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Abstract

We study mathematical properties of steady flows described by the system of equations generalizing
the classical porous media models of Darcy’s and Forchheimer’s. The considered generalizations
are outlined by implicit relations between the drag force and the velocity, that are in addition
parametrized by the pressure. We analyze such drag force–velocity relations which are described
through a maximal monotone graph varying continuously with the pressure. Large-data existence
of a solution to this system is established, whereupon we show that under certain assumptions on
data, the pressure satisfies a maximum or minimum principle, even if the drag coefficient depends
on the pressure exponentially.
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1 Introduction

1.1 Setting

Our aim is to develop a mathematical theory for steady, isochoric flows through a saturated porous
medium described as the problem of finding a triplet (m,v, p) : Ω→ Rd × Rd × R solving

∇p+m = f in Ω,

div v = 0 in Ω,

h(m,v, p) = 0 in Ω,

(v − v0) · n = 0 on Γ1,

p− p0 = 0 on Γ2.


(1)

Here, Ω ⊂ Rd is supposed to be a Lipschitz domain with an outer normal n and Γ1,2 ⊂ ∂Ω are relatively
open parts of the boundary such that Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = ∂Ω. The reader may know Γ1 as the
exterior boundary and Γ2 as the accessible boundary, see [2]. A velocity field v0 : Ω→ Rd is given to
dictate the normal component of v on Γ1, as well as p0 : Ω→ R, prescribing the boundary pressure on
Γ2. Known external body forces are contained in f : Ω→ Rd. Throughout the paper there will often
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appear a real number r, always satisfying 1 < r <∞, and we define r′ := r/(r− 1). Traces and normal
traces are not denoted differently from the original functions, i.e. we write, for example, p0 ∈W 1,r′(Ω)
as well as p0 ∈ L∞(Γ2).

The quantity h : Rd × Rd × R→ Rd in (1)3 is a given continuous function and we will make the
following identification:

h(m,v, p) = 0 ⇐⇒ (m,v, p) ∈ A, (2)

where A denotes a maximal monotone r-graph with respect to m and v that is in addition parametrized
by p. This means A ⊂ Rd × Rd × R satisfies each of the conditions listed below:

(A1) inclusion of the origin
∀p ∈ R : (0,0, p) ∈ A,

(A2) monotonicity
∀(m1,v1, p), (m2,v2, p) ∈ A : (m1 −m2) · (v1 − v2) ≥ 0,

(A3) maximality
(m′,v′, p) ∈ Rd × Rd × R,

∀(m,v, p) ∈ A : (m′ −m) · (v′ − v) ≥ 0⇒ (m′,v′, p) ∈ A,

(A4) (r, r′)-coercivity for v and m

∃ c1 > 0, c2 ≥ 0 ∀(m,v, p) ∈ A : m · v ≥ c1(|v|r + |m|r′)− c2,

(A5) existence of a Carathéodory selection, i.e. m∗ : Rd × R→ Rd such that

(i) m∗(·, p) : Rd → Rd is measurable for every p ∈ R,

(ii) m∗(v, ·) : R→ Rd is continuous for a.e. v ∈ Rd,
(iii) ∀(v, p) ∈ Rd × R : (m∗(v, p),v, p) ∈ A,

(iv) ∃ c > 0∀(v, p) ∈ Rd × R : |m∗(v, p)| ≤ c(1 + |v|r−1).

1.2 Motivation and examples

The problem (1) describes steady (slow) flows of fluids through porous media (see for example Nield
and Bejan [25]). It can be also viewed as a special case in the hierarchical development of the theory
of interacting continua (as presented in Rajagopal [28]), where we ignore the viscous effects within
the fluid but take into account only the drag due to the flow which is a consequence of the friction at
the solid pores as the fluid flows. This leads to the relation between m, representing the interaction
force (linear momentum) between a fluid and a rigid solid, and the velocity of the fluid v. Since
v is also the relative velocity between the solid and the liquid, it is frame-indifferent. Taking the
simplest case m = αv for certain α > 0, one obtains a well known Darcy’s law for an isotropic medium.
Its linearity in the seeping velocity v does not relate well to reality for other than sufficiently small
velocities [25, 31] and one is driven to a non-linear extension of the form m = α(|v|)v, known as
(Darcy-)Forchheimer’s equation if α is an affine function. Moving on to m = α(p, |v|)v as a means
of capturing a pressure-related viscosity [18, 32] yields a generalized Darcy-Forchheimer’s model. As
Rajagopal [27] argued, it turns out that not even such setting is always satisfactory in mathematical
modelling and one is driven to relate m, v and p implicitly, hence (1)3.

