of-freedom slider)
to demonstrate a capacity to simulate stick-slip type motion and reoccurring earthquakes in [48] under
external loading with a constant rate even already in an isothermal variant. Further tests of the full model
(31) to demonstrate ability to develop narrow shear bands (=faults) and imitating the typical response of
the rate-and-state friction model on them is desirable and expected in future work. Of course, computa-
tional implementation of narrow shear bends with not a-prioiri known position (as e.g. in nucleation of a
new fault) is not easy; cf. [2] for a 2-dimensional perfect thermo-plasticity without damage, however.

Imitating the frictional force σt considered before asσeff
n (µ0+α(|[[ .u]]t|)+β(θ))[[ .u]]t/|[[

.
u]]t|

or, nearly equivalently, temperature-dependent (formally similarly as in [5, 11]) as
σeff

n (µ0+α(T/K)+β(θ))[[ .u]]t/|[[
.
u]]t|, the (pseudo) potential of dissipative forces in (31b) can com-

bine both options and be considered as

r(θ,T ;
.
π) = σeff

n

(
µ0+α0(|

.
π|)+α1(T)+β(θ)

)

︸ ︷︷ ︸

rate-and-state-dependent
plastic yield stress

|
.
π| (33)
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rate of external
loading

.
uD

t

t

t

time t

T

θ

µ= µ0+α+β
= yield stress
∼ sliding resitance

prescribed slip rate on the fault
core (essentially equals to

.
π)

temperature governed by (31d) on
the fault core indicates nearly im-
mediately the slip velocity

.
uD

damage (=ageing) governed
by (31c) on the fault reacts
on varyingT with a delay

influence of vary-
ing α dominates

influence of varyingβ dominates

Fig. 1. A schematic illustration of the response of the displacement-driven experiment
of the single-degree-of-freedom-slider type on the jumping velocity of the load-
ing, assuming rigid rock blocks sliding by prescribeduD, imitating the standard
laboratory experiment as e.g. in [5,11,14,17,18,25,32,50,51] showing a typical
nonmonotone response of the sliding resistanceµ.

with suitableα0, α1, β > 0, and a fixedσeff
n . The dependence of the coefficientα0 on |

.
π| makes the

flow rule (31b) rate dependent and determines the length-scale of the core of the fault (usually much
narrower than the damage zone) related to slide velocity. Ifα0 = 0, we would get perfect plasticity;
the mathematical difficulties can be seen from [46] and wouldrequire here alsoα1 = β = 0 to justify
rigorously such model. Therefore, one should considerα0 > 0 and then we get the rate-dependent
plasticity with the temperature-dependent yield-stressσeff

n (µ0+α1(T)), like that one mathematically and
computationally scrutinized in [1], here additionally damage dependent like in [48], combined with the
gradient-damage model. The combination of plasticity and damage is indeed a very classical concept,
cf. e.g. [35, Ch. 10]. For conceptually similar plasticity-damage model and its scaling and comparison
with the rate-and-state-dependent friction see also [30, 32]. If also the elastic response were influenced
by damage, i.e. ifC = C(θ), then the term1

2C
′(θ)(e(u)−π)2 would contribute to the driving force in

(31c), cf. [48]. Furthermore, a stored energy which is non-quadratic and even non-convex in terms of the
elastic straine(u)−π as proposed and used in [31] and then also e.g. in [23,30] might be considered but
rigorous mathematical treatment would then require to include the concept of non-simple materials, cf.
e.g. [45, Sect. 13.9].

Let us very schematically explain the desired functioning of the model (31) on the displacement-
driven experiment for which the state-and-rate friction model has been originally devised in [14, 49].
It consists of two sliding rock blocks which are considered as nearly rigid (i.e.C very large) so that
the displacement of the controlled boundary is right transferred on the flat contact boundary (i.e. in our
model (31) the thin fault core) and the bulk model (31) then imitates the one-degree-of-freedom slider
from Section 5. An important phenomenon is that the heat conductivity κ is influenced by damageθ,
cf. (20), reflecting in a rough way the natural expectation that more damaged rock conducts heat harder
(and, vice versa, less damaged rock is a better heat conductor) so that varying the heat production due
to θ does not substantially influenceT which stays approximately reflecting the sliding velocityv ∼

.
uD

(in the simplest scenario asT ∼ Kv). The delay in the response ofθ, important for getting qualitatively
the desired nonmonotone response of the yield stressµ which is in the position of sliding resistance in
this experiment, is due to the “inertia coefficient”ε(θ, ·) in (31c) and also due to the diffusionγ∆θ which
causes a certain delay by damaging or healing also a bit widervicinity of the narrow fault core.
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7 Conclusion

The modification (or, one can say a regularization) of the conventional rate-and-state-dependent fric-
tion model in order to comply with standard framework of rational thermodynamics and to allow for
formulation of an energy balance and a rigorous numerical analysis has been addressed.

A simplified lumped-parameter setting admitting the interpretation as a single degree-of-freedom
slider (leading to a system of ordinary differential equations instead of partial differential equations)
with a given normal force (called the Tresca friction) has been used to explain an essence of the model in
a lucid way. Some physically inconsistent attributes of this friction model, as also sometimes presented in
literature, have been discussed. Lacking attempts in literature to identify thermodynamical driving forces
governing the model and to derive an explicit energetics were pointed out, together with presentation of
some unsuccessful attempts documenting the difficulties, although the clear proof of impossibility of
thermodynamically consistent formulation has not been (and does not seem easy to be) casted.

Due to these difficulties in particular in isothermal setting, an auxiliary internal variable (perhaps
only formally) in a position of an interfacial effective temperatureT governed by the heat-transfer
equation (19) has been introduced. For some coefficients in this equation chosen small, we could
use that, from (19) with (9), the heat fluxκ(θ,T)T is approximately the frictional heat production rate
ξ(θ;v) = σeff

n µ(θ,v)v, and for this heat productionσeff
n µ(θ,v)v depending monotonically on the velocity

magnitudev, we could therefore consider approximatelyT ∼ Kv. On such conditions, we can use such
auxiliary temperatureT instead ofv in the flow rule for ageing variable. With this (small) modification,
we recover (approximately) the original Dieterich-Ruina’s type model (4)–(8) in the mentioned Tresca
variant, i.e. withσeff

n given, but now in the rational-thermodynamical context. A numerically stable
semi-implicit time discretisation has been devised.

The corresponding partial-differential-equation variant of this frictional contact can serve to devise
a bulk model combining standard perfect, rate-independent(so-called Prandtl-Reuss) plasticity and gra-
dient damage (which itself is very standard concept in engineering, cf. e.g. [3] for a survey) allowing
for healing, which itself can already model re-occurring earthquakes, as shown in [48], and which is
still completed here in a thermodynamically consistent wayby a heat-transfer equation to allow for
modelling the typical response of the sliding resistance asschematically depicted on Figure 1. While in-
fluence of the damage (representing an analog of ageing) on the elastic response is not pronounced (like
in the isothermal tests in [48]) or, more precisely, here even completely suppressed, its influence on the
dissipation through the yield stress for plastification is essential and at this point the bulk model advanta-
geously transfers the phenomenology from the rate-and-state friction model. One can perhaps interprete
this yield-stress decay within the rising temperature and decaying damage/ageing (at least partly) as a
melting of the fault core, which is the effect well advocatedin the literature, cf. e.g. [4,7,42].
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[20] M. Frémond.Non-smooth Thermomechanics. Springer, Berlin, 2002.
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