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Energetic versus maximally-dissipative local solutions

of a quasi-static rate-independent mixed-mode

delamination model

Roman Vodička1, Vladislav Mantič2, Tomáš Roub́ıček3,4

Abstract

A quasi-static rate-independent model of delamination of linearly elastic bodies at small
strains, sensitive to mode of delamination, using interfacial damage and interfacial plastic-
ity as two internal parameters is further developed with the aim to extract representations
typically employed in engineering interface-models, i.e. fracture envelope and fracture energy
dependence on the mode mixity, which are suitable for the model fitting to experimental data.
Moreover, two concepts of solutions are implemented: globally stable energy-conserving so-
lutions or stress-driven maximally-dissipative local solutions, arising by the fully implicit or
by a semi-implicit time-stepping procedures, respectively, both yielding numerically stable
and convergent time-discretizations. Spatial discretization is performed by the symmetric
Galerkin boundary-element method (SGBEM). Alternating quadratic programming is imple-
mented to cope with, respectively, global or local, energy-minimizations in the computation
of the time-discretized solutions. Sample 2D numerical examples document applicability of
the model as well as efficiency of the SGBEM numerical implementation and facilitate com-
parison of the two mentioned solution concepts.

Keywords: adhesive contact, debonding, interface fracture, interface damage, interface plas-
ticity, imperfect interface, weak interface, symmetric Galerkin BEM, alternating quadratic
programming, local-solution concepts.

1 Introduction

Number of applications of layered and laminated structures is increasing recently, an example
being applications of composite materials extensively used in aircraft industry nowadays, where
powerful numerical methods to characterize damage initiation and propagation are required,
e.g. [2]. In particular, the problem of interface cracks initiation and propagation is fundamental
in the analysis of these structures. Therefore, development and investigation of relevant mathe-
matical models of interface damage and fracture seems to be very important. In many situations,
the interface between bulk subdomains, usually represented by a relatively thin adhesive layer,
can be partially or completely damaged. We model this layer as infinitesimally thin, speaking
thus about a delaminating interface. This situation is usually referred to as delamination –
debonding of adjacent material bodies.

There are several possibilities to describe the interface damage by energy-based principles.
The present model follows Frémond’s approach [19] and defines a scalar damage (or delamina-
tion) variable along the interface, cf. also [20, 25, 44] and references therein. Along with this
variable, an energy formulation governing the adhesive damage until it breaks is proposed. The
proposed energy functionals include not only the energy stored in the adjacent bulk subdomains
and in the adhesive interface but also the dissipated energy. The inelastic delamination pro-
cess can be very fast comparing to the typical rate of outer loading, and then this dissipation
(in particular also in the aforementioned references) can and will be described as a reasonable
approximation of a rate-independent process.
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From the physical point of view, the dissipation of energy at an interface can be of a different
nature. The first one, given by the damage of the adhesive interface during the loading process
applied, has already been mentioned above. However, this rather simple formulation does not
include all the physical phenomena that can take place at an interface. During the damage
process in this (infinitesimally) thin adhesive layer, the growing cracks can be loaded in pure
opening or shear mode (Mode I or II, respectively), or in mixed mode. In order to provide a
better reflection of the experimental results, another interface variable is included in the present
model to reflect an increase of the fracture toughness in the Mode II. This variable represents
plastic tangential slip along the interface describing some plastification in the adhesive before
the debonding of the adjacent bulk subdomains [44, 45, 38, 47]. Related models including
plasticity at the interface were developed and studied, sometimes also experimentally verified,
in [16, 21, 37, 22, 50, 55, 32, 27, 63]. Another dissipative process which can take place at
the interface is friction. Here, after delamination, however, only simple frictionless contact is
considered for the sake of simplicity; see [1, 54] for interface models including friction.

We consider small strains and isotropic, piecewise homogeneous and linearly responding ma-
terial and neglect in particular inertia, viscosity, and any temperature-dependent effects. There-
fore, in particular, the elastic state of the adjacent bulk subdomains is governed by systems
of linear partial differential equations and can be analyzed by any suitable numerical tech-
nique, typically finite- or also boundary-element methods (FEM or BEM, respectively). Here,
the symmetric Galerkin boundary element method (SGBEM) [7, 49, 52, 57] is applied to the
above introduced delamination (or debonding) problems. SGBEM enables a natural derivation
by means of an energy-based formulation [6, 7, 61, 62] which is its principal advantage in the
present approach to characterize the damage and failure of an adhesive interface.

The numerical treatment of the solution process includes as a crucial part an algorithm for
finding the global or (some specific) local minima of incremental problems. This kind of damage-
type problems ultimately leads to a generally non-convex mathematical programming. In the
present implementation, an alternating minimization algorithm is designed to split the solution
to a series of quadratic-programming calculations. The algorithms for this kind of solutions can
effectively be based on conjugate gradient schemes [17] which were successfully implemented in
the present work.

The plan of this paper is the following: In Section 2, we introduce the model involving
interface damage and plasticity and make its certain fitting to conventional engineering model.
A computer implementation of the two solution concepts related to two numerical stable ways
of time discretization for this model is presented in Section 3. Eventually, in Section 4, the
proposed approaches are also tested numerically in two examples to demonstrate the behavior
of the model and to assess its suitability in a particular physical situation.

2 A model involving interface plasticity and damage

For the sake of simplicity, only 2D problems will be considered in the present work. Let a body
be defined by a bounded planar domain Ω⊂R

2 with boundary ∂Ω=Γ .
The domain Ω consists of several subdomains Ωη. For the sake of simplicity, only two non-

overlapping subdomains ΩA and ΩB with Lipschitz boundaries ΓA=∂ΩA and Γ B=∂ΩB will be
considered hereinafter, cf. Figure 1. Let nη denote the unit outward normal vector defined a.e.
at Γ η and let sη denote the unit tangential anticlockwise oriented vector.
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Figure 1 Model of debonding of two subdomains.
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The common part of ΓA and Γ B, called interface, is denoted as ΓC=Γ
A ∩ Γ B. Dirichlet

boundary conditions defined on a part of the outer boundary represent a hard-device loading,
prescribing displacements u=w at ΓA

u and Γ B
u . Homogenous Neumann boundary conditions are

defined on the remaining traction free part of the outer boundaries, denoted as ΓA
t and Γ B

t ,
prescribing tractions t=0. Thus, we consider Γ η=Γ

η
u∪Γ

η
t∪ΓC (overline denoting closure of a

set), where η=A,B, with Γ
η
u∩ΓC=∅, and obviously Γ ηu∩Γ ηt =Γ ηt ∩ΓC=∅.

2.1 Stored and dissipated energy functionals governing the model

The interface ΓC is considered as an infinitesimally thin adhesive layer represented by a contin-
uous spring distribution with normal and tangential elastic stiffnesses kn and ks, respectively.
It is considered that the subdomains can debond along the interface ΓC, this debonding process
being considered as rate-independent. During this process the material of the adhesive layer is
damaged. This is modelled by a scalar damage variable ζ which varies at each interface point
between one and zero: value one and zero, respectively, corresponding to undamaged and fully
damaged adhesive at a particular point. In addition to this variable, a plastic tangential slip
variable π is considered at the interface which allows for making a difference between fracture
mode I and II in the following sense: some additional dissipated energy is associated to inter-
face fracture in mode II in agreement with experimental observations of interface crack growth,
where the energy dissipated in mode II is significantly greater than that dissipated in mode I
and also correspondingly the associated plastic zones in the adjacent bulk are larger in mode
II than in mode I. It is expected that the interface plastic behaviour considered in the present
work represents a useful and practical approximation of the plastic phenomena associated to
relatively narrow plastic zones in the bulk located in the interface vicinity. Let us remark that
the idea of the interfacial plasticity can be used in adhesive contact modelling also for different
purposes than mode-sensitivity, namely fatigue, cf. [51].

Let us consider the energy stored [25, 48, 44] in the structure (given by ΩA, ΩB and ΓC) obey-
ing the aforementioned type of interface damage and kinematic-hardening-plasticity model [45],
with the plastic slope kH, as

E(t,u, ζ, π) =





∫

ΓA

1

2
uA · tA(uA)dS +

∫

ΓB

1

2
uB · tB(uB)dS

+

∫

ΓC

1

2

[
ζ
(
kn [u]

2
n+ks ([u]s−π)2

)

+kHπ
2+k0|∇sζ|2+k1|∇sπ|2

]
dS if uη=wη(t) on Γ ηu , and

if [u]n≥0 & 0≤ζ≤1 on ΓC,

+∞, elsewhere.

(1)

The first two integrals, representing the elastic strain energy in the bulk (adjacent subdomains
Ωη), are expressed in their boundary form (taking into account that tη=tη(uη)), which is ad-
vantageous when the numerical technique for solving elastic problems in Ωη is also boundary
based. The first condition on ΓC is the Signorini condition of the unilateral contact, where the
relative normal displacement [u]n=(uB−uA) ·nA is introduced. Similarly, the relative tangential
displacement (or slip) [u]

s
is defined [u]s=(uB−uA) ·sA.

The gradient terms are added to the functional in a similar way as it is usual in the gradient
theory of damage or plasticity, see [20]. It includes some nonlocal effect to the internal parameters
and facilitates the mathematical treatment of the model [44]. The parameters k0 and k1 are
usually assumed small, determining a certain length-scale of possible oscillation of ζ and π,
respectively, along ΓC. Note that, in the present 2D case, the surface gradients ∇sζ and ∇sπ
reduce to the tangential derivatives with respect to ΓC.

The dissipation potential for a rate-independent process can be represented by a degree-1
homogeneous functional [35]. Considering both processes of the interface damage and of the
plastic slip, the interface dissipation potential is given as follows:

R(
.

ζ,
.

π) =





∫

ΓC

(
Gd|

.

ζ|+ σyield|
.

π|
)
dS if

.
ζ ≤ 0 on ΓC,

+∞, elsewhere.
(2)
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The rates of the damage and the plastic slip are denoted by
.
ζ and

.
π, respectively; e.g.