Apart from Darcy’s or Darcy-Forchheimer’s models, which are somewhat uninteresting in regard to
our setting emphasizing p-dependent interactions, a prime example satisfying (A1)–(A5) that the
reader might have in mind is A with m given as e.g.

m = m(v, p) = α(p)|v|r−2v, (3)
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with r > 1 and α ∈ C(R), satisfying also 0 < infR α ≤ supR α < ∞. Another simple example falling
within this category is

|m| ≤ σ(p)⇔ v = 0 and |m| > σ(p)⇔m = σ(p)
v

|v|
+ γ(p)|v|r−2v, (4)

with σ(p) and γ(p) having the same properties as α(p) above. This situation resembles Herschel-
Bulkley responses between the Cauchy stress and the velocity gradient in the constitutive theory of
non-Newtonian fluids, or Bingham responses in the special case r = 2. Note that the relation (4) can
be rewritten equivalently as (

γ(p)
) 1

r−1v =
(
(m− σ(p))+

) 1
r−1

m

|m|
,

which corresponds to h(m,v, p) = 0 with

h(m,v, p) =
(
γ(p)

) 1
r−1v −

(
(m− σ(p))+

) 1
r−1

m

|m|
.

Here, for z ∈ R we use z+ := max{z, 0} to denote its positive part. See Buĺıček et al. [27] for an
analogon thereof in the case of Bingham fluids.

The two given examples, with α, σ and γ bounded from above, pale into insignificance in the face
of interactions of the form

m(v, p) = α1 exp(α2p)v, α1,2 > 0 (5)

that actually lie at the centre of our attention here. Let us recall that even for simple incompressible
fluids, it is known that the viscosity changes significantly at high pressures. In fact, Barus’ experimental
study (see [3]) led him to the conclusion that the viscosity changes with the pressure exponentially
(similarly as the coefficient relating m and v in (5)). For flows of fluid through rigid media, the internal
fluid friction is frequently neglected as the friction between the fluid and solid is dominant. If such flows
take place at high pressures, then one needs to involve the (exponential) dependence of the coefficient
relating m and v on the pressure; see Nakshatrala and Rajagopal [24] for more details. Even if the
coefficient α2 in (5) is very small (α2 ∼ 10−5, see [3]), it is evident that a choice like (5) is beyond the
purview of (A4) and (A5)(iv). Luckily enough, this case and those akin can also be included under
certain circumstances into the existence theory developed in this paper; see Sect. 5.

We may also take a perturbation of (5) in a form

m(v, p) = max{α1, α1 exp(α2p)}v, (6)

for existence theory of which we will be able to slightly slacken our hypotheses, see Remark 7. The
reason is that inserting this choice into (3) with r = 2, the condition infR α > 0 is met trivially.

1.3 Results

Within the setting of (A1)–(A5) we are able to establish the existence of a solution to the problem (1)
fulfilling the first three equations pointwise (almost everywhere) in Ω; see Theorem 3 below. Although
this theorem does not include the models of our main interest such as (5), it provides a tool how (5)
can be analyzed, together with a maximum/minimum principle that is well-known for Darcy’s model
but is newly discovered for cases like (5) in this paper. The maximum/minimum principle is presented
in Theorem 5 and its combination with Theorem 3 then culminates in Theorem 5, where the existence
of a solution to situations such as (5) or, under less stringent hypotheses (6), is established.

It is worth pointing out a remarkable difference between the results presented here and the results
concerning those generalizations of incompressible Stokes and Navier-Stokes equations, stationary and

3



evolutionary, in which the viscosity grows more than linearly with the pressure. While here for (1)
with (5) we develop, under certain assumptions, large data existence theory, no such mathematical
theory is available for the systems such as

∇p− div[2ν(p, ·)Dv] + div(v ⊗ v) = f , D :=
1

2
(∇+∇T ), (7)

if ν depends on p exponentially. With exception of studies concerning flows in special geometries (see
[16], [17], [26], [29], [33], [34], [36]), we are aware of merely a few, rather preliminary studies concerning
flows in general domains (see [15, 14] and [30]). We remark that in [21] and subsequent studies [12],
[7], [8], [6] (that also includes a detailed summary of the available theory), the authors have been
able to identify the class of the viscosities depending on the pressure and |Dv|2 and to develop large
data mathematical theory for relevant boundary and initial boundary value problems. This subclass,
however, does not allow to include (5). Remarkably enough, there is no maximum principle to eq. (7),
not even if the equation were stripped of the inertial term div(v ⊗ v).

There is abundance of available literature on qualitative analysis of Darcy-Forchheimer’s equations,
or their generalizations like Brinkman-Forchheimer’s equations when a diffusive term is added. With
the exception of investigating regularity, authors address the evolutionary case right away, see e.g. [2] for
the compressible case and [37] for the incompressible one, and papers cited therein. In [35] existence of
an attractor for these equations is studied. Regularity of the (unique) solution to Darcy-Forchheimer’s
equations is examined in [10].

In defiance of a cornucopia of sources, they are all confined to the case where h in (1)1 does
not depend on the pressure. The p-dependent and implicitly related situation of Darcy-Forchheimer
equations analyzed within the current paper seems to have remained, at least to the best of authors’
knowledge, almost a terra incognita so far.

1.4 Further comments

Behold even at this early phase that (A4) hints at setting the stage for working in Lebesgue spaces.
It is therefore natural to ask why not plunge ourselves directly into general Orlicz spaces in the vein
of Buĺıček et al. [4, 5] instead. Even though such an extension should not require much additional
effort, we chose the Lebesgue setting for the sake of simplicity, as it allows us to accentuate the ideas
concerning p-dependence of the graph A and the maximum and minimum principles.

