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Abstract

We study numerical behavior of stationary single- or twepshatrix splitting iteration methods
for solving large sparse systems of linear equations. We shat inexact solutions of inner linear
systems associated with the matrix splittings may conalilginfluence the convergence and the ac-
curacy of the approximate solutions computed in finite @ieai arithmetic. For a general stationary
matrix splitting iteration method, we analyze two mathdoaly equivalent implementations and
find the corresponding componentwise or normwise forwatohokward stable implementation.

Keywords: matrix splitting, stationary iteration method, convergemate, rounding error analysis,
backward error.

AMS(MOS) Subject Classifications: 65F10, 65F35, 65G30, 65G50; CR: G1.3.

1 Introduction

We consider an iterative solution of the large sparse sysfdmear equations

Ax=b, AecC™ and becC", (1.1)
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whereA is a nonsingular and, in general, a non-Hermitian matrig, kais the corresponding right-hand
side vector. Many iteration methods for the linear systerth)(&re based on efficient splittings of the
coefficient matrixA in the formA =M — N, whereM is a nonsingular matrix such that a linear system
with the coefficient matridM is easily solvable. The classical examples areJdwbi the Gauss-Seidel
and thesuccessive overrelaxatiaisOR) iteration methods [31, 19, 18, 20], in which the mathixs
split into its diagonal, off-diagonal and triangular pag#s/ing rise to the diagonal and the lower/upper
triangular matriced, respectively; see [32, 33] and the references therein. nideern examples are
the Hermitian and skew-Hermitian splittin@HSS) iteration method [9] and its variants such as PMHSS
(preconditioned and modified Hermitian and skew-Hermitiglittihg) [7], in which the matrixA is split
into its Hermitian and skew-Hermitian parts, giving risethe shifted Hermitian and the shifted skew-
Hermitian matrice®/; see also [11, 5, 6] and the references therein. In genbeaH ES iteration method
belongs to the framework of two-step matrix splitting itéesa methods [14, 3, 4], which, for given two
splittingsA = M1 — N; andA = M, — N with M1 andM, being nonsingular, iterates alternately between
these two splittings in an analogous fashion to the clalsaltarnating direction implici{ADI ) iteration
method for solving partial differential equations [27, 1€¢e also [8, 10] and the references therein.

In some cases, computing the exact solution of a linear systith the coefficient matrisM (or My
or My) can be expensive and impractical in actual implementatid further improve the computing
efficiency, we usually solve this linear system, called tiveer linear system, by another iteration scheme
to some prescribed accuracy, resulting in an inexact orraariauter iteration method; see [12, 9, 11, 6].
For example, in the category of two-stage matrix splittitegation methods, a linear system with the
coefficient matrixM is solved iteratively by an inner iteration scheme basecdhather splittingM = F —
G, with F being a nonsingular matrix; see [26, 25, 13]. This two-stagérix splitting iteration method
has been studied intensively by many authors in the litezagee, e.g., [17, 12, 2, 15] and the references
therein. The inexact solution of the inner linear system payse two important effects on the numerical
behavior of the overall matrix splitting iteration process., a certain convergence delay of the iteration
sequence and a possible accuracy limit on the computeddpate solution. By the componentwise
or the normwise backward error analysis [20], in this paperwill prescribe the tolerance (or the
toleranceg; andty) for the inner iteration method, with respect to the spigtmatrixM (or the splitting
matricesM; and M), in a single (or a two-step) iteration process, which egjemntly determines the
number of the inner iteration steps. In other words, we prireach computed approximate solution of
an inner linear system as an exact solution of a perturbediisystem, where the relative perturbation of
the coefficient matrix of the inner linear system, measurdgbeby the size of its components or by its
norm, is bounded by the parametefor the parameters; andt,), being of the ideal order = &'(u) (or
11, T = O(u)) for a backward stable method, but being much larger thanotinedoff unitu in practical
implementations.

In this paper, we concentrate on the question what is theslsestacy we can obtain from such inexact
schemes when implemented in finite precision arithmetice #tt that the inner solution tolerance
strongly influences the accuracy of the computed iteratkeas/n and was studied in several contexts
[9, 29, 30, 11, 23, 24]. Stationary iterative methods wita thner linear systems solved to working
accuracy have been analyzed in [21, 15]. However, significdess is known for iteration methods
that use the inexact nontrivial splittings. We will also lyza the maximum attainable convergence
delay of inexact two-step splitting iteration methods imrte of these parameters and in terms of spectral
properties of corresponding splitting matrices. In thisssewe extend the work achieved in [21] and give
similar results to [23, 24]. In our work, we will analyze twathematically equivalent implementations
and point out that the one that is componentwise or normwisedrd or backward stable. Given a
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computed approximate solutiortd the linear system (1.1), an iteration method is calledpmmentwise
forward stable if the errok = x satisfies the bountk — x| < &(u) |A~1||A||x|, and is called normwise
forward stable if the Euclidean norm of the error satisfies lound||X — x| < &'(u) [|A2]|[|A]|[|X]|-
Similarly, an iteration method is called componentwisekidpaard stable if the residudd — AX satisfies
|b— AR < &(u) (JA||X| + |b]), and is called normwise backward stable if the Euclideamnmnof the
residual satisfieb — AX|| < &'(u) (||A|||IX]| + [|b])-

The organization of the paper is as follows. In Section 2 wevdéhe main results on the convergence
delay and maximum attainable accuracy for stationary Istatep) matrix splitting iteration methods.
Section 3 is devoted to the analysis of the stationary twp-shatrix splitting iteration methods. In
Section 4, we review the HSS and the PMHSS iteration meth®dg][ describe two experimental
examples where the tested linear systems arise, and statertiputing settings that are followed in the
implementations. The numerical results are given in SedioFinally, in Section 6, we end the paper
by a few concluding remarks.

Throughout the paper, we adopt the following notations ametepts. The terrhdenotes the identity
matrix of suitable dimension and the symbpl|| indicates the Euclidean norm of either a vector or
a matrix. For a given vectax and matrixX, |x| and |X| stand for their absolute values, afixl| and
||X|| stand for their Euclidean norms, respectively. Whers a square and nonsingular matrix, we use
the quantityk (X) = ||X||[|X~%|| to represent its Euclidean-norm condition number. Noté &fX) =
k(X~1). For a square matriX, we denote by (X) its spectral radius. For distinction with their exact
arithmetic counterparts, we denote quantities computduohiite precision arithmetic by using an extra
upper-hat. In addition, we assume the standard model fairfgppoint computations and denote by
the unit roundoff. The tern@’(u) is a low-degree polynomial in the problem dimensiomultiplied
by the unit roundoffu. It is independent of the system parameters but is depermtedetails of the
computer arithmetic. For simplicity, we do not evaluatetdrens proportional to higher powerswand
also occasionally skip the technical details that wouldatiggly affect the presentation of our results.

2 Stationary Matrix Splitting Iteration Methods

Assume thatA = M — N is a splitting of the coefficient matri of the linear system (1.1), witM
being nonsingular. Starting from an arbitrary initial \@cty, a stationary (single-step) matrix splitting
iteration method for solving the linear system (1.1) praghua sequence of approximate solutiggs,,
k=0,1,2,...,with

Xer1 =M H(NXc+b) (2.1)

or
X1 =X+ M H(b— AX). (2.2)

Note that the iteration schemes (2.1) and (2.2) are matheatigtequivalent, but as we will see later
they are numerically different in actual implementatiofRsom (2.1) and (2.2) we see that the error of the
approximate solutiony. 1 — X and the associated residumt Ax 1 satisfy, respectively, the recurrences

X1 —X= (I = M1A) (X — X) = G(xc—X) (2.3)
and

b— A1 = (I =AM 1) (b— Ax) = F (b— Ax), (2.4)
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with
G=1-M1A and F=1-AML

Note that the matrice& andF have the equivalent expressioBs= M~IN andF = NM~L,

In practical situations, the inner linear systems, indubgdhe iteration schemes (2.1) and (2.2),
with respect to the coefficient matriM, cannot be solved exactly. Instead, we will assume thatyever
computed solution of a linear system with the coefficientrirat! will be given by an approximate
solution that can be interpreted as an exact solution ofeatisystem with the same right-hand side
vector, but with a perturbed coefficient matiNk+ AM. Note that under reasonable assumption on the
size of the incremenkM, the inverse of the matrikl + AM can be written in the form

(M4+AM) = (1 +AH)M 1 =M"1(1 +-AE),
with
AH=—(M+AM)'AM and AE =-AM(M+AM) 1L,

If M~1 in the iteration matrice§& andF appearing in (2.3) and (2.4) are straightforwardly repdelog
(M +AM)~1, then we could obtain the recurrences with the iteratiorioesG + AG andF 4 AF, where

AG=AH(G—1) and AF = (F —1)AE.