.
ζ=∂ζ

∂t . The
parameter Gd is the (minimum) interface fracture energy (sometimes called activation energy)
required to a complete damage (debond) of a unit of area of the interface following the linear
elastic-purely brittle part of the interface constitutive law. In particular, Gd represents the
interface fracture energy in Mode I. Moreover, σyield is the interface yield (shear) stress for
initiation of the plastic slip along the interface.

The rate-independent evolution is governed by the initial-value problem for the system of
nonlinear variational inclusions

∂uE(t,u, ζ, π) ∋ 0, u(0) = u0, (3a)

∂ .
ζ
R(
.

ζ) + ∂ζE(t,u, ζ, π) ∋ 0, ζ(0) = ζ0, (3b)

∂ .πR(
.

π) + ∂πE(t,u, ζ, π) ∋ 0, π(0) = π0, (3c)

where the symbol ∂ refers to partial subdifferential relying on convexity of pertinent functionals
with respect to each particular variable, see [44], and where we already reflected that ∂ .πR
is independent of

.
ζ and that ∂ .

ζ
R is independent of

.
π. Note that, in fact, u0 is here uniquely

determined by ζ0 and π0 through ∂uE(0,u0, ζ0, π0)∋0. Note also that here all involved functionals
are indeed non-smooth due to the absolute values and unidirectional constraint in (2) or Signorini
unilateral and the ζ- constraints in (1). Recall that the subdifferential ∂F(w) of an ‘energy’
functional F(w) at w is a set of ‘forces’ (dual quantities) F, such that for the ‘work’ 〈F,w〉 the
inequality holds 〈F,v−w〉 + F(w) ≤ F(v) for any appropriate v. Thus, vanishing F provides
the first-order optimality condition for the minimization of F .

It should be stressed that the definition of local-solution concept to the initial-value prob-
lem (3) introduced in Section 2.3 below involves the time derivative of stored energy ∂

∂tE in (24a)
which is hardly defined for time-dependent boundary condition in (1). Hence, using an addi-
tive shift of displacement u by an appropriate extension of w to obtain homogeneous boundary
conditions as described e. g. in [44, 45] is required to give a sense to ∂

∂tE for a transformed E ;
we omit details about this standard transformation. Here, if ΓC and Γ ηu are far from each other,
one can alternatively benefit from usage of BEM in Section 3.3 below to reformulate (24) only
in terms of values of u on ΓC and thus to eliminate simply the time-dependent constraints on
Γ ηu ; again we omit details.

2.2 Interface constitutive law – engineering insight

The present interface model can be described in terms of the energy release rate (ERR). In the
linear elastic interface model [12, 14, 28], the ERR at the crack tip can be shown to be defined
as the elastic strain energy per unit area stored in the ‘spring’ located at the crack-tip prior
to failure. Although, the following derivation is carried out having in mind this ‘spring’ at the
crack tip, in fact they are valid for any other undamaged ‘spring’.

An engineering insight into the present interface constitutive law can be summarized by the
two conditions which activate two inelastic processes included in the formulation. The first one
is the activation criterion for initiation of debonding (interface damage) which can be derived
from the condition (3b) considering only the crack-tip spring. It reads

1

2

(
knu

2
n
+ ks (us−π)2

)
≤ Gd + divs

(
k0∇sζ

)
, (4a)

where un= [u]n≥0 and us= [u]s represent the elongation of the spring in the normal and tan-
gential directions, respectively. The last term effectively modifies the threshold Gd according
the variation of the damage profile in a vicinity of a current point, realizing thus nonlocal
hardening/weakening-like effects. In fact, the form of this term in (4a) holds only on a flat ΓC

while on a curved boundary a more complicated form arises from (3b) with (1). Of course, (3b)
itself represents the complementarity problems which, together with (4a), involves still

.

ζ ≤ 0 and
.

ζ
(1
2

(
knu

2
n
+ ks (us−π)2

)
−Gd − divs

(
k0∇sζ

))
= 0. (4b)

The complementarity problem (4) is to be valid on ΓC. Actually, we wrote it for simplicity
for ζ > 0 while, in general, it still should involve the multiplier to the constraint ζ ≥ 0 while
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the constraint ζ ≤ 1 in (1) can be assumed nonactive due to the constraint
.
ζ ≤ 0 in (2) if the

initial condition satisfies it, i.e. if ζ0 ≤ 1.
The evolution of the interface plastic slip π is analogous with the evolution of plastic strain

in the conventional plasticity. The condition for evolution of plastic slip can be derived from (3c)
which provides the following inequality for the crack-tip spring

∣∣ζks
(
us−π

)
− kHπ + divs

(
k1∇sπ

)∣∣ ≤ σyield (5a)

assuming again that ΓC is flat. In fact, the classical formulation of (3c) provides, likewise in the
case of (4), the complementarity problem which completes (5a) still by

∀ |σ| ≤ σyield :
.

π · (σ − ζks
(
us−π

)
− kHπ + divs

(
k1∇sπ

))
≤ 0. (5b)

Thus, due to (5a), π starts or restarts evolving when the tangential driving stress reaches
the yield threshold σyield. Hence, in positive direction of the tangential displacement we have

ζks
(
us−π

)
− kHπ = σyield − divs

(
k1∇sπ

)
. (6)

Disregarding the influence of the gradient terms for more lucid explanation of the essence of
functioning of the model, more detailed analysis of the interface constitutive law, in particular
schematic traction-displacement plots, can be found in [45], here we only mention one important
relation of the material characteristics for the model to produce the desired effects, namely:

1

2

√
2ksGd < σyield ≤

√
2ksGd. (7)

The upper bound of the yield stress is necessary for making possible to initiate plastic slip
before the total interface damage. The lower bound is required to avoid plastic slip evolution,
governed by (5a), after debonding (ζ=0). Actually, satisfaction of inequalities in (7) is not
strictly necessary for the above model to work, c.f. [45]. If the right-hand side inequality is
not fulfilled, i.e. σyield is too high with respect to Gd, then, as could be expected, the model
response will be brittle and insensitive to fracture mode mixity and no plastic slip will appear
before the interface breakage. If the left-hand-side inequality in (7) is not fulfilled, i.e. the
maximum shear stress is larger than 2σyield, then, for a back stress kH|π| > σyield, a portion of

the hardening energy, specifically 1
2kH

(
π2 − π2∗

)
(denoting π∗ = σyield/kH), will be released at

complete unloading. In such a case, the expression of the hardening energy 1
2kHπ

2 in (1) should

be replaced by a new expression 1
2kH

(
ζ
〈
π2 − π2∗

〉
+
−

〈
π2 − π2∗

〉
− + π2∗

)
, where 〈·〉± denotes

the positive and negative part of a real number, in order to account for the released part of
hardening energy. Note that, if the left-hand-side inequality in (7) is fulfilled, which is assumed
in the present work for the sake of simplicity, then π does not vary at unloading and no portion
of the hardening energy is released at complete unloading, which explains why its expression
in (1) is not multiplied by ζ.

Hereinafter, some aspects of this interface constitutive law not discussed in [45] will be
presented.

In what follows, elongation and energy description of a particular spring rupture are sum-
marized considering fracture mode mixity. The ERR of a mixed-mode crack is thus defined
depending on the existence of plastic slip in the interface as

G(un, us, π) =
1

2
knu

2
n
+

1

2
ks (us−π)2 + σyieldπ +

1

2
kHπ

2, (8)

which simplifies for π=0 to the well-known expression G(un, us)=
1
2knu

2
n
+1

2ksu
2
s
. In uploading,

π=0 if |us|≤σyield
ks

. Eliminating the plastic slip π which can be expressed in the simple kinematic-

hardening model as, assuming us≥σyield
ks

,

π =
ks

ks+kH

(
us −

σyield
ks

)
, (9)
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the substitution leads to the relation

G(un, us) =
1

2
knu

2
n
+

1

2

kskH

ks+kH

(
us +

σyield
kH

)2

−
σ2yield
2kH

, (10)

when some interface plasticity evolves. Alternatively, the relation can be expressed in terms of
pertinent stresses σn=knun≥0 and σs=ks(us−π) as

G(σn, σs) =
σ2
n

2kn
+

1

2

(ks+kH)σ
2
s

kskH

−
σ2yield
2kH

. (11)

As follows from (1), (2) and (3b) the relation of the interface breakage is unique, when
written in terms of stresses, independently of the presence of interface plasticity, namely:

σ2
n

2kn
+
σ2
s

2ks
= Gd. (12)

Nevertheless, it should be noted that at the interface breakage without or with interface plas-
ticity, it holds

1

2
knu

2
n
+

1

2
ksu

2
s
= Gd, or

1

2
knu

2
n
+

1

2
ks

(
kH

ks+kH

)2(
us +

σyield
kH

)2

= Gd, (13)

respectively. Finally, ERR G pertinent to either mode of crack (G=GI+GII) can be considered
as:

GI =
1

2
knu

2
n
=

σ2
n

2kn
, (14)

and then, without or with interface plasticity,

GII =
1

2
ksu

2
s
=

σ2
s

2ks
, resp. GII =

1

2

kskH

ks+kH

(
us+

σyield
kH

)2
−
σ2yield
2kH

=
1

2

(ks+kH)σ
2
s

kskH

−
σ2yield
2kH

, (15)

the latter depending on the presence of the interface plasticity. The relations of the interface
breakage, without or with interface plasticity, are then

GI +GII = Gd, resp. GI +
kH

ks+kH

GII +
σ2yield

2(ks+kH)
= Gd. (16)

The equations in (13) define the relation between the normal and tangential displacements
at the crack tip leading to the crack growth. This relation can be visualized as an interface
fracture envelope. Similarly, the fracture envelope can be obtained in terms of stresses from the
relation (12) and in terms of ERR from (16).