As far as (A5) is concerned, a general question of existence of a measurable selection for the case
of h being independent of p is confirmed e.g. in Chiado’ Piat et al. [9, Theorem 1.4]. In our setting, we
want in addition the selection being continuous with respect to p and also bounded in that variable in
the sense of (A5)(iv). Note that similarly tame behavior is expected in (A4) by requiring uniformity
in p.

It is not particularly difficult to show that a maximal monotone graph (independent of p) can be
rotated so as to form a graph of a 1-Lipschitz function (see [1, 11, 23]). This observation is likely
to lead to another feasible way of approaching the existence theory for (1), devoid of any need for
selections. The path is not followed in our paper save this remark.

Drawing this introduction to its end, in the following brief Sect. 2 we deal with a couple of useful
mathematical properties to be invoked later on. We then devote an entire Sect. 3 to formulate and
prove an existence theorem of solutions to the problem (1) provided (A1)–(A5) are all satisfied.
The penultimate Sect. 4 is somewhat autonomous and serves to state and justify a maximum and
a minimum principle for the pressure in (1). It will prove invaluable in the last Sect. 5, where it
authorizes us to somewhat weaken (A4) and (A5)(iv), wherein effect it shows existence for situations
like (5), supposing certain other hypotheses are satisfied indeed.
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2 Preliminaries

For δ > 0 denote

ωδ(x, t) := δ−(d+1)ω

(
x

δ
,
t

δ

)
,

where ω is the usual mollification kernel on Rd+1. With its help we define the regularized selection

mδ(x, t) :=

∫
Rd×R

m∗(x− y, t− s)ωδ(y, s) dy ds.

Lemma 1 The selection m∗ and its regularization mδ enjoy the following properties, which will be
made use of later:

(i) (r, r′)-coercivity (A4) holds for mδ. The constants may be different but independent of 0 < δ < 1.

(ii) The property (A3) is actually tantamount to apparently a weaker one

(m′ −m∗(v, p)) · (v′ − v) ≥ 0 for a.e. v ∈ Rd ⇒ (m′,v′, p) ∈ A.

Proof. For a proof of (i), we see that m∗ is evidently (r, r′)-coercive and hence we compute:

mδ(x, t) · x =

∫
Rd×R

m∗(x− y, t− s) · (x− y)ωδ(y, s) dy ds

+

∫
Rd×R

m∗(x− y, t− s) · y ωδ(y, s) dy ds

≥
∫
Rd×R

[
c1

(
|x− y|r + |m∗(x− y, t− s)|r′

)
− c2

]
ωδ(y, s) dy ds

−
∫
Rd×R

(c1

2
|m∗(x− y, t− s)|r′ + c3|y|r

)
ωδ(y, s) dy ds

≥ c4(|x|r + |mδ(x, t)|r
′
)− c5.

First we employed Young’s inequality and then Jensen’s inequality was invoked. Note that neither c4

nor c5 depend on δ > 0 as long as δ is bounded.
Towards showing (ii), let

Ap = {(m,v) ∈ Rd × Rd | (m,v, p) ∈ A}

and (m′,v′, p) ∈ Rd × Rd × R such that we have

(m′ −m∗(v, p)) · (v′ − v) ≥ 0 for a.e. v ∈ Rd. (8)

The aim is to attest (m′ −m) · (v′ − v) ≥ 0 for every (m,v) ∈ Ap: Let (m,v) ∈ Ap be arbitrary. It is
trivial to show that the set

Mv = {m̂ ∈ Rd | (m̂,v) ∈ Ap}

is convex and closed. Note that Mv is also non-empty and bounded, for else one could find u ∈ Rd
such that m∗(u, p) = ∞, contradicting (A5)(iv) (but see Remark 2). Therefore we may express
m = λm1 + (1− λ)m2 for some 0 ≤ λ ≤ 1 and m1,m2 ∈ ∂Mv.

Now, Ap can be seen as a d-dimensional Lipschitz manifold in Rd × Rd without a boundary [1],
whence if m̃ ∈ ∂Mv, there exists {(mn,vn)} ⊂ Ap, vn 6= v, such that (mn,vn)→ (m̃,v), as n→∞.
Of course, otherwise the point (m̃,v) would be a boundary point of Ap. Finally, let vn be chosen so
that the set {m̂ ∈ Rd | (m̂,vn) ∈ Ap} is a singleton for every n, i.e. m∗(vn, p) = mn, and (8) holds

5



for all vn. It is achievable, since the set of all v̂ ∈ Rd such that Mv̂ contains more than one element
has Hausdorff dimension equal to d− 1 [1, Remark 2.3].

Thus we find {vn1}, {vn2} ⊂ Rd, for which vni → v and m∗(vni , p) → mi as n → ∞, for i = 1, 2.
Given that both {vn1} and {vn2} satisfy (8), the goal (m′ −m) · (v′ − v) ≥ 0 follows from passing to
limit n→∞, multiplying by λ and 1− λ, respectively, and finally summing up.

Remark 2 A third useful property of m∗ is its local boundedness in the sense that |m∗(·, p)| is
bounded on bounded domains for every p ∈ R. This is trivial due to (A5)(iv), yet it would hold even
without this requirement. See e.g. [19, Theorem 2], which can be applied to address the question.