Hence, inexact solutions of the inner linear systems wiipeet to the coefficient matriM affect the
convergence rate of the corresponding overall iteratidgreise. Roughly speaking, a potential delay
in the convergence is determined by the sizes of the incresdg¢th and AE. For stationary iteration
methods, this phenomenon has been analyzed by severaisagée, e.g., [28, 21, 20, 15].

The accuracies of the approximate solutions computed byetyaivalent iteration schemes (2.1) and
(2.2) can be estimated by the standard tools of rounding arralysis [20]. The iteration scheme (2.1)
has been analyzed by Higham and Knight in [21], where thegudised the recurrence for the computed
approximate solutions /1, k=0,1,2,..., in the form

(M+AM )%k 1 = NS+ b+ As, (2.5)
with
|AMy| < O(u)[M[ - and  |As| < &/(u) (IN]|%] -+ [b]); (2.6)

see also [20, Chapter 17]). The bound|aMy| is valid if the matrixM is triangular, which is the case
for the stationary relaxation iteration methods such ashlacauss-Seidel and SOR [18, 31]. These
classical matrix splitting iteration methods can be showbe forward stable in a componentwise sense
and backward stable in a normwise sense. The inner linemsgwith respect to the coefficient matrix
M are, in general, not easily solvable, so they are solvedtitety in practical implementations. As
a result, we cannot expect that all these inner linear systan be solved in a backward stable way.
Instead, we assume that the relative componentwise badlevesr associated witke "1 is bounded by
the parameter (1 < 1), i.e., we use the stopping criterion based on the backeamnd and terminate
the inner iteration process on&\| < T|M| is satisfied. As a matter of fact, assumingcondM) < 1
seems reasonable and some accuracy could be achieved intawgrihe approximate solutions for all
inner linear systems.
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In the following, we will analyze the maximum attainable a@cy of the computed approximate
solutions caused by the inexact solutions of the inner tisgstems with the coefficient mati®. More
specifically, we are going to show how the level of inexacngisen by the tolerance affects the
maximum attainable accuracy of the computed approximdigico X, 1 defined by (2.5), together with

[AMy| < T[M[, and  [Asq| < &'(u) (IN|[%]| +[b]),

while as will be shown later for the scheme (2.2) the maximttairzable accuracy will be proportional
to the roundoff unit.

Given an initial guesgg, the computed approximate solutign 1, fork=0,1,2,..., is thus the exact
solution of (2.5), which can be reformulated as

k
Rer1 = GRk+M b+ Ay) = G %o+ ZﬁG‘M*(bMyk,i), (2.7)
i=

where
AYi_i = ASci — MMy ifiiz1, i=0,1,....k (2.8)
For the residual vectors corresponding to the solution, by making use of the identities
AG=AMN=NMIA=FA and I-AM1=NM1=F

we can derive the recurrence in the form

k

b— A1 = F(b—AR) — (I — F)Ay = Fk“(b—A)?o)Jr%Fi(' —F) Ay i. (2.9)
Using the identities

k .
X = Gx+M b= G x+ %G'M‘lb,
i=

together with (2.7), we then obtain the formula for the erkor; — x of the (k+ 1)-th approximate
solutionX1 computed by the scheme (2.1) as follows:

fir1 — X =G (Ko —x) + _iGiM‘lAyk_i.
=
Therefore, the componentwise bound for the exger = x is given by
ko
Rer1—X| < |G (R0 —X)| +i;\e'\ M max Ay (2.10)

Analogously, using (2.9) we can obtain the componentwisentdor the corresponding residual-
A% 1 as follows:

k
_AQ k1l AQ i — A
o Akl < [P b A%) + 3 F1 —Fl max i @1y
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If the spectral radius of the iteration mati&is less than 1, i.ep(G) < 1, then the termG*"1(%y — )|
converges to the zero vector and, hence, for a lartiee bound for the maximum attainable accuracy
of the computed approximate solution (measured in termts @ior) is given by the supremum of the
second term in (2.10). Equivalently,dfG) < 1, thenp(F) < 1 and the termiF&+1(b— A%)| converges

to the zero vector, too. As a result, for a latgthe bound for the maximum attainable accuracy of the
computed approximate solution (measured in terms of thdual§ is given by the supremum of the

second term in (2.11). Indeed, then the se%éai and %Fi converge and, with
i= i=

|AM;| < T|M|
and
Ayi| < [AMi[|Rig 1] + [As | < T[M|[% 1] + O/(u) (IN[[%i] + [b]),

corresponding to the recurrence (2.5) we obtain the bounds
oy < < | i -1 -1 o, -1
e x@(é\@!)([rw M1+ 0 M N max 81+ 0 M) (242
and
— AR < i _ 2
b Axk+1|%<i§0\F\>|l F\([r|w+ﬁ<u>|N|1o<m<ak§1|m|+ﬁ<u>\b\). (2.13)

Usingt > ¢'(u) and
(bl = |AX < [Allx] < (IM[+|NJ)[x],

we can rewrite (2.12) and (2.13) into

A—SmiM‘lMN R 2.14
R+ 1 XIJ(i;IGI)I |(IM]+[NJ) OgrpgﬁllmlJrIXI (2.14)

and

0

b A% ST (_QFW) =1 (M1 IND a1+ b1 (2.15)

Provided that the entries (Z} \Gi | or 20 | Fi | are not too large, in the case of backward stable solutions
= =

of all inner linear systems with = &' (u), the estimates in (2.14) and (2.15) guarantee small foraadd

backward errors in the componentwise sense, respectiVase bounds contain the fac%cir_<kmlaﬁ|
<I<K+

that can be also significant depending on the convergencavioehof our stationary iteration method.
Provided that this factor is not too large, i.oe._, kmla)“q| ~ |x|, the componentwise forward or backward
<I<k+4

stability are then ensured [if1=1| ~ |A~1| and|M| +|N| ~ |A. However, in practice we haves ¢'(u)
and, therefore, the maximum attainable accuracy in gedees depend on the parameter
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The normwise approach is similar. The componentwise bouim(6) can be replaced by the norm-
wise ones

[AMy[| < Tl[M[| - and  [|As| < &'(u) ([IN]][[%]] + [[b[])-
So from (2.8) we can correspondingly obtain the estimate
18] < [[AM[[[[%2]| + lAsi]] < TlIM[[[%i2]l 4 & (u) ([IN][[[%]] + [oI])- (2.16)

Now, analogously to (2.10) and (2.11) we have the normwismbs
k+1 S 1
Rir1 — X[ < |G (%o — M~ i :
K1 =X < IG™ (% X)II+;HGHIIM I fmax]iayi| (2.17)
and
k+1 X el
— AX < — AX I _ -
[[o—ARra]l < [|FF(b AXo)H+i;IIF IV =F[} max Ay (2.18)
Provided that|G|| < 1 and||F|| < 1, it holds that

k ) k ) 1
<Y IlG < %HGH' <
i; = 1G]

and

kK kK k _ 1
Pl < S IFI< SIS g
2.F = 2P =2 T [F]

Similarly to [20] we define the normwise growth factor

1= Sup {M}

o<i<k+1 L [IX|

so that
%] < Gerallx],  1=0,1,....k+1.
By making use of (2.16) and
[l < (IMI[+[INID I, (2.19)
we have foi =0,1,... kthat
18Yi]] < B2 (T[M][ + &'(u) [N]D[X]| +- & (u) |bl]
and

12y | B (TIM] + G(WINIDIIXI] + G (W) ((IM]] =+ [N 1]

(1+ Bca) (T[M[[ + (W) INI X,

IN A
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where we have used the fact> ¢'(u). From (2.17) and (2.18) we then have

1
%2 = XI| < |G (% —x)[| + 1f ﬁgﬁ [TK(M)+ () [[MIN]] [X] (2.20)
and
. . | —F
b A%l < [P0 A%)] + 1 ||F|||| (Bera(TIMI|+ OWINID X+ &) [b]].  (221)

Here in the derivation of (2.20) we have also applied theves (2.19).

In practical situations, when > &'(u), the relative error of the computed approximate solutioth wi
be proportional to the parameterProvided thaf|/G|| and||F|| are not too close to 1, ari, 1 is not too
large, neglecting the terms withi(u) in (2.20) and (2.21) we see that the normwise relative emdrthe
normwise residual will approximately satisfy

K1 —X|| 1+ bhea Bhr1||! —F]

I~ 1-G| 1-IF]]

respectively. In the case of backward stable solutions lahaér linear systems witlt = &'(u), the
bounds (2.20) and (2.21) reduce to the error bound (17.1d jteresidual bound (17.19) in [20]. This
guarantees a small normwise forward errok{M) ~ k(A) and a small normwise backward error if
IIM|| = ||Al| under the above-mentioned conditions.

