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Abstract In this paper we give explicit expressions for the norms of the residual
vectors generated by the GMRES algorithm applied to a non-normal matrix. They
involve the right-hand side of the linear system, the eigenvalues, the eigenvectors and,
in the non-diagonalizable case, the principal vectors. They give a complete descrip-
tion of how eigenvalues contribute in forming residual norms and offer insight in
what quantities can prevent GMRES from being governed by eigenvalues.

Keywords GMRES convergence · Non-normal matrix · Eigenvalues · Residual
norms

1 Introduction

We consider the convergence of GMRES (the Generalized Minimal RESidual
method) for solving linear systems with complex nonsingular matrices A of size
n and n-dimensional right-hand sides b; see e.g. [38] or [37] for a description of
the algorithm. The kth GMRES iterate xk minimizes, with x0 = 0, the norm of
the kth residual vector rk = b − Axk over all vectors in the kth Krylov subspace
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Kk(A, b) ≡ span{b, Ab, . . . , Ak−1b}. Therefore, residual norms are non-increasing
and satisfy

‖rk‖ = min
p∈πk

‖p(A)b‖,
where πk is the set of polynomials of degree k with the value one at the origin and ‖·‖
denotes the 2-norm. If the Jordan canonical form of A is denoted by A = XJX−1,

then
‖rk‖ = min

p∈πk
‖Xp (J )X−1b‖. (1)

In this paper we focus on how convergence of the GMRES residual norms is influ-
enced by the entirety of spectral properties of A, that is, by the eigenvalues contained
in J and by the eigenvectors or principal vectors contained in X.

If A is Hermitian, the orthogonality of the eigenvectors results in a predominant
influence of the eigenvalues on convergence. For example, in Hermitian counterparts
of GMRES like the MINRES method [34] or the Conjugate Gradients method [19],
clustering of eigenvalues stimulates convergence, eigenvalues close to zero hamper
convergence and the eigenvalue distribution decides about the rate of convergence
(for a survey, see, e.g., [27]). In addition, there exist for these methods sharp upper
bounds consisting of a min-max problem which depends on the spectrum only. For
instance, in MINRES the residual norms satisfy

‖rk‖
‖b‖ ≤ min

p∈πk
max

i=1,...,n
|pk(λi)|, (2)

with λi denoting the eigenvalues of A (see, e.g., [37]) and for every k there exists
a right-hand side (depending on k) such that equality holds. MINRES is a method
for Hermitian matrices which is mathematically equivalent with GMRES, thus the
residual norms generated by GMRES applied to a Hermitian matrix satisfy the same
inequality. In fact, it is satisfied with normal matrices too, and in this case, GMRES
convergence is governed by eigenvalues as well. Moreover, from (1) we have for any
normal matrix

‖rk‖ = min
p ∈πk

‖p (J )X∗b‖, (3)

with J being a diagonal matrix of eigenvalues. This shows that with Hermitian or
other normal matrices, the residual norms are fully determined by two quantities:
eigenvalues and components of the right-hand side in the eigenvector basis. A closed-
form expression for the kth GMRES residual norm in terms of these quantities (in fact
of the moduli of the components of the right-hand side in the eigenvector basis), i.e.
the solution of (3), was presented in [10] and in an unpublished report from Bellalij
and Sadok (A new approach to GMRES convergence, 2011).

When A is not normal, the predominant role of the eigenvalues can be lost.
For diagonalizable non-normal matrices, the upper bound (2) is multiplied with the
condition number κ(X) of the eigenvector matrix, which may be large. We refer
to [26, Section 3.1] for a detailed discussion of other difficulties with interpreting
this bound in the non-normal case. The probably most convincing results showing
that GMRES need not be governed only by eigenvalues can be found in a series
of papers by Arioli, Greenbaum, Pták and Strakoš [1, 17, 18]. They show that for
any prescribed sequence of n non-increasing residual norms, there exists a class of
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right-hand sides and matrices, whose nonzero eigenvalues can be chosen arbitrarily,
giving residual norms that coincide with the given non-increasing sequence. In this
sense, GMRES convergence curves (with respect to residual norms) are independent
from the eigenvalues of A. It was shown in [8] that convergence curves do not even
depend on the Ritz values generated during all iterations of the GMRES process.
The strong potential independence from eigenvalues inspired many papers that look
for some approaches other than eigenvalue analysis to explain GMRES convergence.
They include pseudospectra [33, 44], the field of values [11], the polynomial numer-
ical hull [16], potential theory [23], decomposition in normal plus low-rank [20] or
comparison with GMRES for non-Euclidean inner products [36]. Though they can be
very suited to explain convergence for particular problems, none of the approaches
seems to represent a universal tool for GMRES analysis.

Nevertheless for many practical problems, eigenvalues seem to influence con-
vergence behavior strongly. This follows for instance from the fact that slow
convergence can often be successfully cured by eliminating particular convergence
hampering eigenvalues with a so-called deflation strategy; see, to mention just some
of a large number of proposed techniques, for instance [2, 5–7, 12, 14, 15, 22, 24,
29–32, 35]. This is not surprising since residual vectors are formed from a matrix
polynomial times the right-hand side and matrix polynomials are naturally related
to eigenvalues. It is often assumed that the situation where the behavior of GMRES
is not or little governed by eigenvalues occurs only for matrices that are far from
normal. However, even such a highly non-normal matrix as a Jordan block can
yield GMRES convergence curves that are dominated by the size of the involved
eigenvalue (this will also be discussed in Section 3 of this paper). In fact, Arioli,
Greenbaum, Pták and Strakoš never wrote in [1, 17, 18] that GMRES convergence
does not depend on the eigenvalues. The results in [1, 17, 18] merely show that
there are sets of matrices with different (arbitrary) eigenvalue distributions and right-
hand sides giving the same GMRES residual norms. In view of (1) this means that if
one modifies eigenvalues, then in order to have the same residual norms, the eigen-
vectors and/or principal vectors and the right-hand side must and can be modified
appropriately.

In this paper we address the interplay of eigenvalues, eigenvectors and the right-
hand side with respect to convergence. In the first place, our goal is to show as
precisely as possible, how eigenvalues contribute to the computation of residual
norms. To this end, we derive closed-form expressions for the residual norms. In
the second place, we use these expressions in an attempt to enhance insight in when
convergence can be suspected to be dominated by the spectrum and when not. We
discuss several interpretations of departure from normality, the role of the right-hand
side and the frequently observed convergence hampering influence of eigenvalues
close to the origin. For ease of presentation we will not consider the early termination
case in detail, though in practice, of course, one often terminates the process after a
small number of iterations. With early termination we obtain the same closed-form
expressions but for a smaller number of iterations and this leads to exactly the same
insights.