To this end, let us first parameterize the curve of pairs (un, us) corresponding to the crack
growth. Before the initiation of interface plasticity (π=0) and for no previous damage (ζ=1),
according to (13)1, the parameterization reads as

un =

√
2Gd

kn
cosϕ, us =

√
2Gd

ks
sinϕ, for 0 ≤ ϕ ≤ arcsin

σyield√
2ksGd

, (17a)

which is a part of ellipse with the center at the origin. Similarly, after an interface plasticity
initiation the relation (13)2 provides another part of the parameterization

un =

√
2Gd

kn
cosϕ, us =

√
2Gd

ks

ks+kH

kH

sinϕ− σyield
kH

, for arcsin
σyield√
2ksGd

≤ϕ≤ π

2
. (17b)

Though, this corresponds to a parameterization of a different ellipse, whose center is at the
point (0,−σyield

kH
), the parameter ϕ continuously switches from a state without plasticity to a

state with an interface plastic slip.
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Let us now parameterize the curve of pairs (σn, σt) corresponding to the interface breakage.
As long as it is a part of an ellipse, the parameterization reads

σn =
√

2knGd cosϕ, σs =
√

2ksGd sinϕ. (18)

In fact, the angle ϕ in the parameterizations (17) and in the relation (18) is the same.
Finally, the relations (16) provide the curve of pairs (GI, GII) as a broken line. All three

graphs for a particular choice of material parameters, used in the numerical example in Section 4,
are shown in Figure 2(a).

The fracture mode-mixity angle of an interface crack can generally be introduced in three
ways, see [59], based on the crack-tip displacements, crack-tip stresses or ERR components,
respectively,

ψu = arctan
us
un
, ψσ = arctan

σs
σn
, ψG = arctan

√
GII

GI

. (19)

It is assumed that a crack propagates if the ERR G reaches the fracture energy GC, i.e.
G=GC(ψ), ψ denoting one of the mode-mixity angles in (19). It means that if crack grows
before interface plasticity appears, Gd=GC. However, in presence of some interface plasticity
these two quantities separate. Let us try to find the relation GC=GC(ψ).

Both relations GC=GC(ψu) and GC=GC(ψσ), for the case of interface plasticity, can be
obtained from G=GI+GII in (12) and the expression (15)2 substituting (18), because ϕ in rela-
tions (17) and (18) is the same. This renders

σ2
n

2kn
+

1

2

(ks+kH)σ
2
s

kskH

−
σ2yield
2kH

= Gd cos
2 ϕ+

(ks+kH)Gd sin
2 ϕ

kH

−
σ2yield
2kH

= Gd

(
1 +

ks
kH

sin2 ϕ
)
−
σ2yield
2kH

= GC(ϕ). (20)

The relation ϕ=ϕ(ψu) can be obtained from

tanψu =

√
kn
ks

ks+kH

kH

tanϕ−
√

kn
2Gd

σyield
kH

1

cosϕ
(21)

which can be substituted into (20). The final relation is, however, somewhat cumbersome pre-
venting from writing explicitly an expression of GC(ψu). Nevertheless, the graph of GC=GC(ψu)
can easily be plotted, see Figure 2(b).

The relation tanϕ= tanϕ(ψσ)=
√

kn
ks

tan(ψσ), obtained by comparing (19)2 and (18), can be

easily substituted into (20). The resulting relation GC=GC(ψσ) is

Gd

(
1 +

ks
kH

kH tan2 ψσ
ks+kH tan2 ψσ

)
−
σ2yield
2kH

= GC(ψσ). (22)

Finally, deducing the corresponding expression related to ERR is also straightforward. It is
sufficient to express both GI and GII from the system (16)2 and (19)3

GI +GII = GI

(
1 + tan2 ψG

)
=

2Gd(ks+kH)− σ2yield
2(ks+kH+kH tan2 ψG)

(
1 + tan2 ψG

)
= GC(ψG), (23)

which is valid for arcsin
σyield√
2ksGd

≤ψG≤ π
2 , whereas GC(ψG) = Gd for smaller ψG. Dependence of

the fracture energy GC on all the types of mode-mixity angles are plotted in Figure 2(b). A nice
qualitative agreement with experimental results in [3, 18, 24, 26, 29, 58], see also [30] and further
references therein, can be observed. Actually, the above fracture envelopes and fracture energy
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dependence on mode mixity can be used in practical fitting of the present model to experimental
data for a particular interface.
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Figure 2 (a) Dimensionless interface fracture envelopes in terms of relative
displacements (two ellipses), stresses (one ellipse) or ERR com-
ponents (a broken line) and (b) fracture energy GC as a function
of fracture mode-mixity angles, for Gd=10J/m2, kn=18TPa/m,
σyield=0.79

√
ksGd, ks=kn/4, kH=ks/9.

2.3 Two local-solution concepts: energy (ES) vs. stress (MDLS)

Relying on homogeneity of degree 1 of the functional R, both with respect to
.
ζ and

.
π, the “weak

formulation” of the initial-value problem (3) was essentially devised just for the delamination-
type problems in [56, 60], cf. also [33], by the following definition: the triple (u, ζ, π) is called a
local solution to (3) if the following four properties are satisfied:

(i) Energy imbalance: For all 0≤ t1≤ t2≤T :

E(t2,u(t2), ζ(t2), π(t2)) + DissR(ζ, π; [t1, t2])

≤
∫ t2

t1

∂

∂t
E(t,u(t), ζ(t), π(t))dt+ E(t1,u(t1), ζ(t1), π(t1)) (24a)

with DissR(ζ, π; [t1, t2])= sup
t1≤s0<s1<···<sN−1<sN≤t2

N∑

j=1

R
(
ζ(sj)−ζ(sj−1), π(sj)−π(sj−1)

)
,

(ii) Variation inequality for displacement u: For a.a. t ∈ [0, T ]:

∀ ũ : E(t,u(t), ζ(t), π(t)) ≤ E(t, ũ, ζ(t), π(t)), (24b)

(iii) Semi-stability for ζ and π: For a.a. t ∈ [0, T ]:

∀ ζ̃ : E(t,u(t), ζ(t), π(t)) ≤ E(t,u(t), ζ̃ , π(t)) +R(ζ̃−ζ(t), 0), (24c)

∀ π̃ : E(t,u(t), ζ(t), π(t)) ≤ E(t,u(t), ζ(t), π̃) +R(0, π̃−π(t)), (24d)

(iv) Initial conditions
u(0) = u0, ζ(0) = ζ0, π(0) = π0. (24e)

Actually, here we combined the original local-solution concept [56, 60] with the concept of
semi-stability [40]. From the viewpoint of applications, it is important that the energy imbalance
(24a) is formulated as an inequality, which allows for modelling ruptures that intentionally do
not jump unphysically early (or in unphysically less dissipative modes) and inevitably do not
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conserve energy, as demonstrated in particular in this paper. The possible energy gap thus
arising can be understood due to neglected viscous dissipative mechanisms, cf. also [46], or
neglected elastic waves, whereas in a quasistatic and rate-independent problem formulation it
can be associated to a snap-back instability originating a crack jump, cf. [11, 31].

It can be shown that, under mild qualification assumptions on the problem (satisfied in
our case), the local solutions are just conventional weak (but not strong!) solutions to (3), cf.
[43, Prop. 2.3]. If E(t, ·) is convex and quadratic or “nearly” quadratic, the local solution is
unique. Yet, in nonconvex case (as also here), local solutions are rather a general and rather
broad framework. Various refined concepts have been devised, ranging from energetic solutions
(which conserves energy) to approximable, vanishing-viscosity, BV-, or maximally-dissipative
solutions, cf. in particular [36, 43] and also [33, 34] for a survey of even more concepts and
a comparison. In our adhesive-contact context, there are essentially two extreme cases to be
considered which, roughly speaking, delaminate either as early or as late as possible, being
governed either by energy or by stress, and being approximable either by fully implicit or by a
specific semi-implicit time discretizations, respectively.

The former, energetic solution (ES) concept requires, in addition to (24), also the full sta-
bility :

∀ (ũ, ζ̃ , π̃) : E(t,u(t), ζ(t), π(t)) ≤ E(t, ũ, ζ̃ , π̃) +R(ζ̃−ζ(t), π̃−π(t)) (25)

to be valid for a.a. t. Then, in fact, (25) is valid for all t and (24a) holds as an equality; for
quite technical analytical details behind this highly nontrivial fact we refer to [15, Sect. 7] or [33,
Prop.3.11], or also [40, Prop. 5.4]. Such solutions conserve energy, being thus called energetic
solutions (ES), invented in [36]. Note also that (25) obviously implies both (24b) and (24c,d).

The latter, stress-driven concept can be selected by requiring, in addition to (24), Hill’s
[23] maximum-dissipation principle, known also as an orthogonality principle [64], expressing

that (3b) is equivalent to 〈f̃ − f, v −
.
ζ〉 ≥ 0 for any v and any f̃ ∈ ∂ .

ζ
R(v) with the so-called

available driving force f ∈−∂ζE(t,u, ζ, π); the adjective “available” becomes sensible especially

if ∂ζE(t,u, ζ, π) is set-valued because not all available f ’s are compatible with f ∈ ∂ .
ζ
R(

.
ζ) and

can be realized during evolution. In particular, for v=0, using also 1-homogeneity of R, we
obtain the announced principle which can, very formally, be written as

〈
f,
.

ζ
〉
= max

f̃∈∂ .
ζ
R(0)

〈
f̃ ,
.

ζ
〉

with f ∈ −∂ζE(t,u, ζ, π), (26a)

and similarly from (3c) we obtain

〈
g,
.

π
〉
= max

g̃∈∂ .
π
R(0)

〈
g̃,
.

π
〉

with g ∈ −∂πE(t,u, ζ, π). (26b)

Note that the “max” terms are exactly R(
.
ζ, 0) and R(0,

.
π), respectively. Let us emphasize that,

in general,
.
ζ and

.
π are measures possibly having singular parts concentrated at rupture times

where the solution and also the driving forces need not be continuous, so that the dualities in
(26) are not well defined. For this reason, an Integrated version of the Maximum-Dissipation
Principle (IMDP) was devised in [43], which reads here as:

∫ t2

t1

f(t) dζ(t) =

∫ t2

t1

R(
.