As also noted in [22], if greater computing accuracy is reggli we are better to work with the re-
currence (2.2). This iteration scheme is similar to theaiiee refinement, which is a popular technique
for improving the computing accuracy of linear solvers; gg. We will show that under mild con-
ditions this iteration scheme will deliver approximateuimn with the accuracy being proportional to
the roundoff unitu, but independent of the parameterThis indicates a significant difference from the
iteration scheme (2.1).

Given an initial guesso; at the (k+ 1)-th step of the iteration scheme (2.2), we first compute the
residual of the previously computed approximate solutipas follows:

Fo=b— A%+ Ar,, with [Arg < &) (b] - [Al|%]). (2.22)

K(M) and [lb—ARqall ST [IMI[{Ix1;

Then we solve approximately the correction equation wighrttatrixM so that the computed correction
vectorZ satisfies

(M+AMy)2Z =fy, with |[AMy| < T|M|, (2.23)
where the stopping criterion in the inner iteration is agassumed to be based on the backward error
smaller than the parameter We finally obtain the approximate solutieg, 1 that satisfies

K1 =R+ %+ DX, with  [Ax| < u([Re| + |Z]).- (2.24)

This computing procedure is well defined if the matkik+ AMy is nonsingular, which is guaranteed
under relatively mild conditions on the accuracy in the miberations (measured by the parametgr
e.g.,0min(M) > ||AM]|, k= 0,1,..., whereomin(M) represents the smallest singular value of the matrix
M. By using (2.24) we can derive the following recurrencestf@ errorxi.; — x and the residual

b — A%, 1 corresponding to the computed approximate solution:”

R —x = [l = (M+AM)TA] (Re—X) + (M + AMy) "L Ar + Axg, (2.25)
b—AR:1 = [I—AM-+AM) ] (b—AR) — A(M +AMy) L Ary — AAX. (2.26)
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We now derive componentwise bounds for the exgr = x and the residudb — A%, 1 based on the
identities (2.25) and (2.26). To this end, from the defimitaf the update, we have

Z = (M+AMg) t[(b—AR) +Ary]

= (M+AMy) LHAXX— %) +Ary] . (2.27)
Therefore,
2] < |(M+AM) Y [lb— AR+ |Ar]
< (M +AM) Y [|b— AR + & (u) (|b] + |A|R])] (2.28)
and
2] < [(M+AM) A X — % + |Arg]]
< (A+0(u) |(M+AM)YIAI(IX] + [R])- (2.29)

It follows straightforwardly from these estimates, the hdsi (2.22) and (2.24), as well as the identities
(2.25) and (2.26) that

Rirr — X < 1 = (M +AMy) AR — X+ &/(u) |(M + AM) Y |A[(1X] + [R]) + U[R] (2.30)
and

lb—ARa| < [|I =AM +AM) Y +u[(M+AM) HIA]] [b— A
+0(U) |A(M + AM) (|| + [A][%]) + Ul A] R - (2.31)

If p(t|M~1||M]) < 1, then from|AMy| < T[M| we have

_ l _ i _ 1,
|(M + AMy) 1IS%(TIM YM) M = (T=tMYM[) M

and
IAM +AM) 1 < |1 —F|20(T|M_l\|M\)i =[I—F[(1—tMYMm|) .
i=

Moreover, we claim that there exist matria®S andAF such that
I — (M+AMy) A < |G+ AG|
and
I =AM +AMg) 1+ ul(M +AMy) YA < |F +AF|.

Indeed, such matrice8G andAF do exist and they can be bounded as

AG] < 1 %(TIM*IIMI)iIM’lllMIIM’lAI

7MY M|[M2A| (1 — 7|M Y m[)



10 Z.-Z. Bai and M. Rozloznik

and
AF| < (T|AM~Y[M]+UlA)) I'\/l’ll_Z}(T\l\/l’l\ll\/l\)i
1=

-1
= (t]AM7Y|M[+ulA) M (1 — 7MY M) .
As a result, we can obtain the following bounds fi&x.1 — x| and|b — AR 1|:

~ ~ _ -1 _ ~ -
Bi1—X < |GHAG|[K—X+(u) (I =TIMH[M]) M~ |A|(|x] + [%]) + ul%|
k .
< |G+AG|"+1\>“<0—X|+20\G+AG\'
i=

: I—7M M) MY A % R 2.32
o) (1= M) ] (- maxsl) +umaxial| - (232)

and
. R _ -1 R R
b—Af1| < |F+AF|b— AR+ o) |l —F[(1—TM7H|M]) " (|b]+ [A[|%]) + UlAl|R|

k .
< |F+AF|k+1|b—A>A<0|+%|F+AF|'
i=
, _ M tmn 7t % 2
oW == o ) (Jo]+ A max <] ) + ual maxisl| . (239)

Provided that the spectral ragii|G+ AG|) andp(|F + AF|) are less than 1, the first terms in (2.32)
and (2.33) will be small after sufficiently large number @frédtion steps. Then the erm, 1 — x and the
residualb — ARy 1 will be proportional to the roundoff unit as

k
et — X < S IG+AG e (1 —IM~Y M) T IM-Y|A % %
1 X% Y6+ \[ (W) (1 =TI~ AT (4 max ] ) +u max|s

and

k
A < i - o -1 -1 . .
oAl £ 3 IF +0FF | 201 ~F] (1= rIM-HM) " (1Al maxR ) + vl ma

These bounds are significantly better than the bounds wedtdaaed for the recurrence (2.1). Although
in practical situations itig >> ¢'(u) that is used in the iteration scheme (2.2), we will obtairy\scurate
approximate solutions after sufficiently many iterations.

For the normwise approach, now the componentwise bounds2g) (2.23) and (2.24) are, respec-
tively, replaced by the normwise ones

fk=b—AX+Arg, with [And < &(u) (bl + |A[I%I),

(M+AM)Z = fx, with  ||AM|| < T||M]|
and

Rerr =R+ 2+ %, with [[Ax]| < u([[%] +[1]))-
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Based on the identities (2.25) and (2.26), using an anakgmproach we can derive the normwise
bounds

||)2k+1 _XH S (U) 1+ 6k
o 1-G)|—t«kM)(1- G|+ Il = Gl)

(IMH A +1—TK(M))

and
Il —F
1—|[Fl =tk (M) (X~ [[F[[+[1 = F[) —uM~L[[|A]

1o+ e (24 56D

for the errorxi, 1 — X and the residuab— A% 1, respectively, under the assumptions

IG+AG|| < |G| +Tk(M)(1—Tk(M)) Y1 —G|| < 1 (2.34)

lb—Ak%nll = O)

~

and
IF +AF || < [[F[+ (1—1k(M)" (T (M) [l = F ||+ u[M~Y[[|A]) < 1. (2.35)

Recall that6 is the growth factor depending on all preceding computadtﬁaas{ii}ikzo. Again, these
bounds guarantee small normwise forward and backwardsemespectively, under mild conditions as
stated in (2.34) and (2.35).

In summary, if the iteration schemes (2.1) and (2.2) areeitomponentwise or normwise forward
or backward stable, and if the splitting mathkis as sparse and structured as the coefficient maAtrix
then, at thek-th iteration step of these two schemes, computing the wvétxp+ b should be as costly
as computing the residubl— Ax. So the iteration scheme (2.1) costs about the same wokksthe
iteration scheme (2.2) at each iteration step. Roughlylkspgaprovided that the inner linear systems
having the same coefficient matfix are solved inexactly in accuracies controlled by the satheegioce
T, the iteration scheme (2.2) can always achieve higher ctatipnal efficiency than the iteration scheme
(2.2).

3 Stationary Two-Step Matrix Splitting Iteration Methods

In this section, we study the numerical behavior of the aiaiy two-step matrix splitting iteration
methods [27, 16, 3, 4, 12, 14] and give results similar to tagaary matrix splitting iteration methods
in Section 2. The stationary two-step matrix splitting atgwn framework has been studied extensively
by several authors from several perspectives, see, e,8, [, 5, 6] and the references therein. We
consider two splittings of the matrixin the formA = M; — N; andA = M, — N,. Given an initial vector
Xo, we define the stationary two-step matrix splitting itematmethod by the following two successive
recurrences

MiXci12 = Nixe+b,
MoXr1 = NoXeyp12+b.
Alternatively, we can use these recurrences in the mosgstfarward way as
Xr12 = MpH(Npg+b), (3.1)
X1 = My (NpXer/2+b). (32)



12 Z.-Z. Bai and M. Rozloznik

Denote by
Gi=MN;=1-H;A and Gy=M, Ny =1—HA
with
Hi=M;1 and Hy=M,%
Then (3.1) and (3.2) can be rewritten as
Xer1/2 = G1Xk+ Hib
and
X1 = GoXiy 172 + Hzb.