The contents of the paper are as follows. In Section 2 we give an expression of
the GMRES residual norms for diagonalizable matrices. Section 3 generalizes the
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ideas of the previous section for matrices with one Jordan block and Section 4 treats
the more general case when the matrix A is not diagonalizable. We formulate some
conclusions in the last section. Throughout the paper we will use the phrase “conver-
gence is governed by eigenvalues” when convergence depends only on eigenvalues
and on components of the right-hand side in the eigenvector basis; eigenvectors and
right-hand side do not influence convergence curves in any other way. This is the case
for GMRES applied to normal matrices, see (3), for the MINRES method, and, with
respect to the norm of the A-error, the Conjugate Gradients method. We will assume
that GMRES does not terminate before iteration n. Hence, the Krylov subspaces are
of full dimension and their orthogonal bases constructed using the Gram-Schmidt
algorithm are well defined. For the sake of simplicity we choose x0 = 0 and we nor-
malize the right-hand side b such that ‖r0‖ = ‖b‖ = 1. The vector ei will denote the
ith column of the identity matrix (of appropriate order). The entry on the ith row and
in the j th column of a matrix X is denoted by Xi,j and Xi:j,k:� denotes the subma-
trix of X with rows from i to j and columns from k to �. Xi:j,: denotes the submatrix
with rows from i to j and with all columns of X.

2 GMRES convergence for diagonalizable matrices

In this section we look for the solution of the minimization problem (1) in terms of
J , X and X−1b when A is diagonalizable with spectral factorization X�X−1 where
the eigenvalues are contained in � = J = diag(λ1, . . . , λn) . To this end, we gen-
eralize the results in [10] and in the unpublished report from Bellalij and Sadok (A
new approach to GMRES convergence, 2011) that solved the minimization prob-
lem (3) for normal matrices. The next sections will address the non-diagonalizable
case.

Let
K = (

b Ab A2b · · · An−1b
)
,

be the Krylov matrix whose first k columns are the natural basis vectors of the Krylov
subspace Kk(A, b) for 1 ≤ k ≤ n and let c = X−1b. Then the Krylov matrix K can
be written as K = X

(
c �c · · · �n−1c

)
and let us define the moment matrix.

M = K∗K = (
c �c · · · �n−1c

)∗
X∗X

(
c �c · · · �n−1c

)
(4)

For all Krylov subspaces to have full dimension we need the eigenvalues to be distinct
and c to have no zero entries. We remark that it is easily seen from the parametriza-
tions in [1] and [9] that any non-increasing GMRES convergence curve is possible
for diagonalizable matrices with any distinct eigenvalues. We now try to show how
eigenvectors and components of the right-hand side must be modified if we wish to
generate the same residual norms with different distinct eigenvalues.

The residual norms in GMRES are given by

‖rk‖2 = 1

eT1 M
−1
k+1e1

, k = 1, . . . , n− 1, (5)

where Mk+1 is the leading principal submatrix of order k + 1 of M . This result has
been proved independently in several papers; see [45, Theorem 4.1], [21, Theorem
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2.1] where the result is formulated differently using a pseudo-inverse and [39, Lemma
1] where it is given for real matrices. In [25, Theorem 2.1] and the remarks thereafter
it is pointed out that the formula goes back to [40, Section 3 and 4]. As in [10]
and in the unpublished report from Bellalij and Sadok (A new approach to GMRES
convergence, 2011), the (1, 1) entry of M−1

k+1 in (5) will be calculated using Cramer’s
rule:

(M−1
k+1)1,1 = det(M2:k+1,2:k+1)

det(Mk+1)
. (6)

With Dc denoting the diagonal matrix whose diagonal entries ci are the components
of c and with

Vk+1 =

⎛

⎜⎜⎜
⎝

1 λ1 · · · λk1
1 λ2 · · · λk2
...

...
...

1 λn · · · λkn

⎞

⎟⎟⎟
⎠
, (7)

an n× (k + 1) matrix, we see that Mk+1 in (6) can be written as

Mk+1 = V∗
k+1D

∗
cX

∗XDcVk+1. (8)

If F ≡ XDcVk+1, then Mk+1 is the product F ∗F of two rectangular matrices. To
compute the determinants of Mk+1 and M2:k+1,2:k+1 in (6) we will use the Cauchy-
Binet formula for determinants of products of rectangular matrices: For the product
of a (k × n) matrix G with an (n× k) matrix H there holds

det(GH) =
∑

Ik

det(G:,Ik ) det(HIk,:).

The notation used here is clear from the following definitions, which we will need in
the sequel.

Definition 1 With Ik (or Jk) we denote sets of k ordered indices i1, . . . , ik such that
1 ≤ i1 < · · · < ik ≤ n. With

∑
Ik

we denote summation over all such possible
ordered index sets. With XIk,Jk we denote the square k×k submatrix of X whose row
and column indices of entries are defined respectively by Ik and Jk . With

∏
j�<jp∈Jk

we denote the product over all pairs of indices j�, jp in the ordered index set Jk such
that j� < jp.

Having outlined the main proof ingredients, we now give the resulting expressions
of the residual norm for GMRES processes that do not terminate before iteration n.
We remark that they can be used for the case where GMRES terminates before the
step n as follows: If A has m < n distinct eigenvalues and b has nonzero components
in all m associated invariant subspaces, then GMRES terminates with rm = 0, and
the expressions presented below hold for k = 1, . . . , m− 1. If b has nonzero compo-
nents only in � < m invariant subspaces corresponding to distinct eigenvalues, then
GMRES terminates with r� = 0 and the expressions holds for k = 1 and if � > 2,
for k = 2, . . . , �− 1.

The next theorem does not contain very elegant formulaes, but it gives the solution
of (1) in the case where J is a diagonal matrix.
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Theorem 1 Let A be a diagonalizable matrix with a spectral factorization X�X−1

where � = diag(λ1, . . . , λn) contains the distinct eigenvalues and let b be a vector
of unit norm such that c = X−1b has no zero entries. When solving Ax = b with
x0 = 0, the GMRES residual norm at iteration k < n satisfies

‖rk‖2 = σN
k+1/σ

D
k ,

where

σN
k+1 =

∑

Ik+1

∣∣∣∣∣∣

∑

Jk+1

det(XIk+1,Jk+1) cj1 · · · cjk+1

∏

j�<jp∈Jk+1

(λjp − λj�)

∣∣∣∣∣∣

2

,

σD
1 = ∑n

i=1

∣∣∣
∑n

j=1 Xi,j cj λj

∣∣∣
2
, and for k ≥ 2

σD
k =

∑

Ik

∣∣∣∣∣∣

∑

Jk

det(XIk,Jk ) cj1 · · · cjk λj1 · · · λjk
∏

j�<jp∈Jk
(λjp − λj�)

∣∣∣∣∣∣

2

.

Proof We apply Cramer’s rule (6) to compute the (1, 1) entry of the inverse of Mk+1.
Let us first consider the determinant of Mk+1. By the Cauchy-Binet formula,

det(Mk+1) =
∑

Ik+1

| det(FIk+1,:)|2.