ζ, 0)dt

(
= DissR(ζ, 0; [t1, t2])

)
with some f(t)∈−∂ζE(t,u, ζ, π),

(27a)
∫ t2

t1

g(t) dπ(t) =

∫ t2

t1

R(0,
.

π)dt

(
= DissR(0, π; [t1, t2])

)
with some g(t)∈−∂πE(t,u, ζ, π)

(27b)

to be valid for any 0 ≤ t1 < t2 ≤ T . This definition is inevitably a bit technical
and, without sliding into too much details, let us only mention that the first integrals
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in (27) are so-called lower Riemann-Stieltjes integrals defined by suprema of lower Dar-
boux sums, i.e. in the case (27a) the left-hand-side integral is defined as

∫ s
r f(t) dζ(t) :=

supN∈N, r=t0<t1<...<tN−1
<t

N
=s

∑N
j=1 inft∈[tj−1,tj ]〈f(t), ζ(tj)−ζ(tj−1)〉 while the right-hand side

integral is just an integral of a measure and its specific value is just the Diss-term as defined in
(24a).

The IMDP (27) is satisfied on any interval [t1, t2] where the solution is absolutely contin-
uous; then the integrals in (27) are the conventional Lebesgue integrals. Thus the particular
importance of IMDP is at jumps, i.e. at times when abrupt delamination possibly happens.

It is shown in [34, 43] on various finite-dimensional examples of “damageable springs” that
this IMDP can identify too early rupturing local solutions (in particular the energetic ones) and
its satisfaction for left-continuous local solutions indicates that the evolution is stress driven. On
the other hand, it does not need to be satisfied even in physically well justified stress-driven local
solutions. E.g. it happen if two springs with different fracture toughness organized in parallel
rupture at the same time (but even in this situation our algorithm from Section 3.2 gives a correct
approximate solution). Existence of left-continuous local solutions complying with IMDP has
not been proved in general, yet. Therefore, we will rely rather on some approximation of IMDP,
as described in further in Section 3.2.

3 Computer implementation

For computer implementation, we are first to perform time and then spatial discretization. The
time-discretization uses the fully implicit formula for ES combined with global minimization
and a suitable semi-implicit formula for MDLS, both with an equidistant partition of the time
interval [0, T ] by a time step τ , assuming T/τ integer. Actually, these two options seem to be
the only ones which yield a discrete analogy of the upper energy inequality (24a) for t1=0, cf.
(29) below summed for k = 1, . . . , and thus also basic a-priori estimates guaranteeing numerical
stability and, at the end, also convergence for τ → 0, cf. [43, 45]. For example, the fully-implicit
formula combined with local minimization (often used in engineering calculations) does not seem
to guarantee it.

Actually, as we consider purely quasistatic problem without any inertial effects, there is
algorithmically well possible to vary the time step τ within time levels. Also all mentioned
theoretical estimates are kept and, if the maximal time step is made converging to zero, also the
convergence is preserved. One can apply various adaptive strategies based either on controlling
accuracy in energetics or, in case of MDLS, in approximate maximum-dissipation principle. Yet,
it is not the focus of this paper and, as already said, we will consider only equidistant partitions
of [0, T ].

As long as the material is linear and isotropic and our quasistatic isothermal problem can be
formulated in terms of the boundary data only, see (1) and (2), the spatial discretization can ad-
vantageously be performed by a BEM. The present standard approximation of the distributions
for u, ζ, and π uses continuous linear boundary elements [39].

3.1 Discretization in time by the fully implicit formula

To satisfy the energy balance (24a) and the stability condition (25) also after discretization, the
minimization problem for the solution at the successive step k is solved, once the solution for
the time step k−1 is known and, in case of non-uniqueness, chosen, cf. [25]. More specifically,
this problem is:

minimize Hk(u, ζ, π) = E(kτ,u, ζ, π) +R(ζ−ζk−1, π−πk−1). (28)

This recursive time-stepping procedure starts from the solution at k=1 calculated by using the
initial conditions (24e).

Due to the character of the present delamination problem model (allowing sudden ruptures),
the functional Hk is inevitably nonconvex. This nonconvexity requires applying a special numer-
ical treatment in the minimization algorithm. The Alternating Minimization Algorithm (AMA)
proposed in the context of fracture mechanics in [9], and used also in [38, 44, 45], has been
used to split the minimization to alternation between minimization with respect to (u, π) and
with respect to ζ, each of these being a minimization of a convex functional. Such alternation,
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however, does not have to lead to global minimization which is a characteristic feature behind
ES, as pointed out already in [10]. Therefore a Back-Tracking Algorithm (BTA) to control such
a process has been utilized, providing that the energy (im)balance (24a) as an equality, in dis-
crete form converted to a two-sided inequality, is satisfied, see [5, 38, 44, 45]. This two-sided
energy inequality can be written in the following form, relying on the minimization of Hk in two
subsequent time steps:

∫ kτ

(k−1)τ

∂

∂t
E(t,uk, ζk, πk)dt

≤ E(kτ,uk, ζk, πk)− E((k−1)τ,uk−1, ζk−1, πk−1) +R(ζk−ζk−1, πk−πk−1)

≤
∫ kτ

(k−1)τ

∂

∂t
E(t,uk−1, ζk−1, πk−1)dt. (29)

In fact, (uk, ζk, πk) is the minimizer of Hk, which means, by the degree-1 homogeneity of R for

any (ũ, ζ̃ , π̃) that

E(kτ,uk, ζk, πk) ≤ E(kτ, ũ, ζ̃ , π̃) +R(ζ̃−ζk−1, π̃−πk−1)−R(ζk−ζk−1, πk−πk−1)

≤ E(kτ, ũ, ζ̃ , π̃) +R(ζ̃−ζk, π̃−πk), (30)

which is the discrete analogy of the full stability (25), and, in particular, also

E(kτ,uk, ζk, πk) +R(ζk−ζk−1, πk−πk−1) ≤ E(kτ,uk−1, ζk−1, πk−1). (31)

Subtracting the term E((k−1)τ,uk−1, ζk−1, πk−1) from both sides of (31), we obtain, after a
little calculus, the upper estimate in (29). Writing (30) at the level k−1 and testing it by

(ũ, ζ̃ , π̃) = (uk, ζk, πk) yields

E((k−1)τ,uk−1, ζk−1, πk−1) ≤ E((k−1)τ,uk, ζk, πk) +R(ζk−ζk−1, πk−πk−1), (32)

and adding the term E(kτ,uk, ζk, πk) to both sides of (32), we obtain the lower estimate in (29).
The upper estimate in (29) serves for a-priori estimates and thus numerical stability of the
proposed scheme and further also for the convergence for τ → 0 and h→ 0 with a spatial-mesh
parameter h introduced in Section 3.3.

The scheme of AMA follows (the superscript index in parentheses is used to denote the
iterations within AMA, while without parentheses it is the time step):

1. For next k=1, 2, . . . , T/τ set j=0, u(0)=uk−1, π(0)=πk−1 and ζ(0)=ζk−1.

2. While ‖ζ(j)−ζ(j−1)‖ ≥ ε, do:

(a) Set next j.

(b) Solve for u(j)=u and π(j)=π: the minimization problem of Hk(u, ζ(j−1), π) subjected
to boundary conditions.

(c) Solve for ζ(j)=ζ: the minimization problem of Hk(u(j), ζ, π(j)) subjected to the con-
dition 0≤ζ≤ζk−1.

3. Put uk=u(j), πk=π(j) and ζk=ζ(j).

The proposed energy-based BTA obeys the following scheme:

1. Initiation: k=1, ζ(0)=1.

2. While k ≤ T/τ do:

(a) Use AMA to find ζk from the initial value ζ(0).

(b) Set ζ(0)=ζk.

(c) Check the discrete two-sided energy condition (29): if satisfied, increase k by one,
otherwise decrease k by one (this is the actual back-tracking).
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The goal of the step (c) is to start the iterations of AMA with some different initial iteration
if the one from the previous time step was obviously not successful from the viewpoint of (29)
which should ultimately be satisfied. Not to try randomly chosen starting iteration, the idea is
to use some states from previous unsuccessful trials for larger values of k.

Although there is no guaranty that this iterative process converges to the global minimum,
the practical experience with this energy-based BTA, however, shows that it provides a solution
with lower energy than that obtained by mere AMA [5, 38, 44, 45] and often leads to satisfaction
of (29) under given loading regimes. Yet, it should be emphasized that, although based on the
assumption of global minimization, the satisfaction of the two-sided energy estimate (29), which
this BTA tries to achieve, itself does not imply that the obtained solutions are global minimizers
of the incremental problem (28). It only underlines algorithmic difficulties related to ES and,
besides physical arguments, advocates advantages of the MDLS strategy.

Let us also note that an alternative variant of BTA has been proposed in [8, Sect. 2.4] and
used also in [10], based on special properties of the particular problem studied therein, namely
2-homogeneity of the stored energy and monotonically increasing load. As a matter of fact,
there is no universal hint for solving nonconvex global-minimization problems and other global-
minimization strategies are to be thought about too, e.g. the so-called simulated annealing,
etc.

3.2 Discretization in time by a semi-implicit formula

For finding the MDLS, we use a fractional-step-type semi-implicit time discretization devised in
[46], see also [47], such that the problem is split into two convex minimizations similarly as done in
AMA above, yet it must be emphasized that AMA is now used only in one iteration at each time
level. Therefore, in contrast to ES strategy, there are no difficulties with global minimization
and the numerical calculation is much easier with no need of repeating the minimization or
backtracking, and additionally it prevents the solution from non-physically too early debonding
or from sliding non-physically into the less dissipative Mode I, cf. also Fig. 10 below. More
specifically, considering ζk−1 and πk−1 known from the previous time step, the problem includes
two subsequent minimizations. First,

minimize Hk
π(u, π) = E(kτ,u, ζk−1, π) +R(0, π−πk−1), (33a)

and, denoting its unique minimizer (uk,πk), second

minimize Hk
ζ (ζ) = E(kτ,uk, ζ, πk) +R(ζ−ζk−1, 0), (33b)

with the minimizer ζk. Again, this recursive time-stepping procedure naturally starts from the
solution at k=1 calculated by using the initial conditions (24e).