3 Principal existence theorem

Before formulation of the main result, notation for several function spaces that will often be used shall
be introduced. First, for Lebesgue and Sobolev spaces we use the standard notation. To handle the
Dirichlet data for the pressure, we define, for q ∈ (1,∞),

W 1,q
Γ2

(Ω) :=
{
u ∈W 1,q(Ω) | u = 0 on Γ2

}
.

In case of Γ2 = ∅, we make a natural modification

W 1,q
Γ2

(Ω) :=
{
u ∈W 1,q(Ω)

∣∣ ∫
Ω
u = 0

}
.

Note that in either instance, W 1,q
Γ2

(Ω) is a closed subspace of W 1,q(Ω). Next, since we will deal with
solenoidal functions with a prescribed normal trace on a part of the boundary, we denote

Lqdiv(Ω) :=
{
ϕ ∈ Lq(Ω)d

∣∣ divϕ = 0
}
.

The condition on zero divergence is meant in the sense of distributions. As the zero distribution is
regular, we can legally say in particular divϕ = 0 a.e. in Ω for any ϕ ∈ Lqdiv(Ω). It is well known (see
[13, chapter III.2]) that one can talk about normal traces (remember Ω is Lipschitz) of elements of

Lqdiv(Ω), seeing them as elements of
(
W

1
q
,q′

(∂Ω)
)∗

. Understanding ϕ ·n on Γ1 in this generalized sense,
we can also introduce

Lqdiv,Γ1
(Ω) :=

{
ϕ ∈ Lqdiv(Ω) | ϕ · n = 0 on Γ1

}
.

To conclude, for K > 0 we define a cutoff function TK : R→ R as

TK(x) :=


−K for x ≤ −K,
x for −K < x < K,

K for x ≥ K.
(9)

Here and there we will silently use trivial |TK(x)| ≤ |x| for every x ∈ R. When applying the truncator
TK to vectors, we consider the component-wise truncation, i.e. for x = (x1, . . . , xd) ∈ Rd we set
TK(x) := (TK(x1), . . . , TK(xd)).

Having finalized indispensable preparations, the promised existence theorem can be formulated:

Theorem 3 Let Ω be a Lipschitz domain and r ∈ (1,∞) be given. Assume f ∈ Lr′(Ω)d, v0 ∈ Lrdiv(Ω)
and p0 ∈W 1,r′(Ω). Moreover, assume that A is a maximal monotone r-graph in the sense of (A1)–
(A5). Then there exists a triplet (m,v, p) ∈ Lr′(Ω)d × Lrdiv(Ω)×W 1,r′(Ω) solving (1), i.e. (1)1– (1)3
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are satisfied a.e. in Ω and

v − v0 ∈ Lrdiv,Γ1
(Ω),

p− p0 ∈W 1,r′

Γ2
(Ω).

Proof. The proof of the theorem constitutes the remainder of this section. Let {wi}i∈N ⊂ Lr(Ω)d ∩
L∞(Ω)d and {qi}i∈N ⊂ W 1,r′

Γ2
(Ω) be linearly independent, with linear spans dense in Lr(Ω)d and

W 1,r′

Γ2
(Ω), respectively.

To begin with, we deduce existence of solutions to an approximate problem, i.e. for n ∈ N and
ε, δ > 0 to find

vε,δn (x) = Tn(v0)(x) +
n∑
i=1

aε,δ,in wi(x), (10)

pε,δn (x) = p0(x) +
n∑
i=1

bε,δ,in qi(x), (11)

satisfying ∫
Ω
∇pε,δn ·wi +

∫
Ω
mδ(v

ε,δ
n , pε,δn ) ·wi =

∫
Ω
f ·wi, i = 1, . . . , n, (12)

ε

∫
Ω
|∇(pε,δn − p0)|r′−2∇(pε,δn − p0) · ∇qi =

∫
Ω

(vε,δn − Tn(v0)) · ∇qi, i = 1, . . . , n. (13)

Replacing solenoidality of the velocity field with the eq. (13) is a so-called quasi-compressible approxi-
mation (see [12] and [22, p. 416]), which facilitates construction of the pressure. Note that, at this
point at least informally, the limit ε→ 0+ should produce a divergence-free velocity.

The aim of δ-regularization is to obtain a solution to (12) and (13). This is actually the first
approximation parameter to be dropped due to a limiting process. Since it will require boundedness of
{vε,δn }δ in L∞(Ω)d, we need to truncate v0 as seen in (10).

Towards showing existence of {aε,δ,in }ni=1 and {bε,δ,in }ni=1, we employ the following standard corollary
of Brouwer’s fixed point theorem, whose justification follows from lines to come and will not be discussed
in detail.

Lemma 4 [20, Lemme 4.3] Let F : Rd → Rd be a continuous function satisfying F (ξ) · ξ ≥ 0 if |ξ| = %
for certain % > 0. Then there exists ξ0 ∈ Rd, |ξ0| ≤ %, for which F (ξ0) = 0.