Thus we have to compute the determinant of FIk+1,:, a matrix which consists of rows
i1, . . . , ik+1 of XDcVk+1. It is the product of a (k+1)×n matrix that we can write as
(XDc)Ik+1,: by the n× (k+1) matrix Vk+1. Once again we can use the Cauchy-Binet
formula. Let

V(λj1, . . . , λjk+1) =

⎛

⎜⎜⎜⎜
⎝

1 λj1 · · · λkj1

1 λj2 · · · λkj2
...

...
...

1 λjk+1 · · · λkjk+1

⎞

⎟⎟⎟⎟
⎠

which is a square Vandermonde matrix of order k + 1. Then

det(FIk+1,:) =
∑

Jk+1

det(XIk+1,Jk+1)cj1 · · · cjk+1 det(V(λj1, . . . , λjk+1)).

Moreover, we have (see, e.g. [13])

det(V(λj1, . . . , λjk+1)) =
∏

j�<jp∈Jk+1

(λjp − λj�).

Finally, the determinant of Mk+1 is

σN
k+1 =

∑

Ik+1

∣∣∣∣∣∣

∑

Jk+1

det(XIk+1,Jk+1)cj1 · · · cjk+1

∏

j�<jp∈Jk+1

(λjp − λj�)

∣∣∣∣∣∣

2

.

Let us now consider the determinant of M2:k+1,2:k+1 which is a matrix of order
k. The computation is essentially the same, except that we have to consider the rows
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and columns 2 to k + 1. Therefore, it is not Vk which is involved any longer but a
matrix that can be written as �Vk . We have

M2:k+1,2:k+1 = V∗
k �

∗D∗
cX

∗XDc�Vk.

Then, we have some additional factors arising from the diagonal matrix � and we
have to consider only sets of k indices Ik and Jk . The determinant of M2:k+1,2:k+1 is
obtained, for k > 1, as

σD
k =

∑

Ik

∣∣∣∣∣∣

∑

Jk

det(XIk,Jk )cj1 · · · cjk λj1 · · · λjk
∏

j�<jp≤Jk

(λjp − λj�)

∣∣∣∣∣∣

2

.

Noting that for k = 1, the matrix VIk reduces to the number one, we have

σD
1 =

∑

I1

∑

J1

∣∣det(XI1,J1)cj1 · · · cj1 λj1 · · · λj1 det(VI1)
∣∣2

=
n∑

i=1

∣∣∣∣∣∣

n∑

j=1

Xi,j cj λj det(1)

∣∣∣∣∣∣

2

.

The residual norm squared is finally given as ‖rk‖2 = σN
k+1/σ

D
k .

Theorem 1 shows in what manner the norm of the residual vector depends on the
eigenvalues (through eigenvalue products and products of eigenvalue differences), on
the eigenvectors (through determinants of submatrices of the eigenvector matrix) and
on c = X−1b (through products of its entries). Theorem 1 seems to support the fre-
quently observed fact that eigenvalues close to the origin tend to hamper convergence.
The common explanation for this behavior is that it is difficult for GMRES to con-
struct, when it terminates, a polynomial with the value one in the origin which is zero
in an eigenvalue close to zero. Theorem 1 shows that, with diagonalizable matrices,
a spectrum close to the origin may cause many terms in the denominators σD

k to be
close to zero and may give relatively large residual norms. Of course, the papers [1,
17, 18] proved that small eigenvalues need not hamper convergence in general.

As we mentioned in the introduction, a standard upper bound for GMRES residual
norms with diagonalizable matrices is

‖rk‖
‖b‖ ≤ κ(X) min

p∈πk
max

i=1,...,n
|pk(λi)|, (9)

see, e.g., [38]. This bound suggests that the condition number κ(X) of the eigen-
vector matrix plays an important role for convergence behavior. But according to
Theorem 1, GMRES residual norms are not explicitly dependent on κ(X). The eigen-
vector matrix X has a large impact, but its inverse is present only through the entries
of c = X−1b (which is also clear from (1)). With an appropriate right-hand side, the
influence of a large value of ‖X−1‖ can be eliminated and give a vector c with entries
of moderate size.

When the matrix A is normal, we have X∗X = I and the sums over Jk and Jk+1
reduce to only one term (Jk = Ik, respectively Jk+1 = Ik+1). We then recover
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the formula in [10] and in the unpublished report from Bellalij and Sadok (A new
approach to GMRES convergence, 2011).

Theorem 2 Let A be a normal matrix with distinct eigenvalues and the spectral
factorization X�X∗ where � = diag (λ1, . . . , λn), X∗X = XX∗ = I . Let b be a
vector of unit norm such that all entries of the vector c = X∗b are nonzero. When
solving Ax = b with x0 = 0, the GMRES residual norm at iteration k = 1 satisfies

‖r1‖2 =
∑

I2
ωi1ωi2

∏
i�<ij∈I2

|λij − λi� |2
∑n

i=1 ωi |λ i |2 , (10)

and for k = 2, . . . , n− 1,

‖rk‖2 =
∑

Ik+1

[∏k+1
j=1 ωij

] ∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 ωij |λij |2

] ∏
i�<ij∈Ik |λij − λi� |2

, (11)

where ωij = |eTij c| 2.

We remark that equations (10) and (11) were derived in [28, Theorem 2.1] for
k = n − 1 and that the equations (for all k) hold as well for the residual norms
generated by the mathematically equivalent MINRES method for Hermitian (and so
normal) matrices.

When A is normal, GMRES residual norms depend on the eigenvectors and the
right-hand side only through the sizes ωi of the squared components of the right-
hand side in the eigenvector basis (which is also clear from (3)). Therefore, the role
of eigenvalues is much more pronounced than in the non-normal case. If A is close to
normal in the sense that X∗X ≈ I , then in the numerators σN

k+1 and denominators σD
k

of Theorem 1 the involved determinants of submatrices of X may be small except for
the choices Jk+1 = Ik+1, respectively Jk = Ik , but this has to be investigated further.
We can, however, derive bounds from Theorem 1 that involve the conditioning of X.
We derive them with the help of the following bounds that can be found in [3].