These give rise to the alternative recurrences

Xer12 = X+ Hi(b—Ax), (3.3)

X1 = Xerr2+Ha(b—Axe1/2). (3.4)

At each iteration step, the recurrences (3.3) and (3.4\evihe computations of two residudds- Axc
andb — AXc 1/, which require two matrix-vector multiplications with et to the matribA. According

to Lemma 2.1 in [9], this can be avoided, however, by the switisth of X 1> in (3.3) iNtox; 1 in (3.4),
leading to

X1 = X+ Hi(b—Ax) +Ha[b—A(x+Hi(b— AX))]
= (| — HzA)(| — H]_A)Xk—l-[(| — HzA)Hl—l-HZ]b

= GpG1X+ (GzH1+H2)b
Gx+ Hb,
where
G=GyG; and H = GyHj+H,. (3.5)

We remark that the matrild admits the following equivalent expressions
H = Hi + H2Gy = Hy + Ha — HoAH; = Ha(M1 + M2 — A)Hj, (3.6)
and the matrice& andH satisfy the identity
G=I1—-HA
Thus, instead of (3.3) and (3.4) we can use only one singlenmece
Xer1 = X+ H(b—Ax). (3.7

The detailed convergence analysis about the alternatiitirgpiteration method can be found in [14, 3,
4] and the references therein.
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In practical situations, the inner linear systems, induzgthe iteration schemes (3.1) and (3.2) with
respect to the coefficient matricé4, andM,, cannot be solved exactly, and they are often solved in-
exactly by some other iteration schemes; see [9, 11] andefieeences therein. It follows that inexact
solutions of the inner linear systems with respect to thdficsent matricesM; and M, affect the con-
vergence rate of the corresponding overall iteration sehem

In the following, we estimate the maximum attainable accyifar approximate solution, computed
with (3.1) and (3.2), to the linear system (1.1). Using thexsapproach as for the stationary matrix
splitting iteration method defined by (2.1) in Section 2, \&e gvrite

Rz = M (NS+b+DS¢172), (3.8)
Rerr = My (NoKp1/2+b+As1), (3.9
where
IASc 12| < T Myf[Res1/2] + O(u) ([N |[R] + (b)),
Ascra| < T2IMo[[Ri 1] + O'(U) (IN2][Rer1/2] + (D).

Again, 1, andt, are the tolerances employed to describe the accuracielvingsthe inner linear systems
with respect to the matriced, and My, respectively. Substituting,’;» into the formula ofx 1, we
obtain the expression

fir 1 = GR + Hb+ Ay, (3.10)
with
Ay = GaMy PAs 12+ My TAS 1.
Denote by
Fi=NM; 1 and F=N,M,t.
Then it follows from direct manipulation that
ALy = Fo(l —F1)Ase 1o+ (1 — F2) Ascya,
where we have used the commutative property of the matAicasl M2‘1N2, ie.,
AM, 1N, = My INA.
From the bounding conditions g, ;> andAs; we have the estimates
Asci1/p] < Ta|Maf[Repa/2] + O/(U) (IN2|[R| +[b])
< (mMy+ oW IND)_max 1%+ o (b

and
Bzl < (M + 0N, max %]+ O (M) + NI
< (T|My|+ O(u)|N 2
< (nMal+ oW (| max %I+ 1K)
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as well as
Bsal < ToMallReea] + 6(W) (Nl Rerajal + b))
< M 17 N ma Xi| + O b
< (uM]+0WING) _ max ]+ o)
and
Bl < (M +OWIND)  max %]+ (W) (IMa]+ IN2D) X
i=k+1/2,k+1
< (T2|M2|+6"(U)|N2|)<_ max I%|+IXI>-
i—k1/2, k1

Here in the estimates ¢As, 1/,| and|Asc,1| we have used the facts >> 0'(u), 12> &(u), and applied
the bounds

bl = (M1 —=N)X| < (|Ms]+[Na])[x],
bl = [(M2—N2)x| < ([Mz|+[N2|)[x.

Therefore, according to the formulasf andAAyy, it holds that

Bl < G YAl + M5 S
< |GoM (T My + O(u) N i
< 1GaM(raMal + o) N e I%1-+1])
M, (T2|M2| + &'(u) N 4
HM (Ve + oG (| max 191+
< [1GMg (M + () Naf) + M5 (M) + 60 N
< max |>25|+|x|> (3.11)
i—kk+1/2k+1
and
ABYI < [Roll — Fa)[ASyel 1 FollBsien
< IRall ~ Rl | (Ml + 00 Ne)),_max R+ o]
i=kk+1/2
| — M O(u)|N ma Xi b||. 3.12
#ll= Rl (Tl + () NG mex 1+ b1 3.12)

Because (3.10) immediately implies
k
Rep1 =GR + %GI(Hb‘i’Ayk—i)a
i=
by making use of the identity

k
x=G"x4+ 5 G'Hb
2
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and the relationshipG = FA, with F = | — AH = F,F;, we can obtain the recurrences
k .
Rer1—x =G (R —x) + 206' L\ (3.13)
i=
and
k .
b— AR 1 = F¥ (b —A%) + EOF'AAyk,i (3.14)
=

for the errornx. 1 — x and the residud — AXy 1. It then follows straightforwardly that

IA

ko
K1 — X |G [%0 — x| + Z)IG'IIAyk—iI, (3.15)
i=

kK
Ib— AR 1| < |Fk+1|\b—A>“<o\+Zj\F'HAAyk,i\. (3.16)
i=

If p(G) < 1, thenp(F) < 1. Hence, the term&*(|% — x| and|F*™||b— A%| converge to the zero
vector. As a result, for a largle the bounds for the maximum attainable accuracies of the atedp
approximate solutions (measured in terms of both error asitlual) are given by the supremums of
the second terms in (3.15) and (3.16), respectively. Indeadesponding to the recurrence (3.8), after
substitutions of (3.11) and (3.12) into (3.15) and (3.1&%pectively, we obtain the bounds

k
Feri—X 3 %\G'IUGzMill(TﬂMl\+ﬁ’(u)|N1|)+\'V|£1I(T2\M2\+ﬁ’(u)|N2|)}

~

- max |Xi_ X
<1<i<2k+3\ (i-1)/2| + \)

and

k
Al £ 5 1P| IFall =Rl ( (bl 0100 Nl), e [5s21+ b1
i=

1<i<2k+3

b =Rl ((raMal + C@INGD | max [R5 3]+

1<i<2k+3
are not too large, in the case of backward stable solutioadi ofner linear systems witly = ¢'(u) and
T, = O(u), these estimates then guarantee small forward and bacleveods in the componentwise
sense, respectively, ;| ~ My 1| ~ |A~Y and|My| + Ny| ~ [Mg| + [N2| ~ |A|. However, in practice
we haver; > ¢'(u) andt, > ¢'(u). Therefore, the maximum attainable accuracies in generdégend
on the parameterg andt,.

K ok
Provided that the entries of the vector _malX;_1)»| and the entries in the matrzj |G'| or Zj\F'\
= =

The normwise approach can be conducted in a similar fashiofact, by introducing the normwise
growth factor

Or1= sup
1<i<okiz X
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so that
1Ri-1)/2/l < Berallx]|, 1=0,1,...,2k+3,

if ||F|| <1 and||G|| < 1 we can correspondingly obtain the normwise bounds for tfee & 1 —x and
the residuab — A%y 1 as follows:

Jfea—x| - 1+6a

[(T2]| G2l K (M1) + T2k (M2))

I ]
+0(0) (G2l M5 Y INg ]+ M5 M N )]
Ib—AScall £ ot (ral ol = Fo)l M+ T2t = Rl M)
+0() (IR = F) Nl + 1 = Rl NgI] 1]
Ibl
R(—F | — Fo|).
ey R0 —Fll+ 1 =)

Provided thatr; > ¢'(u) andt, > ¢(u), these bounds can be approximately reduced to

K1 =X~ 146k

(11| G2 K (M1) + T2k (M2)),

E <]
. 6«
-] S o (IRl — F Ml + 2t — Rl Ml ]
B = ) = R,
T JF]

Roughly speaking, the limiting accuracy level measure@ims of the error is given by the quantity
11| Gz K (M1) + T2k (M2),

so ther;-term is damped by the quantifys,||. In actual implementations, we should balance the choices
of the toleranceq; and 1, in such a way that a desired overall accuracy of the errorhgegaed. For
example, we may set

T
T=—— and =1
G ’

wherert is a prescribed tolerance. Consequently, it holds that

||)2k+1—X|| < l+ 6k+1
= T(K(M1) + K(M>)).
W~ 1) T M+ k(M)

The quantity

T[F2(1 = F)[[IMa ]l + 2|l — Rl [ M

plays an analogous role in the result for the norm of the uedjcand the tolerancas andt, should be
chosen in a similar fashion to the above, e.g., through apbesi common tolerance Definitely, the
maximum attainable accuracies depend on the levels of atreass (measured in termsfin solving
the inner linear systems either with the matvix or with the matrixM,.
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In some applications one needs the maximum attainable @wctw be proportional to the machine
precisionu. Hence, it makes sense that we discuss the recurrence y&#gaightforwardly applying the
theory for the recurrence (2.2) established in Section thitnmanner, we can derive the componentwise
and the normwise bounds for the ermr 1 — x and the residuab — A%, 1 of the computed solutior, 1
of the linear system (1.1).