Multiplying eq. (12)i by aε,δ,in and eq. (13)i by bε,δ,in and summing the resultant 2n equalities, we obtain

ε‖∇(pε,δn − p0)‖r′r′ +
∫

Ω
mδ(v

ε,δ
n , pε,δn ) · (vε,δn − v0) =

∫
Ω

(f −∇p0) · (vε,δn − Tn(v0)). (14)

As we may assume δ < 1, recalling Lemma 1 for (r, r′)-coercivity of mδ, Hölder’s and Young’s
inequalities, eq. (14) is processed into

ε‖∇(pε,δn − p0)‖r′r′ + ‖mδ(v
ε,δ
n , pε,δn )‖r′r′ + ‖vε,δn ‖rr ≤ C(‖f −∇p0‖r′ , ‖v0‖r). (15)

In particular, the constant C is independent of δ, n or ε. The energy inequality (15) will serve us as
the starting point for taking the limits δ → 0+, n→∞ and ε→ 0+, in this order.
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3.1 δ-limit

In order to accomplish the first limit passage, we start with observation that (15) entails

sup
{
|aε,δ,in |, |bε,δ,in | | 0 < δ < 1, i = 1, . . . , n

}
< C(n, ε).

We may hence assume

aε,δ,in → aε,in ,

bε,δ,in → bε,in ,
(16)

as δ → 0+, for each i = 1, . . . , n. This result allows us to observe also the following convergences:

vε,δn → vεn in L∞(Ω)d,

pε,δn − p0 → pεn − p0 in W 1,r′

Γ2
(Ω),

pε,δn → pεn a.e. in Ω,

|∇(pε,δn − p0)|r′−2∇(pε,δn − p0)→ |∇(pεn − p0)|r′−2∇(pεn − p0) in Lr(Ω)d,

mδ(v
ε,δ
n , pε,δn ) ⇀mε

n in Lr
′
(Ω)d.

(17)

For (17)1 and (17)2 we used (10), (11) and (16); the limits (17)3 and (17)4 are justified by (17)2, and
the last passage utilized ineq. (15) and reflexivity of Lr

′
(Ω)d. The subscript in mε

n does not correspond
to mollification any longer, it is used merely to follow the same notation as pεn and vεn.

As for what equations the limit quantities satisfy, (17) makes passing to limit δ → 0+ in equations
(12) and (13) easy and we obtain∫

Ω
∇pεn ·wi +

∫
Ω
mε

n ·wi =

∫
Ω
f ·wi, i = 1, . . . , n,

ε

∫
Ω
|∇(pεn − p0)|r

′−2∇(pεn − p0) · ∇qi =

∫
Ω

(vεn − Tn(v0)) · ∇qi, i = 1, . . . , n.

(18)

Before proceeding to the second passage, we will yet show the limit functions now lie in the graph, i.e.
(mε

n,v
ε
n, p

ε
n) ∈ A a.e. in Ω. This objective can be achieved by means of the maximality property (A3),

specifically by its version from Lemma 1. In the given situation, we have to verify

(mε
n −m∗(u, pεn)) · (vεn − u) ≥ 0 a.e. in Ω for a.e. u ∈ Rd, (19)

in order of which it suffices to check

lim inf
δ→0+

(
mδ(v

ε,δ
n , pε,δn )−m∗(u, pεn)

)
· (vε,δn − u) ≥ 0 a.e. in Ω for a.e. u ∈ Rd. (20)

Indeed it does: Let us consider only u ∈ Rd at which m∗(u, ·) is continuous. For an arbitrary
measurable E ⊂ Rd of non-zero Lebesgue measure, (20) implies

lim inf
δ→0+

∫
E

(
mδ(v

ε,δ
n , pε,δn )−m∗(u, pε,δn )

)
· (vε,δn − u) ≥ 0.

Due to convergences (17) and properties of m∗, we pass to the limit∫
E

(mε
n −m∗(u, pεn)) · (vεn − u) ≥ 0.
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Arbitrary nature of E yields (19). Moving on to the proof of (20), monotonicity implies∫
Rd×R

(m∗(û, t)−m∗(u, t)) · (û− u)ωδ(v
ε,δ
n − û, pε,δn − t) dû dt ≥ 0,

which holds a.e. in Ω. We reshuffle the relation into∫
Rd×R

(m∗(û, t)−m∗(u, t)) · (vε,δn − u)ωδ(v
ε,δ
n − û, pε,δn − t) dû dt

≥
∫
Rd×R

(m∗(û, t)−m∗(u, t)) · (vε,δn − û)ωδ(v
ε,δ
n − û, pε,δn − t) dû dt. (21)

Limit passage in (21) is manageable, for firstly we have

lim
δ→0+

∫
Rd×R

m∗(u, t)ωδ(v
ε,δ
n − û, pε,δn − t) dû dt = m∗(u, pεn), (22)

due to continuity and boundedness of m∗(u, ·) and pointwise convergence of {pε,δn }δ. Secondly, {vε,δn }δ
is bounded in L∞(Ω)d, and in conjunction with (A5)(iv) we observe

∣∣∣∫
Rd×R

(m∗(û, t)−m∗(u, t)) · (vε,δn − û)ωδ(v
ε,δ
n − û, pε,δn − t) dû dt

∣∣∣
≤ C(u, ‖vε,δn ‖∞)

(∫
Rd×R

|vε,δn − û|r ωδ(vε,δn − û, pε,δn − t) dû dt
)1/r

︸ ︷︷ ︸
→ 0 a.e. in Ω as δ → 0+.