Lemma 1 Let G and H be two matrices of sizes n× (k+ 1) and n× n respectively,
k ≤ n− 1. If the matrix G is of full rank,

σmin(H)2

eT1 (G
∗G)−1e1

≤ 1

eT1 (G
∗(H ∗H)G)−1e1

≤ σmax(H)2

eT1 (G
∗G)−1e1

. (12)

Proposition 1 Let A be a matrix with distinct eigenvalues and the spectral factoriza-
tion X�X−1 where � = diag (λ1, . . . , λn). Let b be a vector of unit norm such that
all entries of the vector c ≡ X−1b are nonzero. When solving Ax = b with x0 = 0,
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the GMRES residual norm at iteration k = 1 satisfies

‖r1‖2 ≥ σmin(X)2

∑
I2
ωi1ωi2

∏
i�<ij∈I2

|λij − λi� |2
∑n

i=1 ωi |λ i |2 ,

‖r1‖2 ≤ ‖X‖2

∑
I2
ωi1ωi2

∏
i�<ij∈I2

|λij − λi� |2
∑n

i=1 ωi |λ i |2 ,

and for k = 2, . . . , n− 1,

‖rk‖2 ≥ σmin(X)2

∑
Ik+1

[∏k+1
j=1 ωij

] ∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 ωij |λij |2

] ∏
i�<ij∈Ik |λij − λi� |2

,

‖rk‖2 ≤ ‖X‖2

∑
Ik+1

[∏k+1
j=1 ωij

] ∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 ωij |λij |2

] ∏
i�<ij∈Ik |λij − λi� |2

,

where ωij = |eTij c| 2.

Proof Because of (5) and (8), we have

‖rk‖2 = 1

eT1 (V∗
k+1D

∗
c (X

∗X)DcVk+1)−1e1
.

Applying Lemma 1 with G ≡ DcVk+1 and H ≡ X we obtain

σmin(X)2

eT1 (V∗
k+1D

∗
cDcVk+1)−1e1

≤ ‖rk‖2 ≤ ‖X‖2

eT1 (V∗
k+1D

∗
cDcVk+1)−1e1

.

The claim follows by realizing that the value 1/eT1 (V∗
k+1D

∗
cDcVk+1)

−1e1 is precisely
the squared residual norm for a linear system with normal matrix having eigenvalues
λ1, . . . , λn and such that c = X−1b.

The bounds in the previous proposition are attained if κ(X) = 1 and are in some
sense a two-sided alternative to (9). They show that if σmin(X) is close to σmax(X),
then residual norms behave essentially as in the normal case and are governed by
eigenvalues. However, the opposite need not be true. If κ(X) is large, the question
whether convergence is dominated by the spectrum of A will depend on the inter-
play with the entries of c = X−1b and determinants of X. If we wish to derive
bounds similar to those in Proposition 1 where the eigenvalues are fully separated
from eigenvectors and right-hand side, this can be done as follows.

Proposition 2 Let A be a matrix with distinct eigenvalues and the spectral factor-
ization X�X−1 where � = diag (λ1, . . . , λn). Let b be a vector of unit norm such
that all entries of the vector c ≡ X−1b are nonzero and let Dc denote the diagonal
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matrix whose diagonal entries ci are the components of c. When solving Ax = b with
x0 = 0, the GMRES residual norm at iteration k = 1 satisfies

‖r1‖2 ≥ σmin(XDc)
2

∑
I2

∏
i�<ij∈I2

|λij − λi�|2
∑n

i=1 |λ i |2 ,

‖r1‖2 ≤ ‖XDc‖2

∑
I2

∏
i�<ij∈I2

|λij − λi�|2
∑n

i=1 |λ i |2 ,

and for k = 2, . . . , n− 1,

‖rk‖2 ≥ σmin(XDc)
2

∑
Ik+1

∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 |λij |2

] ∏
i�<ij∈Ik |λij − λi� |2

,

‖rk‖2 ≤ ‖XDc‖2

∑
Ik+1

∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 |λij |2

] ∏
i�<ij∈Ik |λij − λi�|2

.

Proof Because of (5) and (8), we have

‖rk‖2 = 1

eT1 (V∗
k+1D

∗
c (X

∗X)DcVk+1)−1e1
.

Applying Lemma 1 with G ≡ Vk+1 and H ≡ XDc we obtain

σmin(XDc)
2

eT1 (V∗
k+1Vk+1)−1e1

≤ ‖rk‖2 ≤ ‖XDc‖2

eT1 (V∗
k+1Vk+1)−1e1

.

The claim follows in the same way as in the proof of Proposition 1.

The bounds in this proposition may be tight even if the condition number of the
eigenvector matrix X is large: Dc = diag(c) may represent a favorable scaling of
the eigenvector matrix. In fact, as Dc contains X−1 through c = X−1b, in some
particular cases the influence of X−1 in the product XDc might be cancelled out
by X. For other bounds that incorporate the right-hand side through X−1b we refer
to [43], where the scaling of X is also discussed.

Because for diagonalizable matrices, “departure from normality” can be trans-
lated to “size of the condition number of the eigenvector matrix”, we conclude
that GMRES for diagonalizable matrices close to normal will be governed by the
spectrum. With a more important departure from normality, the degree to which
eigenvalues govern GMRES will depend upon the interplay with determinants of X
and entries of X−1b; even with a high condition number κ(X), GMRES behavior can
be governed by the spectrum in particular cases.

3 One Jordan block

We start our investigation of how Theorem 1 can be extended to the non-
diagonalizable case by considering the situation where the Jordan canonical form
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of A has one Jordan block only. Let A have the Jordan form XJX−1 with J =
bidiag (λ, 1) for a nonzero eigenvalue λ and let b be a vector of unit norm such that
the last entry of c = X−1b is nonzero (otherwise GMRES terminates before the nth
iteration). Then the moment matrix M is

M = K∗K = (
c J c · · · J n−1c

)∗
X∗X

(
c J c · · · J n−1c

)
.

In contrast with the Krylov matrix
(
c �c · · · �n−1c

) = DcVn in the previous
section (see (4) and (7)), the Krylov matrix

(
c J c · · · J n−1c

)
cannot be written as

the product of a diagonal matrix containing the entries of c with a Vandermonde
matrix. Instead, it can be decomposed as

(
c J c · · · J n−1c

) = CE ≡ (13)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c1 c2 . . . . . . cn

c2 c3 . . . cn

c3 . . . cn
... cn
cn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 λ λ2 · · · λn−1

0 1 2λ · · ·
(
n− 1

1

)
λn−2

0 0 1 · · ·
(−1

2

)
λn−3

...
...

...
. . .

...

0 0 0 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where the matrix C is a Hänkel “anti upper triangular” matrix defined by
c1, . . . , cn, 0, · · · , 0. Here is a small example for illustration: Let n = 5 and let all
entries of c = X−1b be nonzero. Then the Krylov matrix

(
c J c · · · J 4c

)
is

⎛

⎜⎜
⎜
⎜
⎝

c1 λc1 + c2 λ2c1 + 2λc2 + c3 λ3c1 + 3λ2c2 + 3λc3 + c4 λ4c1 + 4λ3c2 + 6λ2c3 + 4λc4 + c5

c2 λc2 + c3 λ2c2 + 2λc3 + c4 λ3c2 + 3λ2c3 + 3λc4 + c5 λ4c2 + 4λ3c3 + 6λ2c4 + 4λc5

c3 λc3 + c4 λ2c3 + 2λc4 + c5 λ3c3 + 3λ2c4 + 3λc5 λ4c3 + 4λ3c4 + 6λ2c5

c4 λc4 + c5 λ2c4 + 2λc5 λ3c4 + 3λ2c5 λ4c4 + 4λ3c5

c5 λc5 λ2c5 λ3c5 λ4c5

⎞

⎟⎟
⎟
⎟
⎠

with the factorization

(
c J c · · · J 4c

) =

⎛

⎜⎜⎜⎜
⎝

c1 c2 c3 c4 c5
c2 c3 c4 c5
c3 c4 c5
c4 c5
c5

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

1 λ λ2 λ3 λ4

1 2λ 3λ2 4λ3

1 3λ 6λ2

1 4λ
1

⎞

⎟⎟⎟⎟
⎠
.