To this end, we recall that the matiik, defined in (3.5) and reformulated in (3.6), adopts the eguiv
lent expression

H=M,1(Mi+Mp— AM L

Similar to the computing model described in (2.22), (2.28) &.24), at thék+ 1)-th step of the iteration
scheme (3.7) we assume that the computed solutioni$ obtained by the procedure

fk=b—AR+Ar,, 2Z=H-+AHMP and X1 = R+ %+ DX, (3.17)
with Xp a given initial guess, where
A < O(u) ([b] + [A[IR]), 1A% < u([Re| + %), (3.18)
andAH (K is a perturbation to the matrid, which is defined implicitly by
H+A8H® = (Mp+ M) (Mg + M — A+ AM ) (M + aM{¥) 2,
with AMY, AMS¥ andAM® being imposed to satisfy
MY < T My),  IAMY)] < oMy and |AM®M] < @(u) ([Ma] + [Mz] + |A)). (3.19)

Again, 11 and 1, are two prescribed tolerances used to measure the acainasielving the inner linear
systems with respect to the matridds andM,, respectively.

Using (3.17) we can derive the following recurrences forgherxy, 1 — x and the residudb — ARk 1
with respect to the computed solutigg, 1:

fi1—X = [I = (H+AHMA (K —x) + (H +AH®) Ay + Axg, (3.20)
b—A%g1 = [l —AH+AHK))(b—A%) — A(H +AH®) Ar, — AAX. (3.21)

As (2.27) can be rewritten into

% = (H+AH®N)[(b—AR%)+Ary]
= (H+AH®)[A(X— %) +Ary,

similar to (2.28) and (2.29) we have

2 < [H+8H®|[lb— AR + |Ar]
< [H+AHY|[|b— A% + & (u) ([b] + |Al[%])]

and

< [H+8HY[[|Alx- Xk|+|Ark|]
< (L4 0 U) [H+AHW[A(X] +[R])-
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Then, it follows straightforwardly from these estimatdse bounding criterions in (3.18), as well as the
identities (3.20) and (3.21) that

R =X < [I1=(H+AHO)A Ul (H +BHY)A] (%X
HLF W OIH 8O (o + A%+l

S = (H+aHO)A R X
+O(U) [|(H+BHO)A + H+AHY A (K + %) +u%d  (3.22)
and
b—Afcal <[l = AH+AHY) 4 UAIH +aH ]| |p— A%
+0(U) [JA(H +AH )|+ UJAH + AH W] (1b] + [AlI%]) + A%
S [||— A(H +8H®)[ 4 UA|[H +AH Y] [b— A%

+0/(U) |A(H +AHY)| (|b] + |A/[%]) + UlA[R (3.23)

where we have neglected the second-order terms with repecilso, when estimatingX.1 — X| we
have used the inequality| < |A||x|. See also (2.30) and (2.31).

Again, after omitting the superscripts of the incrementrinas such agH®, AM® and AMY,

AMS‘), which are used to label the iterate indices, we see thageifrthtricedM; + AM; and M, + AM,
are nonsingular, then they can be equivalently expressed as

(M1 +AMp) L =M1 +AE) and (Mp+AMp) 1 = (1 +AH)M, L,
where
AE; = —AMi(M;+AM;) 1 and AHp = — (M2 +AM,) ~1AM,.
It follows that
H+AH = (I +AH)M, 1 (Mg + My — A+ AM)M (1 + AE;)
and

AH = AH;My'(Mp+My—A+AM) (Mg +AMg) "1+ M, Y (Mg + Mz — A+ AM)M; TAE,
= AHz(H+My ' AMM M (Mg +AM) ~ + (H + M, ' AM M 1) AE;.

Moreover, we claim that there exist matric®6 andAF, being bounded from above uniformly in the
iterate indexX, such that

Il —(H+AH)A| <|G+AG| and || —A(H+AH)|+UulA|H+AH| < |F +AF|.
As aresult, from (3.22) and (3.23) we can obtain the follapiounds folX;1 — x| and |b— ARi1]:

Rer1 — X < |G+ AG|[Re— x| + O (u)[H + AH[[A](X + [Re]) + Ul (3.24)
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and
|b— A%ia| < |F +AF|[b— A% + &'(u) |A(H + AH)[(|b] + [Al[R«]) + UlAl[%]. (3.25)
Indeed, the above-mentioned matrides andAF do exist and, if
p(Mi[M;) <1 and p(toIMyY[Mgl) < 1,

they can be bounded from above uniformly in the iterate irddue to the equalities

AG = —AHA = —AHp (H + My 1AMM; My (Mg +AMp) PA— (H + M, taMM Y AE A
and

AF = —AAH = —AAH, (H + M, TAMM; DMy (Mg 4 AM) 1 — AH + M, tAM M 1) AE,

as well as the inequalities

_ - _ g _ Ly,
|AH| = (M2 +AMp) "t AMp| < TZ'Z)(TZWIZ HIM2])' My [M2] = T2 (1 = T2 My H[Mal) M, [ Me|

and

_ > N _ -1 _
|AEL| = [AMy (M1 +AM;) | < r 3 (MM 1) M My = 7 (1= 72 Maf M) Mg (M.

Provided that the spectral ragi(|G + AG|) andp(|F + AF|) are strictly less than 1, the maximum
attainable accuracies will be proportional to the roundwiit u and also independent of the parameters
71 andt; as

k
o< i N o
a1 3 G-+AG] |0 H -+ aHIA| () + max o ) +u maxi
and
k .
— AX < [ o ~
oAl £ 3 IF +F[ | 20) AH-+8H)| 10+ e ) + Al max |

As
| -(H+AH)A=G+AG and AH-+AH)=I1—-F —AF,

we can further obtain the bounds
k _
s =X 5 3 6+6] |01 - 6 - aci|a Al (1 + maxd ) +umaxis
i& o<i<k 0<i<k
and

k )
b—A%a| S Y IF+AF] [ﬁ’(u) |l —F —AF| <|b|+ |A| m_ax|f<k|> + ulA| m_ax|>2k|} .
i£ o<i<k 0<i<k
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These bounds are significantly better than the bounds we diataéned for the recurrence defined
in (3.1) and (3.2). Although in practical situations itis>> ¢'(u) and 1, > ¢'(u) that are used in the
iteration scheme

Y12 = XcHMpt(b—AXo),
X1 = Xer1j2+ Mo t(b—Axeq2),
we will obtain very accurate approximate solutions aftéfigently many iterations.

For the normwise approach, replacing the componentwisedsoin (3.18) and (3.19) by the normwise
ones

[Ark[| < &' (u) (bl + 1ANIRAD; (1A% < u(lIRell + [1Z])
and
[AMy]| < Tq[[Mafl,  [[AMg[| < T2[M2f|,  [[AM]] < &(u) ([[Ma]] + [[M2][ + [[Al]),

respectively, we can analogously obtain the normwise bedadthe errorxc.; — x and the residual
b— AR, as follows:

k
~ o < i _ s >
fa=x1 5 3 16-+AG | 20 = (6-+a6) (A I+ maxIiul ) +u rax
and
k .
_ AR < i B . .
Io—ASucal| £ 3 IF -+ () I = F %)) (Io]-+ 1Al maxlil ) +ulal malil |

Provided that|G+AG|| < 1 and||F +AF|| < 1, and assuming that the normwise growth factor

||m\}
= SUu —_—
& o<i<'°k{ I

is not too large, the above normwise bounds can be furthegoli$ied to

1+ 6«

6k
i 2%UWiTerag (III —(G+AG)| k(A) + >

1+ 6

and

Il = (F+2F)] 1

ToFTaF| [”b” + <1+ m) 6k||A||||X||} :

Consequently, these bounds guarantee small normwiseribawma backward errors, respectively, under
mild conditions on the coefficient matr& as well as the splitting matricédd;, N; andMa, Na.

Ib— AR £ O(u)

In summary, if the iteration schemes (3.1)-(3.2) and (83}) are either componentwise or normwise
forward or backward stable, and if the splitting matridgsandN, are as sparse and structured as the
coefficient matrixA, then at thek-th iteration step of these two schemes computing the veblpg + b
andNzXc,1/2 + b should be as costly as computing the residibalsAx andb — AX, 1/,, respectively.