(23)

Applying (22) and (23) on (21), we obtain (20), i.e. (mε
n,v

ε
n, p

ε
n) ∈ A a.e. in Ω.

3.2 n-limit

The weak lower semicontinuity of norms applied on (15) produces a second level of that energy
inequality, meaning

ε ‖∇(pεn − p0)‖r
′

r′ + ‖m
ε
n‖

r′

r′ + ‖v
ε
n‖

r
r ≤ C(‖f −∇p0‖r′ , ‖v0‖r), (24)

whence we may pass to the limit n→∞, assuming

vεn ⇀ vε in Lr(Ω)d,

pεn − p0 ⇀ pε − p0 in W 1,r′

Γ2
(Ω),

|∇(pεn − p0)|r
′−2∇(pεn − p0) ⇀ χ in Lr(Ω)d,

mε
n ⇀mε in Lr

′
(Ω)d,

Tn(v0)→ v0 in Lr(Ω)d.

(25)

The last result is an easy consequence of Chebyshev’s inequality. Convergences (25) let us pass to

the limit in eq. (18). Using the density property of {wi} in Lr(Ω)d and {qi} in W 1,r′

Γ2
(Ω), we obtain

furthermore ∫
Ω
∇pε ·w +

∫
Ω
mε ·w =

∫
Ω
f ·w, ∀w ∈ Lr(Ω)d,

ε

∫
Ω
χ · ∇q =

∫
Ω

(vε − v0) · ∇q, ∀q ∈W 1,r′

Γ2
(Ω).

(26)
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Like previously, we have to check (mε,vε, pε) ∈ A a.e. in Ω. Also, weak convergence prevented us from

inferring identity of the weak limit χ and it is necessary yet to verify χ = |∇(pε − p0)|r
′−2∇(pε − p0).

We will use the standard monotone operator theory, namely the Minty’s method.
From (26) we deduce

ε

∫
Ω
χ · ∇(pε − p0) +

∫
Ω
mε · (vε − v0) =

∫
Ω

(f −∇p0) · (vε − v0), (27)

while (18) implies similarly

ε

∫
Ω
|∇(pεn − p0)|r

′
+

∫
Ω
mε

n · (vεn − Tn(v0)) =

∫
Ω

(f −∇p0) · (vεn − Tn(v0)), (28)

for every n ∈ N. Using (25), comparing (27) with (28) yields

lim
n→∞

ε

∫
Ω
|∇(pεn − p0)|r

′
+

∫
Ω
mε

n · vεn = ε

∫
Ω
χ · ∇(pε − p0) +

∫
Ω
mε · vε. (29)

This will be our first foothold. Next, recall monotonicity of the p-Laplace operator and (mε
n,v

ε
n, p

ε
n) ∈ A

a.e. in Ω. Hence we know that for all q ∈W 1,r′

Γ2
(Ω),

0 ≤ ε
∫

Ω

(
|∇(pεn − p0)|r

′−2∇(pεn − p0)− |∇q|r
′−2∇q

)
· ∇(pεn − p0 − q)

+

∫
Ω

(
mε

n −m∗(vε, pεn)
)
· (vεn − vε). (30)

As we are allowed to assume pεn → pε from (25)2, properties (A5) yield

m∗(vε, pεn)→m∗(vε, pε) in Lr
′
(Ω) as n→∞,

which we on top of that mingle with (25)1 and observe

m∗(vε, pεn) · (vεn − vε)→ 0 in L1(Ω) as n→∞. (31)

Combining (25), (29), (31) and taking the limit n→∞ in the monotonicity relation (30) gives rise to

0 ≤
∫

Ω

(
χ− |∇q|r

′−2∇q
)
· ∇(pε − p0 − q), ∀q ∈W 1,r′

Γ2
(Ω). (32)

Setting q = pε − p0 ± tϕ with t > 0 and ϕ ∈W 1,r′

Γ2
(Ω), we divide (32) by t and then perform t→ 0+.

Arbitrary nature of ϕ yields

χ = |∇(pε − p0)|r
′−2∇(pε − p0). (33)

Identity (29) can now be rewritten

lim
n→∞

ε

∫
Ω
|∇(pεn − p0)|r

′
+

∫
Ω
mε

n · vεn = ε

∫
Ω
|∇(pε − p0)|r

′
+

∫
Ω
mε · vε. (34)

By weak lower semicontinutity of a norm, (34) indicates

‖∇(pε − p0)‖r′ ≤ lim inf
n→∞

‖∇(pεn − p0)‖r′ ⇒
∫

Ω
mε · vε ≥ lim sup

n→∞

∫
Ω
mε

n · vεn. (35)
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This is actually sufficient for (mε,vε, pε) ∈ A a.e. in Ω. We will derive it again from the maximality
property reformulated in Lemma 1.