To see that the system (33) guarantees a discrete analogy of the conditions for local
solutions (24), we can proceed as explained in the following. First, as ζk is the mini-

mizer of Hk
ζ and R(·, 0) is homogeneous of degree 1, we have for any ζ̃, like in (30), that

E(kτ,uk, ζk, πk) ≤ E(kτ,uk, ζ̃ , πk) + R(ζ̃−ζk, 0), which provides a discrete analogy of (24c).
Second, as (uk, πk) is the minimizer of Hk

π and R(0, ·) is homogeneous of degree 1, we have for
any (ũ, π̃) that

E(kτ,uk, ζk−1, πk) ≤ E(kτ, ũ, ζk−1, π̃) +R(0, π̃−πk), (34)

which provides a discrete analogy of both (24b) and (24d). These minimization properties of ζk

and of (uk, πk) also allow us to write

E(kτ,uk, ζk−1, πk) +R(0, πk−πk−1) ≤ E(kτ,uk−1, ζk−1, πk−1) and (35a)

E(kτ,uk, ζk, πk) + R(ζk−ζk−1, 0) ≤ E(kτ,uk, ζk−1, πk), (35b)

which after summation cancels the terms E(kτ,uk, ζk−1, πk) and gives again (31), and then
further the upper estimate in (29) which is a discrete analogy of (24a). The minimization
of (33) thus provide an approximation of all conditions defining local solution, cf. (24).
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Denoting the left-continuous piecewise-constant interpolants (uτ , ζτ , πτ ) of the values
(ukτ , ζ

k
τ , π

k
τ ), i.e. uτ (kτ) = ukτ etc., one can devise the discrete analogy of the integrated maximum-

dissipation principle (27) straightforwardly for these left-continuous interpolants, required how-
ever to hold only asymptotically. More specifically, in analogy to (27) formulated equivalently
for all [0, t] instead of [t1, t2], one can expect an Approximate Maximum-Dissipation Principle
(AMDP) in the form

∫ t

0
fτ dζτ

?∼ DissR(ζτ , 0; [0, t]) for some fτ (t)∈−∂ζ Ēτ (t,uτ (t), ζτ (t−τ), πτ (t)), (36a)

∫ t

0
gτ dπτ

?∼ DissR(0, πτ ; [0, t]) for some gτ (t)∈−∂π Ēτ (t,uτ (t), ζτ (t), πτ (t)), (36b)

where again the integrals are the lower Riemann-Stieltjes integrals as in (27) and where
Ēτ (·,u, ζ, π) is the left-continuous piecewise-constant interpolant of the values E(kτ,u, ζ, π),
k = 0, 1, ..., T/τ . Moreover, ”

?∼” in (36) means that the equality holds possibly only asymptot-
ically for τ → 0 but even this is rather only desirable and not always valid. Anyhow, loadings
which, under given geometry of the specimen, lead to rate-independent slides where the solution
is absolutely continuous will always comply with AMDP (36). Also, some finite-dimensional ex-
amples of “damageable springs” in [34, 43] show that this AMDP can detect too early rupturing
local solutions (in particular the energetic ones) while it generically holds for solutions obtained
by the semi-implicit algorithm (33).

Now, for the piecewise-constant interpolants, we can simply evaluate the integrals in explic-
itly, so that AMDP (36) reads

∆Rζ,τ (t) :=

∫

ΓC

Gd

(
ζKτ −ζ0

)
dS −

K∑

k=1

∫

ΓC

fk−1
τ (ζkτ − ζk−1

τ ) dS
?∼ 0 and (37a)

∆Rπ,τ (t) :=

K∑

k=1

∫

ΓC

σyield
∣∣πkτ − πk−1

τ

∣∣dS −
K∑

k=1

∫

ΓC

gk−1
τ (πkτ − πk−1

τ ) dS
?∼ 0 (37b)

where K = max{k∈N; kτ ≤ t} and

where fkτ ∈ −∂ζE(ukτ , ζk−1
τ , πkτ ) and gkτ ∈ −∂πE(ukτ , ζkτ , πkτ ).

Always, the left-hand sides in (36) are below the right-hand sides, and one can a-posteriori
check the residua ∆Rζ,τ ≥ 0 and ∆Rπ,τ ≥ 0 depending on t (or possibly also on space, as in
Fig. 21 below). Even though IMDP (27) and similarly AMDP (36) do not need to hold even
for physically relevant stress-driven local solutions (typically when several “springs” rupture at
the same time, some of them being still at the sub-critical stress before the rupture), a good
satisfaction of AMDP (36) can always be counted as valuable a-posteriori justification of the
(otherwise not physically based) simple and numerically efficient fractional-step-type algorithm
(33) and distribution of the residuum in (36) in time (or in space) can serve for some possible
adaptive refinement strategies.

3.3 Spatial discretization and SGBEM

The role of the SGBEM [7, 49, 57] in the present computational procedure is to solve a BVP for
each subdomain separately in order to calculate the elastic strain energy in these subdomains.
Thus, at each time step and at each iteration of the minimization algorithm, the SGBEM code
calculates unknown tractions along ΓC∪Γu, supposing the displacements at ΓC to be known from
the used minimization procedure, in a similar way as proposed and tested using a collocational
BEM code in [45, 38, 46, 47].

The chosen Symmetric Galerkin BEM can be deduced from the potential energy princi-
ples [6, 7, 61, 62]. This fact guarantees the positive definite character of the strain energy
computed by SGBEM, in contrast to the classical collocational BEM, see [53, 62] for details and
further references. The Boundary Integral Equations (BIE) solved by SGBEM are the Somigliana
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displacement and traction identities, written for each particular subdomain Ωη separately:

1

2
uηk(x) =

∫

Γ η

Uηkl(x, y)t
η
l (y)dS(y)−−

∫

Γ η

T ηkl(x, y)u
η
l (y)dS(y), for a.a. x∈Γ ηu ∪ ΓC, (38a)

1

2
tηk(x) = −

∫

Γ η

T η∗kl (x, y)t
η
l (y)dS(y)− =

∫

Γ η

Sηkl(x, y)u
η
l (y)dS(y), for a.a. x∈Γ ηt . (38b)

The integral kernels in the above equations are given by the (weakly singular) Kelvin funda-
mental solution Uηij(x, y) – the response of the elastic plane to a point load, and the associated
derivative kernels obtained by the differential traction operator applied with respect to one or
both variables – the strongly singular kernels T ηij(x, y) and T

η∗
ij (x, y) and the hypersingular ker-

nel Sηij(x, y). It should also be noted that the free-term coefficients 1
2 are valid only at smooth

boundary parts. Due to the integral kernel singularities, the integrals denoted by −
∫
Γ and =

∫
Γ

stand for the Cauchy principal value and the Hadamard finite part of the integral, respectively.
As follows from the previous explanations, the SGBEM code is used merely to elastic strain

energy computation in the bulk and does not include the solution of the whole interface problem,
which is left to the suitable minimization algorithm, see also [38, 45, 46, 47].

Applying the standard SGBEM approach [61, 62] to (38) together with the boundary con-
ditions from Section 2, we obtain the following equation:

0 =

∫

Γ η
u

ϕηj (y)

(
−
∫

Γ η
u

Uηji(y, x)t
η
i (x)dxS +

∫

Γ η
t

T ηji(y, x)u
η
i (x)dxS −

∫

ΓC

Uηji(y, x)t
η
i (x)dxS

+

∫

ΓC

T ηji(y, x)u
η
i (x)dxS +

(1
2
wηj (y) +−

∫

Γ η
u

T ηji(y, x)w
η
i (x)dxS

))
dyS

+

∫

Γ η
t

ψηj (y)

(∫

Γ η
u

T η∗ji (y, x)t
η
i (x)dxS− =

∫

Γ η
t

Sηji(y, x)u
η
i (x)dxS +

∫

ΓC

T η∗ji (y, x)t
η
i (x)dxS

−
∫

ΓC

Sηji(y, x)u
η
i (x)dxS −

∫

Γ η
u

Sηji(y, x)w
η
i (x)dxS

)
dyS

+

∫

ΓC

ϕηj (y)

(
−
∫

Γ η
u

Uηji(y, x)t
η
i (x)dxS +

∫

Γ η
t

T ηji(y, x)u
η
i (x)dxS −

∫

ΓC

Uηji(y, x)t
η
i (x)dxS

+
(1
2
uηj (y) +−

∫

ΓC

T ηji(y, x)u
η
i (x)dxS

)
+

∫

Γ η
u

T ηji(y, x)w
η
i (x)dxS

)
dyS. (39)

The weighted formulation of the BIE system (39) can be rewritten in a compact and trans-
parent form by introducing the following operator notation:

ωηTq Zηqrv
η
r =

∫

Γ η
q

ωηj (y)

(∫

Γ η
r

Zηji(y, x)v
η
i (x)dxS

)
dyS, (40)

where ω stands for ϕ or ψ; v stands for u or t, q and r stand for u, t or c; and Z stands for
U , T , T ∗ or S; and where the inner integral can be regular, weakly singular, Cauchy principal
value or Hadamard finite part integral. Then, (39) reads

0 = ϕη Tu

(
−Uη

uut
η
u +T

η
utu

η
t −Uη

uct
η
c +Tη

ucu
η
c +

(
1

2
Iηuu +Tη

uu

)
wη

)
+

+ψη Tt
(
T
η∗
tut

η
u − S

η
ttu

η
t +T

η∗
tc t

η
c − S

η
tcu

η
c − Sηuuw

η
)
+

+ϕη Tc

(
−Uη

cut
η
u +T

η
ctu

η
t −Uη

cct
η
c +

(
1

2
Iηcc +Tη

cc

)
uηc +Tη

cuw
η

)
, (41)

or equivalently in a matrix-operator form



ϕ
η
u

ψ
η
t

ϕ
η
c



⊤

−U

η
uu T

η
ut −U

η
uc

T
η∗
tu −S

η
tt T

η∗
tc

−U
η
cu T

η
ct −U

η
cc






t
η
u

u
η
t

t
η
c


 =



ϕ
η
u

ψ
η
t

ϕ
η
c



⊤

−1

2I
η
uu −T

η
uu −T

η
uc

S
η
uu S

η
tc

−T
η
cu −1

2I
η
cc−T

η
cc




(
wη

u
η
c

)
.