So the iteration scheme (3.1)-(3.2) costs about the samidomois as the iteration scheme (3.3)-(3.4) at
each iteration step. Roughly speaking, provided that theritinear systems having the same coefficient
matricesM; and M, are solved inexactly in accuracies controlled by the sareracesr; and 1o,
respectively, the iteration scheme (3.3)-(3.4) can alwaglseve higher computational efficiency than
the iteration scheme (3.1)-(3.2).
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4 Description of Implementations

In this section, we review the PMHSS and the HSS iteratiorhod [9, 7] and clarify their implemen-
tation settings. We remark that PMHSS and HSS are, respbgtitie typical examples of the stationary
single- and two-step matrix splitting iteration methods golving the large sparse linear system (1.1);
see also [12, 11, 6] and the references therein. Besidesgseeilde two experimental examples where a
complex symmetric and a non-symmetric positive-definitedr systems arise.

4.1 PMHSS and HSS lteration Methods

The PMHSS iteration method is used to solve the linear sy§tehy, with its coefficient matrixd € C™"
being complex symmetric and given by

A=W +iT,

whereW, T € R™" are real, symmetric, and positive semidefinite matrice$,wat least, one of them
being positive definite. Here and in the sequel, we use/i—1 to denote the imaginary unit. A specific
form of this iteration method is given by setting the itesatiparameterr to be 1 and choosing the
preconditioning matrix to b&/, which has the following algorithmic description.

Method 4.1. (The PMHSS Iteration Method [7])

Let Xp € C" be an arbitrary initial guess. For k=0,1,2... until the sequence of
iterates {Ndﬁ;oCZCn converges, compute the next iterate Xgi1 according to the following
procedure:

140 1
(W T)xgps = = (W—iT)x+ b

The PMHSS iteration scheme is induced by the matrix spijttin
A=M-N,
with
M=+ (W+T) and N=i(W-iT).

It alternatively admits the following equivalent form irrtes of the residual.
Method 4.2. (The PMHSS Iteration Method [7])
Let X € C" be an arbitrary initial guess. For k=0,1,2,... until the sequence of

iterates {Xc}p_oCC" converges, compute the next iterate X1 according to the following
procedure:

1—i
Xl = X+ == W+T) 1 b—Ax).
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In fact, the PMHSS iteration method is a stationary singgg-gnatrix splitting iteration method. It
converges unconditionally to the unique solution of the plax symmetric linear system (1.1) for any
initial guess if nullW) Nnull(T) = {0}. For distinction, we call Methods 4.1 and 4.2, respectivilg
PMHSS iteration schemes | and Il, or shortly, PMHSS-1 and F8&HlI, in the subsequent discussion.

In actual computations, we solve the linear sub-systemis reispect to the coefficient matik +
T iteratively by thepreconditioned conjugate gradiefPCG) method, with the incomplete Cholesky
factorization [18] preconditioner (MATLAB codechol (sparse(-))). The stopping criterion adopted
for the PCG method is

o+ (W +T)xc — (L+1)(W+T)Xc |
[0+ (W + T)%c|| + V2IIW -+ Tl [[%cell —

T, Wwith X0 =Xk,

in PMHSS-I and

[ —Ax— 1+ )W+ T)zll
Ib— A% +V2IW +Tlllzeel] ~

with 7 =0,

in PMHSS-II. Then the next iteratg 1 is defined asi, 1 = X ¢, fOr PMHSS-I and; 1 = X + Z 4,00
for PMHSS-II, where/max is the largest integef such that the above stopping criterions are satisfied.

The HSS iteration method is used to solve the linear systeh) ydith its coefficient matrix € C™"
being non-Hermitian and positive definite, i.e., its Hefamitpart#’(A) = 1(A+ A*) is positive definite;
see [9]. Denote by (A) = %(A—A*) the skew-Hermitian part of the matrix Then it holds that

A=A +.7(A),

and the HSS iteration method can be algorithmically desdréos follows.
Method 4.3. (The HSS Iteration Method [9])
Let X € C" be an arbitrary initial guess. For k=0,1,2,... until the sequence of

iterates {Xc}x_oCC" converges, compute the next iterate X1 according to the following
procedure:

{ (@l + A (A)Xeap = (al = (A)x+b,
(al+F(A)er = (al = 2(A)K1/2+b,

where O is a given positive constant.

The HSS iteration scheme is induced by the matrix splitting

A=M(a)—N(a),

M(a):%(al + A (A)(al +.7(A)  and N(a):%(al — A(A)(al — S (A).

It alternatively admits the following equivalent form irrmes of the residual.
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Method 4.4. (The HSS Iteration Method [9])

Let X € C" be an arbitrary initial guess. For k=0,1,2,... until the sequence of
iterates {Xc}x_oCC" converges, compute the next iterate X1 according to the following
procedure:

{Xk+1/2 = X+ (al +2(A) (b Ax),
X1 = Xzt (Al +.L(A) H(b— A1),

where O is a given positive constant.

In fact, the HSS iteration method is a stationary two-stefrisngplitting iteration method induced by
the matrix splittings

My = al+2(A), N, = al—-Y(A),
My, = G|—|-<5ﬂ(A), N, = G|—%(A).

It converges unconditionally to the unique solution of tlie+Hermitian positive definite linear system
(1.1) for any initial guess. For distinction, we call Metlsodl.3 and 4.4, respectively, the HSS iteration
schemes | and Il, or shortly, HSS-1 and HSS-II, in the subsatidiscussion.

In actual computations, the iteration parametes chosen to be the experimentally optimal one that
minimizes the number of iteration steps of the HSS iteratimthod. We solve the linear sub-systems
with respect to the coefficient matrica$ + .77 (A) andal + . (A) iteratively by the PCG or the PCGNE
(preconditioned conjugate gradient for normal equajiamethods, with the incomplete Cholesky (MAT-
LAB codeichol (sparse(-))) or the incomplete LU (MATLAB code lu(sparse(-))) factorization
preconditioners [18]. The stopping criterion adopted far PCG method is

b+ (al = (A)x— (al + 7(A)) %]
b+ (al = (A)xcl[ + [lat + 2 (A) | [l

<711, With X0 =X,

in the first-half iterate of HSS-I and

lb—Ax— (al +2(A))z.| ,
’ <711, with =0,
o= Axd| 1 lal + 2 Azl = %0

in the first-half iterate of HSS-II, and the stopping criberiadopted for the PCGNE method is

b+ (al = 22(A)) X172 — (A1 + 7 (A)) Xy 12,0l <15
b+ (al = 7 (A))Xra2ll + llal + L (A) [ IXe 120l = 7

With  Xey1/20 = Xt 1/2,

in the second-half iterate of HSS-I and

b—A —(al+.Z(A
| Xer1/2 = ( (A))Zcr1/2.4] <t With Zgi20=0,
[b—AxXci 1l + llal +Z (Al 12,0l

in the second-half iterate of HSS-II. Then the first-halfate X, 1/, is defined asq1/2 = X ¢ fOr
HSS-I andxy;1/2 = X« + Z¢a fOr HSS-II, and the second-half (or the next) iterage; is defined as
X1 = Xy 1/2,0max TO7 HSS-TandXie1 = X 1/2 + Zet1/2,ma FOr HSS-II, wherelmax is the largest integer
£ such that the above stopping criterions are satisfied.
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4.2 Experimental Examples
We describe in detail two experimental examples in the ¥ahg.

Example 4.1. (See [1, 6]) The linear system (1.1) is of the form
<K+3_nﬁl>+i<K+3+nﬁl>]x:b, 4.1)

where n is the time step-size and K is the five-point centered difterematrix approximating the
negative Laplacian operator & —(Uxy+ Uyy + Uzz) With homogeneous Dirichlet boundary conditions,
on a uniform mesh in the unit cul® = [0,1] x [0,1] x [0,1] with the mesh-size & m%l The ma-
trix K € R™ possesses the tensor-product form=KB, @ | @ | +1 @Bn® | +1 ® | @ By, with By, =

h=2.tridiag(—1,2,—1) € R™™. Hence, K is an x n block-pentadiagonal matrix, with-a m®. We take

3-V3 3+3
n n

W=K+ I and T=K+

L,
and the right-hand side vector b with its jth enthy; being given by

_ (A=0)j .
[b]J_n(H_l)z, i=12,...,n

Furthermore, we normalize coefficient matrix and right-tiaide by multiplying both by?h

In our tests we takg = h. For more details about the practical backgrounds of tlaisscbf problems,
we refer to [1, 6] and the references therein.

Example 4.2. (See [9, 8]) Consider the linear system (1.1), for whick R™" is the upwind difference
matrix of the three-dimensional convection-diffusion aggpn

q-expix+y+2)
X+y+z

— (U + Uyy =+ Uzg) + X+ YUy +2W) = f(x,y,2)

on the unit cubeQ = [0,1] x [0,1] x [0,1] with the homogeneous Dirichlet boundary conditions. The
step-sizes along all x, y and z directions are the samehi.e.m%l, and the right-hand side vector b is
taken to be b= Ae, with e R" being the vector of all entries equal 10 We denote by Re gh the mesh
Reynolds number.