The (k + 1)st leading principal submatrix Mk+1 of M is given by

Mk+1 = (
c J c · · · J kc

)∗
X∗X

(
c J c · · · J kc

)
.

With (13) and defining
Y ≡ XC,

we have

Mk+1 = (E:,1:k+1)
∗(XC)∗XCE:,1:k+1 = (E:,1:k+1)

∗Y ∗YE:,1:k+1,

which can be written as the product Mk+1 = F ∗F of two rectangular matrices where
F ≡ YE:,1:k+1. The matrix E:,1:k+1 depends only on the eigenvalue, the matrix Y
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contains all information from the principal vectors and the right-hand side. Using
exactly the same proof technique as for Theorem 1, we obtain for a single Jordan
block the following.

Corollary 1 Let A be a nonsingular matrix with a single eigenvalue λ and with
Jordan form XJX−1 where J = bidiag (λ, 1). Let b be a vector of unit norm such
that the last entry of c = X−1b is nonzero, let E be the eigenvalue matrix defined by
(13) and let Y = XC, where C is the Hänkel matrix defined in (13). When solving
Ax = b with x0 = 0, the GMRES residual norm at iteration k < n satisfies

‖rk‖2 =
∑

Ik+1

∣∣∣
∑

Jk+1
det(YIk+1,Jk+1) det(EJk+1,1:k+1)

∣∣∣
2

∑
Ik

∣∣∣
∑

Jk
det(YIk,Jk ) det(EJk,2:k+1)

∣∣∣
2

. (14)

Corollary 1 shows an interplay between eigenvalues, principal vectors and right-
hand side which is similar to the interplay between eigenvalues, eigenvectors and
right-hand side in Theorem 1. GMRES residual norms are formed from polynomi-
als in the eigenvalue on the one hand and from determinants of the principal vector
matrix multiplied with a matrix containing the entries of X−1b on the other hand.
The inverse X−1 of the matrix of principal vectors X appears only in combination
with the right-hand side through the vector c = X−1b and as before, possible ill-
conditioning of X does not necessarily have a significant influence on convergence
behavior.

One can prove an analogue of Proposition 1 by applying Lemma 1 with G ≡ CE

and H ≡ X. It would show that if κ(X) = 1, the behavior of GMRES applied
to a very defective matrix is still governed by the eigenvalue, i.e. influenced only
by the spectrum and the components of b in X (in particular cn may be important).
This would correspond to the special and somewhat superficial situation where A

has a single Jordan block and where the matrix X is unitary, i.e. the Jordan form
of A is A = XJX∗. For example, GMRES for a single, plain Jordan block is, in
general, strongly governed by the eigenvalue (see, e.g., the results for a single Jordan
block in [26] and [42]). Matrices of the form A = XJX∗ are far from normal in the
sense of being maximally defective. Clearly, this type of departure from normality
of A does not decide upon whether GMRES is governed by eigenvalues. As in the
previous section, the departure from orthogonality of the eigenvector or principal
vectors tells us something. If κ(X) is large, the degree to which the spectrum governs
convergence behavior is influenced by the entries of X and c = X−1b (an analogue
of Proposition 2 for one Jordan block is possible too).

Some simplifications of the expression (14) are given by the next lemmas. The
numerator of ‖rk‖2 contains the determinants of EJk+1,1:k+1 for all index sets Jk+1.
Their values are given in the following result.

Lemma 2 For all the sets of k + 1 indices Jk+1 in the numerator of (14), the only
determinant of EJk+1,1:k+1 which is non-zero is det(E1:k+1,1:k+1) = 1.

Proof We have to consider all the sets of indices j� such that 1 ≤ j1 < · · · < jk+1 ≤
n. Since E is upper triangular, all the determinants involving a row of index larger
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than k + 1 are zero. The only set of indices Jk+1 without a row of index larger than
k+1 is {1, 2, . . . , k+1}. The corresponding submatrix is triangular with ones on the
diagonal.

From Lemma 2 there is only one term for the sum over Jk+1 in the numerator σN
k+1

in (14) and

σN
k+1 =

∑

Ik+1

∣∣det(YIk+1,1:k+1)
∣∣2
.

We remark that in this case the numerator does not depend on the eigenvalue. For
the denominator in (14) we are interested in the determinants of EJk,2:k+1. They are
characterized in the following lemma.

Lemma 3 The k+1 non-zero determinants of EJk,2:k+1 are obtained for the sets of
indices Jk not containing an index strictly larger than k + 1. If those sets are enu-
merated in lexicographic order, the determinants are respectively λk, λk−1, . . . , λ, 1.
Moreover, the denominator σD

k for ‖rk‖2 in (14) is

σD
k =

∑

Ik

∣∣∣λk det(YIk,I1)+ · · · + λ det(YIk ,Ik )+ det(YIk,Ik+1)

∣∣∣
2
,

where Ij , j = 1, . . . , k + 1, are the sets of indices with k elements in the ordered
combinations of k + 1 elements enumerated in lexicographic ordering.

Proof The first claim is obvious since if there is a row index strictly larger than
k + 1 in Jk then there is a zero row in the matrix EJk,2:k+1 and the determinant
is zero. The proof of the second claim is by induction on k. For k = 1 the only
nonzero determinants of EJ1,2 are, in lexicographical order, det(E1,2) = E1,2 = λ

and det(E2,2) = E2,2 = 1. Let us assume that the claim is true for k − 1. We have to
consider the determinants of submatrices of order k of the n× k matrix

E:,2:k+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ λ2 · · · λk−1 λk

1 2λ · · ·
(
k − 1

1

)
λk−2

(
k

1

)
λk−1

0 1 · · ·
(
k − 1

2

)
λk−3

(
k

2

)
λk−2

...
...

. . .
...

...

0 0 · · · 1

(
k

k − 1

)
λ

0 0 · · · 0 1
...

...
...

...
...

0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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In lexicographic order the first set of indices Jk is {1, 2, . . . , k}. We have to con-
sider the determinant of the matrix E(k) obtained from the first k rows of E:,2:k+1.
Let us compute this determinant using the last column. It is equal to

(−1)k+1[λk det(E(k)
−1,1:k−1) −

(
k

1

)
λk−1 det(E(k)

−2,1:k−1)

− · · · + (−1)k−1
(

k

k − 1

)
λ det(E(k)

−k,1:k−1)],

where det(E(k)
−j,1:k−1) denotes the determinant of the square submatrix of order k− 1

of E(k) from columns 1 to k − 1 with row j removed. Those determinants are given
by our induction hypothesis (in reverse order); they are 1, λ, . . . , λk−1. Therefore we
can factor λk in the expression displayed above and we obtain

(−1)k+1λk[1 −
(
k

1

)
+

(
k

2

)
− · · · + (−1)k−1

(
k

k − 1

)
].