(42)
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In the previous relations, Iη denotes the identity operator with the subscripts specifying the
part of the boundary where it is restricted. The functions ϕη and ψη represent the virtual
displacements and tractions, respectively, and the system in (42) has to be satisfied for any
virtual functions.

The symmetric BIE system (42) will be solved numerically by SGBEM. To this end, each
boundary Γ η is discretized by a boundary element mesh with the maximum size of the elements
denoted by h. Then, the functions defined on Γ η are approximated by continuous linear bound-
ary elements [39] allowing discontinuities of tractions at the element junctions if required. Thus,
the approximation formulas can be written in the form

uη(x) =
∑

p

N
η
ψp(x)u

η
p, tη(x) =

∑

l

N
η
ϕl(x)t

η
l , (43)

where N
η
ψp(x) and N

η
ϕp(x), respectively, are matrices containing the shape functions of dis-

placements and tractions associated to node p at xηp∈Γ η, and u
η
p and t

η
p, respectively, are vectors

containing the components of the displacement and traction vector at the node p. Let uη, wη, and
tη, respectively, denote the vectors containing all unknown nodal displacements, all prescribed
nodal displacements, and all unknown nodal tractions associated to Γ η. Let the subvectors of
the nodal unknowns at the boundary parts Γ ηu , Γ

η
t and ΓC, respectively, be distinguished by the

same subscripts u, t, and c. The set of vectors of virtual functions ψη and ϕη can be chosen
to be equal to shape functions associated to each nodal unknown and extended by zero to the
whole boundary. Such a choice leads to the symmetric square matrix of the following system of
linear algebraic equations:



−Uη

uu T
η
ut −Uη

uc

T
ηT
tu −S

η
tt T

ηT
tc

−Uη
cu T

η
ct −Uη

cc






t
η
u

u
η
t

t
η
c


 =



−1

2M
η
uu−Tηuu −Tηuc
Sηuu S

η
tc

−Tηcu −1
2M

η
cc−Tηcc




(
wη

u
η
c

)
. (44)

The elements of the submatrices denoted with letters U, T and S are formed by double integrals
including the integral kernel denoted by the same letter as is usual in SGBEM. The square 2×2
submatrices, associated to nodes p and l, of the mass matrices Mη

rr, with r being u or c, are
formed by the integrals:

(Mη
uu)lp =

∫

Γ η
u

N
η⊤
ϕl (x)N

η
ψp(x)dxS, (Mη

cc)lp =

∫

ΓC

N
η⊤
ϕl (x)N

η
ψp(x)dxS. (45)

3.4 Minimization algorithm

Once all the boundary data (displacements and tractions) are obtained from the solution of (44)
for each subdomain, the energies Hk from (28) or Hk

π and Hk
ζ from (33) can be calculated. It is

worth seeing how to calculate these energies for a given discretization. For the sake of brevity,
it will be shown for the case of Hk only, whereas Hk

π and Hk
ζ are evaluated similarly.

Prior to the calculation, let us reconsider the nonsmooth terms in R(ζ−ζk−1, π−πk−1),
cf. (2). The first one with ζ does not cause any problem because ζ must be non-increasing ζk−1≥ζ
according to (2), thus |ζ−ζk−1|=ζk−1−ζ. For the second term, a classical trick of removing the
absolute values and replacing them by additional unknowns with restrictions is used [4], relying
on a polyhedral epigraph of this term obtained after discretization in the present 2D case. The
solution of the original problem with R is equivalent to the solution with the following functional

R̃:

R̃(ζ−ζk−1, µ) =

∫

ΓC

(
Gd

(
ζk−1−ζ

)
+ µ

)
dS (46a)

and the following unilateral affine constraints:

0 ≤ ζ ≤ ζk−1, (46b)

µ− σyieldπ ≥ −σyieldπk−1, (46c)

µ+ σyieldπ ≥ σyieldπ
k−1. (46d)
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In the present disretization, the approximation formulas for the damage parameter ζ, plastic
slip π and auxiliary parameter µ given by the pertinent boundary-element mesh are considered;
it is worth noting that using piecewise constant boundary elements for plasticity variables leads
directly to element-wise decoupling of (46c) and (46d). The approximation formulas can be
written in the form

ζ(x) =
∑

m

Nζm(x)ζm, π(x) =
∑

m

Nπm(x)πm, µ(x) =
∑

m

Nµm(x)µm, (47)

where Nζm(x), Nπm(x), Nµm(x), respectively, are shape functions of the damage, plastic slip,
and auxiliary parameters associated to the node m, while ζm, πm, µm are the pertinent nodal
unknowns.

The energy Hk, from the problem (28) defined by (1) and (46) and discretized by (43)
and (47) then reads

Hk(u, ζ, π)=

∫

ΓA

1

2

∑

p

NA

ψp(x)u
A

p ·
∑

l

NA

ϕl(x)t
A

l dS +

∫

ΓB

1

2

∑

q

NB

ψq(x)u
B

q ·
∑

r

NB

ϕr(x)t
B

r dS

+

∫

ΓC

{∑

m

Nζm(x)ζm

[
1

2
kn

(∑

q

NB

ψn q(x)u
B

n q −
∑

p

NA

ψn p(x)u
A

n p

)2

+
1

2
ks

(∑

q

NB

ψs q(x)u
B

s q −
∑

p

NA

ψs p(x)u
A

s p −
∑

m

Nπm(x)πm

)2
]
+

1

2
kH

(∑

m

Nπm(x)πm

)2
}
dS

+

∫

ΓC

{
1

2
k0

[∑

m

(∇sNζm(x)) ζm

]2
+

1

2
k1

[∑

m

(∇sNπm(x)) πm

]2}
dS

+

∫

ΓC

[
Gd

(∑

m

Nζm(x)
(
ζk−1
m − ζm

))
+

∑

m

Nµm(x)µm

]
dS (48)

with the constraints
∑

q

NAB

n pqu
B

n q − uA

n p ≥ 0 for all pertinent p, (49a)

0 ≤ ζm ≤ ζk−1
m for all pertinent m, (49b)

µm − σyieldπm ≥ −σyieldπk−1
m for all pertinent m, (49c)

µm + σyieldπm ≥ σyieldπ
k−1
m for all pertinent m, (49d)

where NAB
npq=N

B

ψn q(x
A
p ). In (48), Nη

ψs p and Nη
ψn p are the shape functions like those in Nη

ψp

approximating the normal and tangential displacements, respectively.
The minimization of the energy Hk is split into two parts, using AMA. The minimization

procedure with respect to u and π (2b of AMA) can utilize any relevant quadratic program-
ming approach with inequality constraints. Analogously, a similar minimization procedure with
respect to ζ can be applied with a modification that the constraints are box type, see (49b).

It may be useful to reformulate the problem in such a way that the restrictions (49) change to
bound constraints sometimes also called box constraints. The pair of constraints (49c) and (49d)
for each node can be replaced using the following substitution for the nodal values

ω1m = µm − σyieldπm, ω1m ≥ 0,

ω2m = µm + σyieldπm, ω2m ≥ 0.
(50)

The system (49a) provides l linearly independent constraints which can be written in a matrix
form as

(
NAB

n − IA
)(uB

n

uA
n

)
≥

(
0

0

)
, (51)

with the identity matrix IA. The inequality is defined by a full row-rank matrix. Thus, according
to [17], introducing new variables z1 and z2 leads to

(
uB
n

uA
n

)
=

(
(NAB

n )⊤

−IA

)(
NAB

n (NAB

n )
⊤
+ IA

)−1
z1 +

(
KB

KA

)
z2, with y ≥ 0, (52)
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where columns of each Kη span the null-space of (NAB

n ,−IA). We have thus the same number of
bound constraints as provided by more general restrictions (49a).

The discretized functional (48), with some of the variables fixed according to the current
phase of AMA, can be expressed in a general matrix form as

Hk(y) =
1

2
y⊤Ay − b⊤y, −∞ ≤ ylow ≤ y ≤ yup ≤ +∞. (53)

The bounds ylow and yup depend on the problem to be solved and, as indicated, some of them
may be infinite, meant as no restriction being applied for the pertinent component of y. The
constrained minimum is then denoted by yk. The standard algorithms use the matrix A explicitly
which however is not calculated in the present approach. Nevertheless, the terms which arise
from the first two integrals in the right-hand side of (48) provide the energy and calculating

their derivative with respect to the unknown u they provide a projected traction M⊤t with M
defined as in (45). This projected traction can naturally be calculated in the SGBEM algorithm,
and in equation (53) is in fact represented by the product Ay without explicit knowledge of A.
Thus, each time the CG algorithm requires a matrix-by-vector product a system from SGBEM is
solved. The influence matrices of SGBEM, however, do not have to be calculated more then once
in all the solution process, as they are the same for all iterations and all time steps, considering
only small displacements.

Conjugate gradient (CG) based algorithms with bound constraints [17] are used in the mini-
mization procedures. Let us summarize briefly the main aspects of such methods. They naturally
require an initial estimate of yk which can be chosen, e. g., from the previous time step. The
gradient g=Ay−b, or strictly speaking a projected gradient gP , has to be calculated for this esti-
mate and also during the minimization algorithm as its norm may be a measure of the accuracy
of the pertinent iteration – the exact solution has vanishing projected gradient.