4.3 Computing Settings

All iteration processes are started from zero and termihatece the Euclidean norms of the current
residuals are reduced by a factor of fbm those of the initial residuals. If an iteration procésits to
satisfy this stopping criterion within 500 steps, then gasd divergent and is indicated by the symbol “—
”. In addition, all codes are run in MATLAB (version R2013a)double precision and all experiments
are performed on a personal computer with 2.66GHz centaalggsing unit (Intel(R) Core(TM)2 Duo
CPU E6750), 2.00G memory and Windows operating system.
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5 Numerical Results

By implementing the two equivalent schemes of the PMHSStimn method used to solve Exam-
ple 4.1 and those of the HSS iteration method used to solvenpbeas.2, we show that the residual-
update schemes, i.e., PMHSS-II and HSS-II, are alwaysfigigntly more stable than the direct-splitting
schemes, i.e., PMHSS-I and HSS-I, for large spectrums aoftthigping tolerance(s) (or 11 and1z) of
the inner iteration method(s). To this end, we report nucaéniesults with respect to the number of
iteration steps (denoted all™’), the computing time in seconds (denoted &PU"), and the norm of
the backward error (denoted aBERR?”) for these iteration schemes. Here BERR is defined as

[0 — Axl

BERR= —— ¥
10l -+ A«

with k being the iterate index.

5.1 Results for PMHSS lteration Schemes

In Table 1, we list IT, CPU and BERR for PMHSS-I and PMHSS-llentthey are used to solve Exam-
ple 4.1 with respect to different problem sizes (indicatgdrpand variant stopping tolerances (indicated
by 7). Here BERR indicates the value lat knax, With kmax being the largest integéx (iterate index)
such that the stopping criterion

=A%l _ 8
o < 10
Ib—Ax|

is satisfied by the corresponding iteration scheme. We wbdhiat for each fixean, PMHSS-II is
convergent for allt ranging from 10“ to 10-*?, but PMHSS-I is convergent only for thosebeing
equal to 101% and 1012 that are close t@’(u), the order of magnitude of the roundoff unitand are
significantly smaller than the stopping tolerance, say,10f the overall iteration process. For each
scheme, considering the convergent cases we see that tleenBins constant but the CPU increases
significantly when the tolerancebecomes smaller. When both schemes are convergent, fomfizad

T PMHSS-I always costs much less CPU than PMHSS-II. Howeveraeh iterate step their norms of
the backward errors are about the same; see Figures 1 andsZphiEmomenon is clearly shown by the
guantity,ratio of norms of backward errorfERNBE), of these two iteration schemes defined by

norm of backward error of PMHSS-|

RNBE= norm of backward error of PMHSS-II

In Figure 3 we depict the curves of RNBE versus IT whes: 32,7 = 10 1% andt = 1012, and when
m=64,T = 1010 andt = 102, respectively. From this figure we see that the RNBE is alraqsal

to 1.0, which confirms the observation that the convergence rigst@f PMHSS-I and PMHSS-II are
about the same. As a result, the two equivalent implementsf the exact PMHSS iteration method
have about the same stability property and convergencerioeha

At IT =50, in Table 2 we list CPU and BERR for PMHSS-I and PMHSS-II witleey are also
used to solve Example 4.1 with respect to different problemassand variant stopping tolerances. We
observe again that for each fixat the CPU for each scheme increases significantly when tbeatute
T becomes smaller; and for fixed and 1, PMHSS-I always costs much less CPU than PMHSS-II.
Admittedly, as the inexactly computed solutions have vefferdnt accuracy, the CPUs here do not
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Table 1: Numerical Results of PMHSS Iteration Schemes faniple 4.1

T
m | Method | Index 102 105 10 15-10 1012
IT — — — 28 28
PMHSS-I | CPU — — — 4.35 6.16
32 BERR — — — 1.04E-09| 1.04E-09
IT 28 28 28 28 28
PMHSS-II| CPU 3.80 4.24 5.03 6.16 7.65
BERR | 1.04E-09| 1.04E-09| 1.04E-09| 1.04E-09| 1.04E-09
IT — — — 28 28
PMHSS-1 | CPU — — — 69.23 96.50
64 BERR — — — 1.06E-09| 1.06E-09
IT 28 28 28 28 28
PMHSS-II| CPU | 69.28 80.15 100.10 | 120.82 | 148.63
BERR | 1.06E-09| 1.06E-09| 1.06E-09| 1.06E-09| 1.06E-09

Table 2: Numerical Results of PMHSS Iteration Schemes famipde 4.1 at I'T= 50

T

m Method Index

104 10°° 1078 1010 1012
PMHSS-| CPU 2.69 1.73 3.02 4.69 6.94
32 BERR | 1.06E-04| 1.72E-06| 1.34E-08| 1.17E-10| 1.49E-12
PMHSS-II CPU 10.35 10.88 11.57 12.76 15.92
BERR | 5.47E-16| 5.45E-16| 5.48E-16| 5.45E-16| 5.47E-16
PMHSS-| CPU 11.01 24.38 48.67 72.25 106.50
64 BERR | 1.08E-04| 1.83E-06| 1.41E-08| 1.32E-10| 1.08E-12
PMHSS-II CPU | 205.12 | 214.01 | 236.21 | 256.48 | 286.18
BERR | 5.77E-16| 5.64E-16| 5.62E-16| 5.63E-16| 5.61E-16

reflect the computing efficiency of both iteration schemad,they only show the overall (or the average)
computational costs of the inner iterations, or in otherdspthe average numbers of inner iteration steps.
Moreover, for fixedm the norm of backward error of PMHSS-I is of the same order ajmitade asr,

but that of PMHSS-II is always of the ordér(u) of the machine precision by no matter whether is
large or small; see Figures 4 and 5. Hence, in actual compuasaPMHSS-II is always backward stable
independent of the tolerange but PMHSS-I may be backward stable only for thos# about the order

0 (u) of magnitude.

With regard to Tables 1 and 2, one reason for the CPU of PMH&SAg much less than the CPU
of PMHSS-II is that the stopping criterion of the inner itéva method adopted in PMHSS-I is much
more easily achievable than that adopted in PMHSS-II, ésglheevhen the iterates are approaching to
the exact solution of the system of linear equations (1.1).

5.2 Results for HSS lteration Schemes

In Tables 3 and 4, we list IT, CPU and BERR for HSS-1 and HSSHewthey are used to solve Exam-
ple 4.2 with respect ton = 64, Re= 10, and variant stopping tolerances (indicatedrbgnd1,). Here
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Figure 1: Pictures of BERR versus IT for PMHSS whan= 32, with 1 = 10710 (left) and T = 102
(right). PMHSS-I: the solid line* — —" and PMHSS-II: the circle linesoo”.

BERR indicates the value &t= knax, With kmax being the largest integde (iterate index) such that the
stopping criterion

=A%l _ -8
T <10
Ib—Axl|

is satisfied by the corresponding iteration scheme. We wbsbat HSS-Il is convergent for ath and

T, ranging from 10% to 10 14, but HSS-I is convergent only for thoge and 1, being equal to 102

and 10 that are close ta’(u), the order of magnitude of the roundoff unit and are significantly
smaller than the stopping tolerance, say againg16f the overall iteration process. For each scheme,
considering the convergent cases we see that the IT remanssant but the CPU increases significantly
when either of the tolerances and 1, becomes smaller. When both schemes are convergent, forda fixe
mHSS-II costs slightly less CPU than HSS-l when= 1012 and eitherr; = 10712 or 1, = 104, but
HSS-I costs much less CPU than HSS-Il wher= 10 14 and eitherr; = 1012 or 1; = 10~ 14. However,

at each iterate step the norms of the backward errors of b8®-Hand HSS-1l are about the same; see
Figures 6 and 7. This phenomenon is clearly shown by the dyaratio of norms of backward errors
(RNBE), of these two iteration schemes defined by

RNBE_ Norm of backward error of HSS-|
~ norm of backward error of HSS-II

In Figure 8 we depict the curves RNBE versus IT for HSS winen 64, witht; = 10712, 104 andn, =
1012, 10714, respectively. From this figure we see that the RNBE is alragstl to 10, which confirms
the observation that the convergence histories of HSS-H®8-11 are about the same. Therefore, the
two equivalent implementations of the exact HSS iterati@thod have about the same stability property
and convergence behavior.