One can see that the sum within brackets is equal to (−1)k+1 and thus the determinant
we were looking for is λk. The proof for the other sets of indices Jk is along the same
lines.

Combining Lemmas 3 and 2 with Corollary 1, we obtain the next theorem. Note
that if the given right-hand side is sparse this may influence the nonzero pattern of Y
and cause the annihilation of some further determinants.

Theorem 3 Let A be a nonsingular matrix with a single eigenvalue λ and with Jor-
dan form XJX−1 where J = bidiag (λ, 1). Let b be a vector of unit norm such that
the last entry of c = X−1b is nonzero, let E be the eigenvalue matrix defined by (13)
and let Y = XC, where C is as defined in (13). When solving Ax = b with x0 = 0,
the GMRES residual norm at iteration k < n satisfies

‖rk‖2 =
∑

Ik+1
| det(YIk+1,1:k+1)|2

∑
Ik
|λk det(YIk ,I1)+ · · · + λ det(YIk ,Ik )+ det(YIk,Ik+1)|2

, (15)

where Ij , j = 1, . . . , k + 1 are the sets of indices with k elements in the ordered
combinations of k + 1 elements enumerated in lexicographic ordering.

Another result for the residual norms generated by GMRES applied to a Jordan
block was given in [21]. The expression in that paper contains constants whose values
are generally unknown.

We observe from Theorem 3 an interesting, slightly enhanced independence from
the spectrum in comparison with diagonalizable matrices: The numerator is fully
independent from the eigenvalue and so are the summands det(YIk,Ik+1) in the
denominator. In the expression for residual norms of Theorem 1 all summands in
both numerator and denominator depend on eigenvalues.

We next consider a very small convection-diffusion model problem where matri-
ces close to a single Jordan block arise. We also examine the corresponding Jordan
block for which the theory holds exactly. The choice of the number of inner nodes for
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discretization and of the source term are physically somewhat articifial but we made
these choices for the sake of showing that the formulae for the residual norm can be
useful.

Consider the one-dimensional convection-diffusion problem on the unit interval
[0, 1]

−νu′′ + u′ = f, u(0) = u(1) = 0,

discretized with finite differences on a regular grid with n inner nodes using upwind
differences for the convective term. This gives a linear system where the system
matrix A is tridiagonal with entries

A = h−2 tridiag(−ν − h, 2ν + h,−ν),

see, e.g. [41, Section 4]. In the convection dominated case, ν 
 h2 and A is close
to a scaled transposed Jordan block. Let the source term be nonzero only around the
first inner node 1/(n+ 1), with the value (ν+h)/(−h2) in that node. Then the right-
hand side b is a multiple of e1 and GMRES applied to the pair (A, b) gives the same
residual norms as GMRES applied to the pair

( −h2

ν + h
I−AI−, −h2

ν + h
I−b

)
, (16)

where I− denotes the (unitary) antidiagonal reversion matrix with ones on the

antidiagonal. The matrix −h2

ν+h
I−AI− is a near Jordan block with the eigenvalue

λ = −(2ν + h)/(ν + h), the right-hand side is en.
In the left part of Fig. 1 we show the GMRES residual norms generated with the

pair (16), where n = 4 and ν = 0.01 (dashed lines). We also show the convergence
curve for the same pair, except that the lower subdiagonal entries of A have been
put to zero to obtain a true Jordan block (dotted lines). Clearly, the convergence
of GMRES applied to the pair (A, b) is very close to that for a Jordan block with
eigenvalue λ = −(2ν + h)/(ν + h) = −1.0476 and right-hand side en. Below we
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Fig. 1 GMRES relative residual norm curves for a one-dimensional convection-diffusion model problem
with near Jordan block (dashed lines) and with true Jordan block (dotted lines). In the left part the right-
hand side is en, in the right part it is e1 + en
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give explicit formulaes for the residual norms generated with this Jordan block using
Theorem 3. Note that in this example Y = C = I−.

– For k = 1, with Lemma 2, the numerator in (15) is

∑

I2

| det(CI2,1:2)|2.

There are six terms for I2 : {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, with only
the last one giving the nonzero determinant det(C{3,4},{1,2}) = −1. For the
denominator in (15) we sum over the trivial index sets {1}, {2}, {3}, {4} and
I1 = {1}, {2}. We obtain nonzero values for the index sets {3},{4} only:

|λ det(C{3},{1})+ det(C{3},{2})|2 = 1, |λ det(C{4},{1})+ det(C{4},{2})|2 = |λ|2.

The first residual norm satisfies

‖r1‖2 = 1

1 + |λ|2 .

– For k = 2 the numerator in (15) is computed by summation over the sets of
ordered indices {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}with only the last one giving
the nonzero determinant det(C{2,3,4},1:3) = −1.

For the denominator, we have I2 = {1, 2}, {1, 3}, {2, 3}, and the outer
summation is over the index sets {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. From
these, only those not containing the index 1 lead to non-zero summands (the first
three entries of the first row are all zero). Thus

∑
I2

∣∣∣λ2 det(CI2,{1,2})+ λ det(CI2,{1,3})+ det(CI2,{2,3})
∣∣∣
2

=
∣∣∣λ2 det(C{2,3},{1,2})+ λ det(C{2,3},{1,3})+ det(C{2,3},{2,3})

∣∣∣
2

+
∣∣∣λ2 det(C{2,4},{1,2})+ λ det(C{2,4},{1,3})+ det(C{2,4},{2,3})

∣∣∣
2

+
∣∣∣λ2 det(C{3,4},{1,2})+ λ det(C{3,4},{1,3})+ det(C{3,4},{2,3})

∣∣∣
2

= 1 + |λ|2 + |λ|4.

The square of the norm of the residual at iteration 2 is

‖r2‖2 = 1

1 + |λ|2 + |λ|4 .