The projected gradient gP is a part of the gradient enabling the functional Hk to be min-
imized with respect to the constraints along the opposite direction. This is important in the
situations where the particular iteration solution satisfies some bound constrains as equalities.
The pertinent coordinates of the iteration solution are called active.

The gradient g is composed of several parts. Working directly with the components of the
gradient is an advantage of the bound constraints, unlike the more general restrictions which
were avoided according to the aforementioned explanations. The first part of the gradient g is
the free gradient gF which is equal to the gradient g only for non-active components, the active
components are equal to zero. The second one is the chopped gradient gC which is equal to zero
for non-active components. For the active components, it may also be equal to zero if the sign
of the gradient component does not enable constrained minimization in the opposite direction,
it means that for the lower bounds it is nonzero only for the negative active components of g,
and for the upper bounds it is nonzero only for the positive active components of g. Projected
gradient is then a sum of the free and chopped gradients: gP=gF+gC . The remaining possibly
nonzero part of the gradient g is not required for the constrained minimization.

The used CG based algorithms generally obey the following scheme (CG iteration denoted
by numbers in parentheses):

1. Initiation: j=1, choose y(j), calculate g and its parts gP , gF and gC , initiate minimization
direction p=gP .

2. While ‖gP ‖ ≥ ε do:

(a) According to the norms of gF and gC select minimization:

i. Case: gF is more significant – a try with a CG step: y(try) minimizes Hk from
y(j) in the direction of −p

A. If y(try) satisfies all the constraints – a standard CG step: y(j+1)=y(try),
calculate new minimization direction p from the CG algorithm.

B. If y(try) fails in some constraints – expand the active set: y(j+1) is found from
y(j) in the direction of −p up to or down to the closest bound, re-initiate
minimization direction p=gF

ii. Case: gC is more significant – make free some active components
y(j+1) minimizes Hk from y(j) in the direction of −gC , re-initiate minimization
direction p=gF .
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(b) j=j+1.

3. yk=y(j).

The CG algorithm is not mentioned explicitly as it can be found together with all necessary
details of the constrained minimization e.g. in [17].

4 Numerical examples

The present formulation of both solution concepts has been tested numerically.
In the examples presented, there is only one rectangular domain bonded, along its bottom

side, to a rigid foundation by a thin adhesive layer. In the first example, the geometry and load
configuration are motivated by the pull-push shear test known in several engineering applications.
The plane strain problem configuration is shown in Figure 3. In the second example, the
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Γc Γt

Γt

Γ
u

Lc

L

h

w

Figure 3 Geometry for the model of the shear test used in Sect. 4.1.

deformed body is the same. Its loading configuration leads to a receding contact after the
rupture of the interface, see Figure 4.

x1

x2

Γc

ΓuΓt Γt

L = Lc

Lw Lw

h

w

Figure 4 Geometry for the model of the receding contact used in Sect. 4.2.

The dimensions of the bulk layer are L=250mm and h=12.5mm. It is considered that prior
to loading this bulk layer is glued to the support along a part of its bottom side in the extent of
Lc=225mm for the shear test and along the whole bottom side for the contact test, Lc=L, for the
latter the loading is restricted to a part of the top side with Lw=0.3L. This bulk layer is made of
aluminum with Young’s modulus E=70GPa and Poisson’s ratio ν=0.35. The adhesive material
is epoxy resin, with Young’s modulus Ee=2.4GPa and Poisson’s ratio νe=0.33. Considering
the adhesive layer thickness he=0.2mm, the corresponding stiffness parameters are computed

following [59] as kn=
Ee(1−νe)

he(1+νe)(1−2νe)
=18TPam−1 and ks

kn
= 1−2νe

2(1−νe)=0.25.

The parameters that govern the crack growth in the adhesive layer are: the fracture energy
in Mode I Gd=10Jm−2, plastic yield stress σyield=0.56

√
2ksGd=5.31MPa. The hardening slope

for plastic slip is kH=ks/9, the gradient parameters are k0=10µJ and k1=0Jm−2.
The spatial discretization is also the same for both test cases. Four boundary element

meshes are used, each with a particular time-step. The coarsest spatial mesh includes a uniform
boundary element meshes along the horizontal sides with element length ℓ=8.333mm and two
elements along the vertical sides. In this coarsest mesh the time step τ=1.2×10−3 is used for ES
and τ=1.2×10−4 for MDLS, as it is expected to converge slower. This discretization is denoted
N=30 according to the number of elements along the bottom side of Γ . The refined meshes are
denoted subsequently as N=60, N=120 and N=240: the lengths of all the boundary elements
and also the time steps are divided by two with respect to the previous coarser discretization, it
means that they are respectively τ=6×10−4, τ=3×10−4 and τ=1.5×10−4 for ES and τ=6×10−5,
τ=3×10−5 and τ=1.5×10−5 for MDLS.
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4.1 Shear test

The loading is applied on the right-hand side of the aluminum bulk layer Γu, where the prescribed
displacements w1 are increasing during the loading process, whereas w2=0. The first-increment
of the displacement is given by w1

1=τmm and it is further multiplied by a factor k equal to
the number of the time step changing from an initial value k=1 until the total breakage of the
interface occurs.

The process of debonding is controlled by energies thus a graph of particular energies is
shown in Figure 5.
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Figure 5 Energies of both ES and MDLS as functions of time-dependent
imposed loading for the finest discretization. In particular, ES
ruptures here about 3× earlier than MDLS.

The total energy consists of both bulk and interface stored energies and also of the energy
dissipated which are plotted in the graph. The stored energy has initially quadratic behaviour
which changes at points where some plasticity or damage occur. The most apparent change is
observable for the first partial debonding – jumps in both stored and dissipated energies. The
graph shows that ES makes the structure to break earlier, even the total rupture of the interface
in ES occurs before the damage was initialized in MDLS. The first plastic slip appears before
the crack initiation, the time of its initiation is observable on the graph by a continuous increase
of dissipated energy and appears at the more or less same moment for both solution concepts.
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Figure 6 Convergence with refining space/time discretization of error in
the energy balance evolving in time (i.e. within loading w1) for
both solution concepts.

The plot in Figure 6 presents the satisfaction of the two-sided energy inequality (29) which
was forced by the BTA of ES and also of the upper estimate in (29) which should be satisfied
by MDLS. Here, a better estimation of the energy inequality (24a) for the finer discretizations
is evident. The graph in Figure 6(left) presents ∆Eest – the maximum estimated tolerance
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obtained from (29), formally written in the following way:

Elow ≤ Eest ≤ Eup, ∆Eest = max (Eup − Eest, Eest − Elow) . (54)

For MDLS, Figure 6(right) presents just the difference Eup−Eest. As it was expected, the abso-
lute values of the differences are greater for MDLS than for ES as no check on the lower bound,
which guaranties the stability of ES, is provided for MDLS, thought with finer discratization
the jumps are smaller.
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(a) The energetic-solution (ES) variant:
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(b) The maximally-dissipative local-solution (MDLS) variant:

Figure 7 Distribution of the scaled displacements and tractions along the
glued and debonded interface before and right after the crack ini-
tiation; the finest discretization is depicted.

The relation between the resultant reaction force along the adhesive zone and the imposed
horizontal displacement is shown in Figure 8 for the finest discretization. The first sudden
decrease of these forces, both horizontal F1 and vertical F2, corresponds to the crack initiation
— ES breaks earlier then MDLS. After the crack initiation the behaviour of the reaction forces is
different. ES provides some hardening, with some partial breaking and an abrupt break of many
elements at the end. On the other hand, in MDLS there appears a plateau after the initial break
which may represent some stable growth of the interface crack leading to total debonding at
the end. In fact, such a behaviour might be expected in view of the related results of pull-push
shear test [13], see also [46]. The graphs also document onset and increase of plastic slip by a
progressive decrease of the slope of the plotted functions. Observing the results of both solution
concepts, one can wonder whether the plateau of MDLS can be a continuation of the hardening
part in ES which could have been recognized if a full load path had been available.
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Figure 8 Resultant force as a function of the imposed displacement for both
solution concepts. In particular, ES ruptures here about 3× ear-
lier than MDLS.

Figure 7(a) shows the distributions of displacements and tractions along ΓC computed by
SGBEM before the crack appears at k=32, for the finest discretization, and right after its
initiation at k=33, for ES. The normal u2 and tangential u1 displacements are plotted scaled
by a factor kn or ks, respectively, in order to show their linear relation with tractions valid in
the elastic range. It is clearly seen that at the end point of the interface a contact zone appears
before crack initiation and it also persists in front of the crack tip after the crack initiation.
It is the part where the normal displacements are zero and the compressive tractions exhibit
a concentration. The tangential components of displacements and tractions do not obey the
linear relation in the zone of the plastification in the adhesive layer. It is also clear that after
debonding the traction along the pertinent part of ΓC vanishes, unless ΓC is in contact.

The similar plot is made also for MDLS in Figure 7(b). The distributions of displacements
and tractions are presented along ΓC before the crack appears at k=708, for the finest discretiza-
tion, and after its initiation at k=718, for MDLS. Here, due to a smaller time step and not abrupt
change of crack length, k was chosen to correspond to a similar time change as plotted for ES.
The distributions of the plotted quantities are similar in form though different in magnitudes as
for MDLS the crack initiates later.

The next couple of figures documents behaviour of the numerical solution obtained by dif-
ferent discretizations to asses the convergence rate. First, in Figure 9, there are plotted some
detailed parts of the previous distributions of scaled displacements for all but the coarsest dis-
cretizations.

The curves of all discretizations correspond to the same load, which is either prior to the
crack initiation or after the crack initiation in all discretizations, thus e.g. unlike the graphs
in Figure 7 for N=120 the graphs are obtained for k=32 and k=40 for ES, and k=704 and
k=800 for MDLS. Before the crack initiation, the plotted curves are the same, beside some
approximation differences. After a crack appears, the distributions are different for various
discretization though the shape of the curves are similar.