AtIT =250, in Table 5 we list CPU and BERR for HSS-I and HSS-Il wheaytére also used to solve
Example 4.2 with respect to = 64, Re= 10, and variant stopping tolerances. We observe againitbat t
CPU for each scheme increases significantly when eithereofdllerances; and 1, becomes smaller;
and for fixedt; and 1,, HSS-I always costs much less CPU than HSS-II. Admittediythe inexactly
computed solutions have very different accuracy, the CRigs to not reflect the computing efficiency
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Table 3: Numerical Results of HSS-I for Example 4.2 wiik= 64 and Re= 10

T2

1 Index 15-10

104]10° 1012 1014
IT —
CPU
BERR
IT —
CPU
BERR
IT —
CPU
BERR
IT —
CPU
BERR
IT —
CPU
BERR

IT —

104

106

108

10710

133
595.34
9.96E-12
133

133
554.26
9.96E-12
133

1012

107

CPU

351.37

353.87

BERR

9.96E-12

9.96E-12

Table 4: Numerical Results of HSS-II for Example 4.2 with= 64 and Re= 10

2

T | Index 5 10° 108 | 100 | 102 | 100
IT 132 132 132 132 132 132
104 | CPU | 10854 | 149.33 | 207.66 | 244.48 | 297.63 | 340.29
BERR| 1.03E-11| 1.03E-11| 1.03E-11| 1.03E-11| 1.03E-11| 1.03E-11
IT 132 132 132 132 132 132
10 % | CPU | 120.85 | 161.46 | 210.46 | 263.70 | 304.48 | 347.22
BERR| 1.03E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11
IT 132 132 132 132 132 132
108 | CPU | 135,59 | 190.52 | 225.56 | 277.54 | 318.83 | 360.82
BERR| 1.03E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11
IT 132 132 132 132 132 132
1010 | CPU | 151.30 | 194.95 | 242.08 | 284.56 | 330.48 | 372.93
BERR| 1.03E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11
IT 132 132 132 132 132 132
1012 | CPU | 164.12 | 204.92 | 272.03 | 298.75 | 345.13 | 388.23
BERR| 1.03E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11
IT 132 132 132 132 132 132
10| CPU | 173.72 | 213.68 | 271.33 | 310.90 | 360.56 | 408.31
BERR| 1.03E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11| 1.04E-11
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Figure 2: Pictures of BERR versus IT for PMHSS whan= 64, with 1 = 10710 (left) and T = 1012
(right). PMHSS-I: the solid line* — —" and PMHSS-II: the circle linesoo”.

of both iteration schemes, and they only show the overaltieraverage) computational costs of the
inner iterations, or in other words, the average numberarwdri iteration steps. Moreover, the norm of
backward error of HSS-I is of an order of magnitude likémax{1, 12}), but that of HSS-II is always
of the order&'(u) of the machine precisionby no matter whether; or 15 is large or small; see Figure 9.
Hence, in actual computations HSS-Il is always backwatilstiadependent of the tolerancesand1,,

but HSS-I may be backward stable only for thasendt, of about the orde?’(u) of magnitude.

With regard to Tables 3, 4 and 5, one reason for the CPU of H&$aly much less than the CPU of
HSS-1 is that the stopping criterion of the inner iteratimethod adopted in HSS-I is much more easily
achievable than that adopted in HSS-II, especially wheiitéhates are approaching to the exact solution
of the system of linear equations (1.1).

6 Concluding Remarks

Stationary matrix splitting iteration methods for solviagge sparse systems of linear equations have two
typical equivalent reformulations: the residual-updateesne and the direct-splitting scheme. Both theo-
retical analyses and numerical experiments have showthigédrmer is always significantly more stable
than the later for a large spectrum of the stopping toleraftiee inner iteration method. Moreover, for
both reformulations, inexact solutions of inner lineartegss associated with the matrix splittings may
considerably influence the convergence and the accurabg @fdproximate solutions computed in finite
precision arithmetic, a finer tolerance often costs morepging time, and their exact implementations
have about the same stability property and convergencevimehd@ hese conclusions hold equally true
for both single- and two-step matrix splitting iteration imeds.
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Table 5: Numerical Results of HSS for Example 4.2 with= 64 and Re= 10 at IT= 250

5]

Method

Index

[P

104 10°° 1078 1010 1012 10714

Hss.y | CPU | 250.17 | 339.56 | 42330 | 510.85 | 580.82 | 583.76

104 BERR | 3.01E-04| 8.66E-05| 1.23E-04| 1.21E-04| 1.21E-04| 1.21E-04
bss. | CPU | 389.48 | 431.18 | 495.28 | 539.88 | 621.17 | 703.32

BERR | 7.33E-17| 7.46E-17| 7.34E-17| 7.34E-17| 7.48E-17| 7.41E-17

Hss. | CPU | 253.96 | 345.61 | 426.30 | 519.16 | 584.64 | 585.40

106 BERR | 2.52E-05| 1.56E-06| 2.51E-06| 1.09E-06| 1.09E-06| 1.09E-06
Hss.| |_CPU | 402.32 | 44274 | 502.64 | 559.40 | 626.10 | 714.77

BERR | 7.44E-17| 7.42E-17| 7.46E-17| 7.44E-17]| 7.44E-17| 7.39E-17

hss. | CPU | 27211 | 35252 | 449.93 | 524.44 | 597.51 | 622.80

108 BERR | 2.50E-05| 1.54E-07| 9.74E-09| 7.98E-09| 1.30E-08| 1.30E-08
bss. | CPU | 455.02 | 480.71 | 513.60 | 574.09 | 641.13 | 731.26

BERR | 7.47E-17| 7.47E-17| 7.34E-17| 7.41E-17| 7.46E-17| 7.35E-17

Hss. | CPU | 304.95 | 391.21 | 466.61 | 578.35 | 697.57 | 94122

1010 BERR | 2.50E-05| 1.48E-07| 1.94E-09| 3.64E-10| 2.20E-10| 2.20E-10
Hss.| |_CPU | 437.73 | 482.88 | 53562 | 585.11 | 655.26 | 739.58

BERR | 7.46E-17| 7.52E-17| 7.53E-17| 7.48E-17| 7.34E-17| 7.45E-17

Hss.y | CPU | 50851 | 614.75 | 73535 | 824.93 | 903.22 | 985.34

1012 BERR | 2.50E-05| 1.48E-07| 1.90E-09| 2.48E-11| 3.78E-12| 3.78E-12
bss. | CPU | 459.49 | 532.42 | 579.38 | 609.75 | 683.28 | 768.80

BERR | 7.61E-17| 7.44E-17| 7.50E-17| 7.47E-17]| 7.49E-17| 7.19E-17

Hss. | CPU | 52055 | 668.16 | 764.35 | 756.78 | 624.93 | 628.16

1014 BERR | 2.50E-05| 1.48E-07| 1.90E-09| 2.48E-11| 3.78E-12| 3.78E-12
Hss.| |_CPU | 481.66 | 521.08 | 589.94 | 642.01 | 71343 | 806.06

BERR | 7.49E-17| 7.51E-17| 7.40E-17| 7.46E-17| 7.42E-17| 7.45E-17
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Figure 3: Pictures of RNBE versus IT for PMHSS when= 32 (left) andm = 64 (right). T = 101
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Figure 4. Pictures of BERR versus IT for PMHSS whanr= 32, with PMHSS-I (left) and PMHSS-II
(right). T =10"*: the star line %+ ", T = 10°%: the cross line % x x”, T = 10"8: the dash-dotted line
“_.—.—" 1=1010 the solid line - — —", and T = 1012 the circle line % 00"
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Figure 5: Pictures of BERR versus IT for PMHSS whan= 64, with PMHSS-I (left) and PMHSS-II
(rlght) T =10 the star line % %", T = 107%: the cross line % x x”, T = 10~8: the dash-dotted line
—. 1 =10"19 the solid I|ne “ _ _" andt = 1012 the circle line 00"
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Figure 6: Pictures of BERR versus IT for HSS whae= 64 andr; = 1012, with 1, = 1012 (left) and
To = 10 1* (right). HSS-I: the solid line - — —” and HSS-II: the circle line 80 o”.
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Figure 7: Pictures of BERR versus IT for HSS wher= 64 andr; = 1014, with 7, = 1012 (left) and
T, = 10 1# (right). HSS-I: the solid line - — —” and HSS-II: the circle line 80 o”.
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Figure 8: Pictures of RNBE versus IT for HSS when= 64, with 1, = 1012 (left) and 1, = 10~
(right). T, = 1012 the solid line - — —" and 1, = 10~ % the circle line 0 o”.
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Figure 9: Pictures of BERR versus IT for HSS whee= 64 andr; = 1, = 1, with HSS-I (left) and HSS-
Il (right). T =10"%: the star line %« =", T = 10%: the cross line % x x”, T = 10°8: the dash-dotted
line“—-—.—." 7 =1010 the solid line “— — —”, and T = 1012 the circle line 6 00"
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