– For k = 3 we have only one set of indices for I4 that is, {1, 2, 3, 4}. Therefore,

∑

I4

| det(CI4,1:4)|2 = | det(C)|2 = | det(I−)|2 = 1.
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For the denominator in (15) we have I3 = {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{2, 3, 4} = I3. It yields

∑
I3

|λ3 det(CI3,{1,2,3})+ λ2 det(CI3,{1,2,4})+ λ det(CI3,{1,3,4})
+ det(CI3,{2,3,4})|2 = | det(C{1,2,3},{2,3,4})|2 + |λ det(C{1,2,4},{1,3,4})|2
+ |λ2 det(C{1,3,4},{1,2,4})|2 + |λ3 det(C{2,3,4},{1,2,3})|2
= 1 + |λ|2 + |λ|4 + |λ|6

and the last non-zero residual norm satisfies

‖r3‖2 = 1

1 + |λ|2 + |λ|4 + |λ|6 .
We can easily obtain formulaes for a right-hand side with more nonzero entries. For
instance with a source term having the value (ν + h)/(−h2) also in the last inner
node n/(n + 1), we obtain a linear system with a near Jordan block and right-hand
side e1+en. The convergence curves for GMRES applied to the resulting system and
applied to the same system where the nonzero lower subdiagonal entries have been
replaced by zeros, are displayed in the right part of Fig. 1. They are very close. Note
that the graphs represent relative residual norms or, equivalently, absolute residual
norms for the systems where the right-hand side e1 + en was normalized through
division with

√
2. Using Theorem 3 we obtain the exact residual norms for the system

where the nonzero lower subdiagonal entries have been replaced by zeros (in this
case Y = C is the matrix (I− + e1e

T
1 ).)

– For k = 1, in comparison with the case b = en, the numerator in (15) con-
tains the additional nonzero determinant det(C{1,3},{1,2}) = b1 = 1. For the
denominator in (15) we have an additonal nonzero value for the index sets {1}:
|λ det(C{1},{1}) + det(C{1},{2})|2 = |λb1|2 = |λ|2. The squared first relative
residual norm is

‖r1‖2 = 1

1 + 2|λ|2 .
– For k = 2, in comparison with the case b = en, the numerator in (15) also con-

tains the nonzero determinant det(C{1,2,3},1:3) = −b1. For the denominator, the
outer summation is over the index sets {1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4} where {1, 2}, {1, 3} lead to the additional non-zero summands
|λb1|2 and |λ2b1|2, respectively. The square of the relative residual norm at
iteration 2 is

‖r2‖2 = 1

1 + 2|λ|2 + 2|λ|4 .

– For k = 3, the numerator in (15) is
∑

I4
| det(CI4,1:4)|2 = | det(C)|2 = | det(I−+

e1e
T
1 )|2 = 1. For the denominator, the outer summand for the index set {1, 2, 3}

takes the value |λ3b1+1|2 and the remaining summands are unchanged. The last
non-zero relative residual norm satisfies

‖r3‖2 = 1

2(|λ3 + 1|2 + |λ|2 + |λ|4 + |λ|6) .
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We see that for these right-hand sides we would have good convergence if the
modulus of λ is large, as one would expect. In other cases, however, it is in general
not true that an eigenvalue close to zero hampers convergence for matrices with one
Jordan block. If λ → 0, then for a given k both the numerator and denominator
in (15) go to values independent from λ. The speed of convergence is then fully
determined by the entries of X and X−1b and need not be slow. In case it is not slow,
our formulae give an explicit explanation for the limited role of the eigenvalue, i.e. of
the theory in the series of papers [1, 17, 18].

4 GMRES for non-diagonalizable matrices

The generalization of Section 3 to multiple Jordan blocks is straightforward. Let A
have the Jordan form XJX−1 and let it have m (m ≤ n) distinct eigenvalues denoted
as λ1, λ2, . . . , λm. We assume A is non-derogatory because we consider GMRES
processes that do not terminate before iteration n. Let the size of the Jordan block Ji
corresponding to λi be ni , i.e.

∑m
i=1 ni = n, and let us denote by si , i = 1, . . . , m

the index of the row where the block Ji starts, to which we add sm+1 = n + 1. The
block Ji goes from row si to row si+1−1. To avoid early termination, we also assume
that the right-hand side b is a vector of unit norm such that the entries on positions
si+1 − 1, 1 ≤ i ≤ m, of c = X−1b are nonzero.

As before, we have

M = K∗K = (
c J c · · · J n−1c

)∗
X∗X

(
c J c · · · J n−1c

)
.

For multiple Jordan blocks, the decomposition (13) can be modified as follows. If we
define the rows si to si+1 − 1 of E corresponding to the eigenvalue λi as

Esi :si+1−1,: ≡

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 λi λ2
i · · · λ

ni−1
i · · · λn−1

i

0 1 2λi · · ·
(
ni − 1

1

)
λ
ni−2
i · · ·

(
n− 1

1

)
λn−2
i

0 0 1 · · ·
(
ni − 1

2

)
λ
ni−3
i · · ·

(
n− 2

2

)
λn−3
i

...
...

...
. . .

...
...

...

0 0 0 · · · 1 · · ·
(
n− 1
ni − 1

)
λ
n−ni
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and the corresponding diagonal block of C as

Csi :si+1−1,si :si+1−1 ≡

⎛

⎜⎜⎜⎜⎜
⎝

csi csi+1 . . . . . . csi+1−1
csi+1 csi+2 . . . csi+1−1
csi+2 . . . csi+1−1
... csi+1−1

csi+1−1

⎞

⎟⎟⎟⎟⎟
⎠
,

then
(
c J c · · · J n−1c

) = CE.
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The matrix C is block diagonal with Hänkel anti-upper triangular diagonal blocks of
order ni . We again give an example to illustrate.

Consider a matrix A = XJX−1 of order 5 with J defined as

J =

⎛

⎜⎜⎜⎜
⎝

λ 1
λ 1
λ

μ 1
μ

⎞

⎟⎟⎟⎟
⎠
, (17)

where λ and μ (λ 
= μ) are given complex numbers different from 0. Let c = X−1b,
where b is the right-hand side, and let c have no zero entries. Then the Krylov matrix(
c J c · · · J n−1c

)
is

⎛

⎜⎜⎜⎜
⎝

c1 λc1 + c2 λ2c1 + 2λc2 + c3 λ3c1 + 3λ2c2 + 3λc3 λ4c1 + 4λ3c2 + 6λ2c3

c2 λc2 + c3 λ2c2 + 2λc3 λ3c2 + 3λ2c3 λ4c2 + 4λ3c3

c3 λc3 λ2c3 λ3c3 λ4c3

c4 μc4 + c5 μ2c4 + 2μc5 μ3c4 + 3μ2c5 μ4c4 + 4μ3c5

c5 μc5 μ2c5 μ3c5 μ4c5

⎞

⎟⎟⎟⎟
⎠

and can be factorized as

(
c J c · · · J n−1c

) =

⎛

⎜⎜⎜⎜
⎝

c1 c2 c3 0 0
c2 c3 0 0 0
c3 0 0 0 0
0 0 0 c4 c5
0 0 0 c5 0

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

1 λ λ2 λ3 λ4

0 1 2λ 3λ2 4λ3

0 0 1 3λ 6λ2

1 μ μ2 μ3 μ4

0 1 2μ 3μ2 4μ3

⎞

⎟⎟⎟⎟
⎠
,

with a block diagonal matrix C.
Let, as before,

Y ≡ XC.