On the one hand, we have
(
mε

n −m∗(vε, pεn)
)
· (vεn − vε) ≥ 0 a.e. in Ω. However, (35) leads us to

0 ≤ lim sup
n→∞

∫
Ω

(
mε

n −m∗(vε, pεn)
)
· (vεn − vε)

= lim sup
n→∞

∫
Ω
mε

n · vεn −mε
n · vε −m∗(vε, pεn) · (vεn − vε) ≤ 0,

due to (31) and (35). Therefore
(
mε

n −m∗(vε, pεn)
)
· (vεn − vε) → 0 in L1(Ω) for n → ∞. Since a

strong convergence implies the weak one, for all ϕ ∈ L∞(Ω), ϕ ≥ 0 a.e. in Ω, we have

lim
n→∞

∫
Ω
mε

n · vεn ϕdx = lim
n→∞

∫
Ω
mε

n · vε ϕ+m∗(vε, pεn) · (vεn − vε)ϕdx =

∫
Ω
mε · vε ϕdx. (36)

The last equality made again use of (31). Now, we take an arbitrary u ∈ Rd and use monotonicity to
write ∫

Ω

(
mε

n −m∗(u, pεn)
)
· (vεn − u)ϕdx ≥ 0, ∀n ∈ N. (37)

Owing to (A5), (25) and (36), it is possible to take the limit n→∞ and infer∫
Ω

(
mε −m∗(u, pε)

)
· (vε − u)ϕdx ≥ 0,

yielding (mε −m∗(u, pε)) · (vε − u) ≥ 0 a.e. in Ω, which further begets (mε,vε, pε) ∈ A a.e. in Ω by
Lemma 1.

3.3 ε-limit

In the spirit of the previous limit, (25) and the weak lower semicontinuity of a norm applied on (24)
produce the third energy inequality

ε ‖∇(pε − p0)‖r
′

r′ + ‖m
ε‖r
′

r′ + ‖v
ε‖rr ≤ C(‖f −∇p0‖r′ , ‖v0‖r). (38)

The first term actually does not pose much of a problem, for eq. (26)1 implies a pointwise identity

∇pε = f −mε a.e. in Ω,

whence there follows optimization of (38), namely

‖∇(pε − p0)‖r′ + ‖m
ε‖r′ + ‖v

ε‖r ≤ C(‖f −∇p0‖r′ , ‖v0‖r). (39)

Like twice before already, we can find subsequences

vε ⇀ v in Lr(Ω)d,

pε − p0 ⇀ p− p0 in W 1,r′

Γ2
(Ω),

ε |∇(pεn − p0)|r
′−2∇(pεn − p0) ⇀ 0 in Lr(Ω)d,

mε ⇀m in Lr
′
(Ω)d,

(40)

for ε→ 0+. The limit quantities satisfy∫
Ω
∇p ·w +

∫
Ω
m ·w =

∫
Ω
f ·w, ∀w ∈ Lr(Ω)d,

0 =

∫
Ω

(v − v0) · ∇q, ∀q ∈W 1,r′

Γ2
(Ω),

(41)

11



that is

∇p+m = f in Ω,

div v = 0 in Ω,

(v − v0) · n = 0 on Γ1,

p− p0 = 0 on Γ2.

In order to reach (1), the sole remaining step is showing (m,v, p) ∈ A a.e. in Ω. Let us first take (27)

with χ already identified from (33), recall |∇(pε − p0)|r
′

is bounded in L1(Ω) and pass to the limit
ε→ 0+:

lim
ε→0+

∫
Ω
mε · vε −

∫
Ω
m · v0 =

∫
Ω

(f −∇p0) · (v − v0).

The limit equation (41) yields, on the other hand∫
Ω
m · (v − v0) =

∫
Ω

(f −∇p0) · (v − v0),

whereby we infer

lim
ε→0+

∫
Ω
mε · vε =

∫
Ω
m · v.

The rest would follow along the same lines as what came after (35). Of course, by (40) we may again
tacitly assume pε → p a.e. in Ω. Thus justification of (m,v, p) ∈ A a.e. in Ω is complete and with it,
the proof of Theorem 3.

4 Maximum and minimum principle

What ensues is an observation that in the case of conservative forces and pure inflow, or pure outflow
over Γ1, one obtains a minimum or a maximum principle, respectively, for the pressure. Note that
this result can be relatively easily obtained for the primordial Darcy’s model, i.e. m = αv, for some
α > 0 where, after formal application of the divergence operator, one ends up with an elliptic problem
∆p = div f . The property of maximum and minimum principle thus endured extensions at least up to
ours.

We start with introducing an additional assumption on the graph, namely

(A6) strict monotonicity at the origin

∀(m,v, p) ∈ A : m · v = 0⇒m = 0.

Note that this condition follows trivially from (A4) provided c2 = 0.

Theorem 5 Let assumptions of Theorem 3 be in force and Ω be additionally connected. Let (A6)
hold and f = ∇g for some g ∈W 1,r′(Ω). Then

(i) v0 · n ≥ 0 on Γ1 implies p− g ≤ ess sup
Γ2

(p0 − g) a.e. in Ω.

(ii) v0 · n ≤ 0 on Γ1 implies p− g ≥ ess inf
Γ2

(p0 − g) a.e. in Ω.

In particular, if v0 · n = 0 on Γ1, Γ2 is non-trivial in the sense |Γ2|d−1 > 0, p0 ∈ L∞(Γ2) and
g ∈ L∞(Ω) ∩W 1,r′(Ω), then p ∈ L∞(Ω).

12



Proof. We will concentrate on the maximum principle only, its minimum counterpart would be verified
completely analogously.

Without loss of generality assume ess supΓ2
(p0 − g) <∞. The proof hinges on a proper choice of a

test function in the weak formulation (41) of the problem (1). Define a truncation operator

T (x) =


0 for x ≤ 0,

x for 0 < x ≤ 1,

1 for x > 1,

and a test function

w = T (p− g − ess sup
Γ2

(p0 − g))v.

Abbreviating T := T (p− g − ess supΓ2
(p0 − g)) when necessary, we arrive at∫

Ω
m · v T dx = −

∫
Ω
∇(p− g) · v T dx. (42)

On the one hand, the right-hand side of (42) can be rewritten as

−
∫

Ω
∇(p− g) · v T dx = −

∫
Ω
∇(p− g − ess sup

Γ2

(p0 − g)) · v T dx

= −
∫

Ω
∇H(p− g − ess sup

Γ2

(p0 − g)) · v dx,

where H(x) =
∫ x

0 T (s) ds ≥ 0. Then the integration by parts and v0 · n ≥ 0 on Γ1 yield

−
∫

Ω
∇H(p − g − ess sup

Γ2

(p0 − g)) · v dx = −
∫

Γ1∪Γ2

H(p − g − ess sup
Γ2

(p0 − g))v · n dS ≤ 0.

Eq. (42) hence gives
∫

Ωm · v T dx ≤ 0. On the other hand, (A1) and (A2) imply m · v ≥ 0 a.e. in Ω
and therefore

m · v T (p− g − ess sup
Γ2

(p0 − g)) = 0 a.e. in Ω.

Denoting V = {x ∈ Ω | (p− g)(x) > ess supΓ2
(p0 + g)}, (A6) entails m = 0 a.e. in V . Fom (1)1 we

deduce ∇(p− g) = 0 a.e. in V , so that

∇
[(
p− g − ess sup

Γ2

(p0 + g)
)

+

]
= 0 a.e. in Ω.

Therefore
(
p− g − ess supΓ2

(p0 + g)
)

+
≡ C for some constant C due to connectedness of Ω. However,

this constant must be zero, since p− g is a Sobolev function. Therefore p− g ≤ ess supΓ2
(p0 − g) a.e.

in Ω.

5 Extended existence theorem

The primal benefit of Theorem 5 is that, at certain price, we can significantly slacken the draconian
restrictions imposed by (A5)(iv), as well as (A4), by allowing the constants c and c1 to be actually
functions of the pressure. Thus we can vastly extend the class of admissible interactions m and cover
some physically relevant cases. More precisely, let us consider there exist α, β ∈ C(R) strictly positive
everywhere on R, such that

13



(A4∗) ∃c2 ≥ 0 ∀(m,v, p) ∈ A : m · v ≥ α(p)(|v|r + |m|r′)− c2,

(A5)(iv∗) ∀(v, p) ∈ Rd × R : |m∗(v, p)| ≤ β(p)(1 + |v|r−1).

Theorem 6 Let Ω be a connected Lipschitz domain and r ∈ (1,∞). Assume f = ∇g for some
g ∈ L∞(Ω) ∩W 1,r′(Ω), v0 ≡ 0, |Γ2|d−1 > 0 and p0 ∈W 1,r′(Ω) ∩ L∞(Γ2). Moreover, assume that A is
a maximal monotone r-graph in the sense of (A1)–(A6), with (A4) and (A5)(iv) replaced by (A4∗)
and (A5)(iv∗), respectively. Then the existence result of Theorem 3 still holds.

Proof. Take K := ‖g‖∞,Ω +‖p0−g‖∞,Γ2 and recall (9) for the definition of TK . The truncated problem

∇p+m = ∇g in Ω,

div v = 0 in Ω,

h(m,v, TK(p)) = 0 in Ω,

(v − v0) · n = 0 on Γ1,

p− p0 = 0 on Γ2,

(43)

is amenable to Theorem 3. Indeed, setting c1 := min[−K,K] α and c := max[−K,K] β, we have c1 > 0 and
0 < c <∞. Taking m̂∗(v, p) := m∗(v, TK(p)) as a selection to be used, invoking the above mentioned
theorem is just. Now Theorem 5 yields ‖p‖∞ ≤ K, which implies p = TK(p) a.e. in Ω and we are done,
as problems (1) and (43) coincide.

Remark 7 We conclude this paper with an easy observation stemming from the foregoing proof.
Namely, if infR+ α > 0 and supR+

β <∞, there is no need for the maximum principle anymore and
instead of v0 ·n = 0 on Γ1, mere v0 ·n ≤ 0 on Γ1 would suffice to ensure validity of the still indispensable
minimum principle. Indeed, in (43)3 we could just as well take

h(m,v,max{TK(p), p}) = 0

and m̂∗(v, p) := m∗(v,max{TK(p), p}) for the selection. Vice versa, we need only the maximum
principle, i.e. v0 · n ≥ 0 on Γ1, provided infR− α > 0 and supR− β <∞. The drag coefficient (6) is a
prime example of such a situation.
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1969.
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