Then if the (k + 1)st leading principal submatrix Mk+1 of M is written as

Mk+1 = (
c J c · · · J kc

)∗
X∗X

(
c J c · · · J kc

)

= E∗
:,1:k+1C

∗X∗XCE:,1:k+1 = (YE:,1:k+1)
∗YE:,1:k+1,

we immediately obtain, again by using the proof technique of Theorem 1, the formula

‖rk‖2 =
∑

Ik+1
|∑Jk+1

det(YIk+1,Jk+1) det(EJk+1,1:k+1)|2
∑

Ik

∣∣∣
∑

Jk
det(YIk,Jk ) det(EJk,2:k+1)

∣∣∣
2

. (18)

The formula is the same as the one presented in Corollary 1, but of course, Y and E

are here generalizations of the Y and E in Corollary 1. E represents all the influence
of eigenvalues and Y all the influence of eigenvectors, principal vectors and right-
hand side. The remarks in Sections 2 and 4 on the role of κ(X) and of X−1b apply to
this section, too.

A difference is that the interplay between the distinct eigenvalues will play a role.
The determinants of EJk+1,1:k+1 and EJk,2:k+1 may contain eigenvalue differences.
For example, so do most determinants of E involved in forming ‖r3‖2 for the matrix
J in (17), see Tables 1 and 2. All determinants in Table 1 have μ−λ as a factor. Hence
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Table 1 Determinants of
EJ4,1:4 for the numerator in (18)
with k = 3, for the matrix J in
(17)

Indices in J4 value

{1,2,3,4} (μ− λ)3

{1,2,3,5} 3(μ− λ)2

{1,2,4,5} (μ− λ)4

{1,3,4,5} −2(μ− λ)3

{2,3,4,5} 3(μ− λ)2

they may be small if μ is close to λ. This suggests that eigenvalue clusters acceler-
ate convergence whereas outliers cause delay, which is often true (see, e.g., [4]). If
μ = λ, corresponding to two Jordan blocks with the same eigenvalue, we have early
termination, ‖r3‖ = 0 (in exact arithmetic).

We now investigate whether with non-diagonalizable matrices, GMRES residual
norms are slightly less dependent on eigenvalues than with diagonalizable matrices
in the sense that not all summands in (18) depend upon eigenvalues. We have seen
with Theorem 3 that this holds for matrices with a single Jordan block.

For simplicity, we first we address the case k = 1. Let us consider the determinants
in the numerator of (18), i.e. the determinants of EJ2,{1,2} for the set of indices J2.
There are n!/(2(n − 2)!) of them. But the rows that are involved are only of three
different types whatever the dimension n is. The first type that we can denote as
t1(λi) is t1(λi) =

(
1 λi

)
, for an eigenvalue λi . The two other types are t2 = (

0 1
)

and t3 = (
0 0

)
. The two last types may or may not exist depending on the values of

ni, i = 1, . . . , m. We have only three kinds of non-zero determinants
∣∣∣∣
1 λi
1 λj

∣∣∣∣ = λj − λi,

∣∣∣∣
1 λi
0 1

∣∣∣∣ = 1,

∣∣∣∣
0 1
1 λi

∣∣∣∣ = −1. (19)

Then in the terms
∣∣∣∣∣∣

∑

J2

det(YI2,J2) det(EJ2,1:2)

∣∣∣∣∣∣

2

,

of the numerator of (18), the sum runs over the set of indices such that det(EJ2,1:2) 
=
0 that is, such that we have one of the three kinds of determinant listed above. With the

Table 2 Determinants of EJ3,2:4 for the denominator in (18) with k = 3, for the matrix J in (17)

Indices in J3 value Indices in J3 value

{1,2,3} λ3 {1,4,5} λμ2(μ− λ)2

{1,2,4} λ2μ(μ− λ)2 {2,3,4} μ[(μ− λ)2 + λ(2λ− μ)]
{1,2,5} λ2(μ− λ)(3μ− λ) {2,3,5} 3(μ− λ)2

{1,3,4} λμ(μ− λ)(μ− 2λ) {2,4,5} μ2(μ− λ)(μ− 3λ)

{1,3,5} λ[2(μ − λ)2 + μ(μ− 2λ)] {3,4,5} μ2(3λ− 2μ)
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second and third kind there is no dependence on eigenvalues. For the denominator of
(18) we can proceed similarly. Thus, depending on the sizes of the individual Jordan
blocks, a number of summands is independent from the spectrum.

For k > 1 we have the following straightforward result.

Proposition 3 If k < maxi(ni), then in formula (18) there are determinants of both
EJk+1,1:k+1 and EJk,2:k+1 that are equal to 1.

Proof The result is obvious since some of the submatrices are upper triangular with
ones on the diagonal.

It is not difficult to see that when an eigenvalue approaches zero, this gives
determinants tending to be independent on that eigenvalue. Similarly to the previ-
ous section, the influence of the corresponding Jordan block on GMRES is then
fully determined by the right-hand side and eigenvectors and/or principal vectors
and consequently, eigenvalues close to the origin do not seem to necessarily hamper
convergence.

5 Conclusion

We presented the solution of the minimization problem (1) for GMRES residual
norms generated with general diagonalizable and with non-diagonalizable matrices.
It is explicitly formulated in a closed form, unlike the norms of the GMRES residuals
in GMRES computations. The solution is not simple and has no immediate practi-
cal application but it completely describes the mechanism of forming the residual
norm from eigenvalues, eigenvectors or principal vectors and the right-hand side. It
shows in what (complicated) way eigenvalues influence GMRES convergence. Other
objects than eigenvalues may lead to more elegant formulaes, but if we wish to know
the exact influence of eigenvalues, the presented closed-form expressions give the
answer. In the diagonalizable case, it is eigenvalue products and products of eigen-
value differences that influence the residual norm. In the non-diagonalizable case,
more general polynomials in eigenvalues play a role in forming the residual norm
and small eigenvalues are less prone to hamper convergence. Eigenvectors (princi-
pal vectors) influence residual norms in two ways. Determinants of the eigenvector
(principal vector) matrix play the most important role. The inverse of this matrix con-
tributes only in the form of its product with the right-hand side. As for the right-hand
side, it contributes only through its components in the eigenvector (principal vec-
tor) basis. The degree to which GMRES is governed by eigenvalues is not so much
determined by the departure from diagonalizability of the system matrix, but in gen-
eral more by the departure from orthogonality of the eigenvector (principal vector)
matrix X. With a small value of κ(X), GMRES is governed by the spectrum even
if the system matrix is defective; with a larger value of κ(X) GMRES may or may
not be governed by the spectrum, depending on X, X−1b and the interplay between
them.

Future work includes extension to other Krylov methods.
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25. Liesen, J., Rozložnı́k, M., Strakoš, Z.: Least squares residuals and minimal residual methods. SIAM

J. Sci. Comput. 23(5), 1503–1525 (2002)



Numer Algor
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