An interesting difference between discretizations and also between ES and MDLS is observed
for plastic slip in Figure 10. For the two finest discretizations with N=120 and N=240 in ES
arises another locus of plastic slip after crack initiation, which is not present in the coarser one.
The latter is damaged around that locus so that plastic slip is not allowed to evolve. In the MDLS
case, however, plasticity was developed more so that on the crack initiation it is evolved in all
discretizations. Though the load steps for both ES and MDLS were chosen such that the extent
of the damaged interface is similar, the damage evolution in MDLS is more continuous so that
also the distribution of plastic slip is smooth, the plateau part of this distribution corresponds
to that appeared also in Figure 8.

The convergence in the case MDLS on Figure 10 seems to be slower than for ES, although we
should emphasize that this convergence is theoretically guaranteed [47]. Anyhow, the fractional-
step algorithm (33) works satisfactorily in this example and yields stress-driven local solution
(as documented in Figure 11) delaminating in well pronounced mixed mode (as documented on
Figure 10).

The scaled deformed shape of the bulk layer in ES is shown in Figure 12(a) for various load
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(b) The maximally-dissipative local-solution (MDLS) variant:

Figure 9 Convergence with refining space/time discretization of the distri-
bution of the scaled displacements along a part of the glued and
debonded interface: (a) w=9.6µm (top) and w=12µm (bottom),
(b) w=21.12µm (top) and w=24µm (bottom).

steps in comparison with the original undeformed one. The particular load steps selected are:
the first step k=1, the first crack observation (before and after) k=32 and k=33 (valid for the
finest discretization), and all successive crack-length changes (before and after) until the total
debonding of ΓC at the load-step k=60.

A similar plot is made also for MDLS in Figure 12(b). The scale factor for the displacements
is chosen the same for both solution concepts and is equal to 2000. Recall also that the time
step for MDLS is ten times less than for ES so that e.g. k=60 for ES corresponds to k=600 for
MDLS. The particular load steps selected are: the first step k=1, the first crack observation
(before and after) k=710 and k=711 (valid for the finest discretization), some intermediate load
step for k=1200, and three load steps from the end of the history, namely k=1762, k=1767 and
k=1768, the total debonding which occurred in the next step is not plotted. Here, we can see
continuous evolution of the interface crack and also an effect of peeling close to the end of the
load history before the total damage occurred.

Finally, the influence of the gradient-of-damage coefficients is worth to be numerically stud-
ied. Yet, the effects are quite expectable so we present it only for k0 (as actually we neglected
k1 in our calculations). The parameter tends to regularize the solution so that at each interface
point the damage grows less abruptly and in a way can affect the smoothness of a crack propa-
gation. More specifically, the coefficient k0, so far considered 10µJ, is now varied as 1µJ, 100µJ,
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(b) The maximally-dissipative local-solution (MDLS) variant (w=36µm):

Figure 10 Convergence with refining space/time discretization of distribu-
tion of the damage parameter ζ and plastic slip π along a part
of the glued and debonded interface. In particular, comparing
the plastic slip π, it can also be seen that ES has delaminated
(rather nonphysically) mostly in less dissipative Mode I while
MDLS executed delamination in truly mixed mode.
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Figure 11 Satisfaction of the approximate maximum-dissipation princi-
ple (36a) (left) and (36b) (right) for two discretizations; on
the finer discretization, the differences between the left-hand side
(LHS) and the right-hand side (RHS) of (36) are not visible and
the approximate MDLS is thus very well stress-driven.

and 10mJ. The graphs in Figure 13 concern the case MDLS and show the resultant interface
forces for the three new values of k0. Before the initiation of the damage, all three graphs coin-
cide. Then the higher value of k0 causes the later initiation of rupture but simultaneously lower
level of the plateau and earlier total breakage. The smoothness of the damage response can be
clearly observed in Figure 14. The graphs correspond to the imposed displacement w1=32µm,
for which the interface is partially but not totally damaged for all k0. The distribution of ζ for
small k0 contains an abrupt fall from one to zero, while for the greatest k0 the distribution is
relatively smooth. This also influences the distribution of plastic slip which tends to have less
abrupt variations in its values along the whole interface.
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Figure 12 Deformed and the undeformed original shapes of the bulk layer
for seven selected time instants and the finest discretization. ES
ruptures here about 3× earlier than stress-driven MDLS, cf. also
Figs. 5 and 8. Displacement depicted magnified 2000×.
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Figure 13 Resultant horizontal force as a function of the imposed displace-
ment for various values of the gradient-of-damage coefficient k0
calculated for MDLS.

4.2 Debonding with receding contact

The load, in the form of prescribed displacements, is applied on a part of the top side of
the aluminum bulk layer Γu. The prescribed displacements are increasing during the loading
process. The first-increment of loading is given by w1

2=−τmm and w1
1=0 again with τ=1.2×10−3

for ES and with τ=1.2×10−4 for MDLS, and it is further multiplied by a factor k. The three
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Figure 14 Distribution of the damage parameter ζ and plastic slip π along
ΓC for various values of the gradient-of-damage coefficient k0 at
one selected time instant calculated for MDLS.

discretizations, both in time and space, as in the previous example are used, in particular N=30,
N=60 and N=120.

The process of debonding is controlled by energies, thus graphs of stored-in-adhesive and
dissipated energies are shown in Figure 15. In the loading process, a large amount of the energy
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Figure 15 Evolution of energies of both ES and MDLS as functions of time-
dependent loading for the finest discretization. In particular, ES
ruptures here about 2× earlier than MDLS.

is stored in the bulk. This energy is not influenced too much by the rupture of the interface
and is not plotted here for the sake of clarity. Nevertheless, the energy stored in the adhesive
changes significantly, together with the energy dissipated.

The ES case exhibits a too early debonding which in fact, as will be seen later, does not
cover the all expected evolution of debonding. The energy releases step-wise from the adhesive
at the moments of some crack length increase and releases continuously with the evolution of
plastic slip. In this type of loading, it might be difficult to make the total damage of the
interface adhesive as the prescribed displacements is only vertical, keeping the zero horizontal
displacement at the top side of the bulk layer. For finer meshes, it took a lot of time-steps to
meet the conditions of the total rupture — the curve for the finest mesh evolve far behind the
breakage point of the coarser ones. In the continuous case, the midpoint of the interface never
breaks. Thus, only a part of the load history is plotted which essentially includes the debonding
of the lateral not loaded parts of the bulk layer.

Figure 16 shows the energy tolerances provided by the energy estimate (54) for ES and by
difference Eup−Eest for MDLS. A decreasing variation in the energy estimation bounds for finer
discretizations and sharp peaks of these tolerances at the instants of sudden changes at the
interface can be observed. The difference is naturally greater for the MDLS concept.
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Figure 16 Convergence with refining space/time discretization of the error
in the energy balance as a function of time (through the loading
w1) for both solution concepts.

Let us look at the interface displacements and tractions obtained by the finest discretization
shown in Figure 17. The results are symmetric so only a half of the interface for x1≥125mm is
shown. The first crack appears for k=31 (w31

2 =9.3×10−3mm) in ES and in fact the whole not
loaded part of the bulk layer is released. Figure 17(a) shows the distributions of the scaled dis-
placements and tractions along ΓC before the crack appears, k=30, and right after its initiation.

It is clear that below Γu, where displacements are prescribed (the end point of Γu is at
x1=175mm) compressive stresses appear in the adhesive. Close to this zone, a small area of
tensile loading can be observed before originating a crack, see also the detail in Figure 18,
farther from this area the deformation decreases. The crack initiation and evolution is abrupt
— the problem suddenly changes to a receding-contact phenomenon. This change is surprising
because there were almost no tractions at the end points of the bulk layer. This could be
understood recalling the character of ES – it is a global minimum, or its approximation.

It is interesting to observe also the tangential components. Close to the end point of Γu, the
plastification in the adhesive developed before the crack appears — the tangential components
do not obey the linear relation in this zone. After debonding, the traction along the debodned
part of ΓC vanishes, unless ΓC is in contact – this is the difference in the extent of the vanishing
tangential and normal tractions in the bottom pictures in both 17(a) and (b).

In the ES case, some part of the deformation history evidently misses, but this part was,
however, found by MDLS. In the latter case, the crack was initiated below the endpoint of
the load for k=697 (w697

2 =0.02091mm) and grows until k=730 (w730
2 =0.0219mm) when the

unloaded part of the bulk layer is released. Figure 17(b) shows the distributions of the scaled
displacements and tractions along ΓC before the crack appears, k=697, and at some intermediate
time step k=715. The difference between these two k in fact corresponds to the time step used
in the ES case. Here, it is clear from the graphs that the crack extends along a part of the
interface where tractions are zero and normal displacements u2 are positive. The presence of the
plastification at the end part of the bulk layer (x1≥225) is evident as the linear relation between
scaled tangential displacement and traction is not satisfied but the relation between the normal
components still holds.

Some aspects of the convergence with the discretization refinement are illustrated in Fig-
ures 18 and 19. Compared to the previous example in Section 4.1, the convergence for the used
meshes is observed also after the crack onset, the difference between finer meshes is smaller than
between coarser meshes with no difference for MDLS case. In particular, Figure 18, shows the
distribution of the displacements in a part of the bottom side of the bulk layer. In the plots,
the load steps are taken such that for none of the discretizations a crack appears – the top plots
in both 18(a) and (b), or the interface is broken for all the discretizations – the bottom plots.
The distribution of the plotted functions is really similar, as it can be observed for convergent
solutions. According to the above, a small area of tensile stretch is shown before the damage
initiation. Though not the same in magnitude, the shape of distribution of displacements is
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0

5

10

15

20

125 150 175 200 225 250

k
s
u
1
,
(−

t 1
)
[M

P
a
]

x1 [mm]

ksu1,k=30
−t1,k=30

-90

-60

-30

0

30

60

125 150 175 200 225 250

k
n
u
2
,
(−

t 2
)
[M

P
a
]

x1 [mm]

knu2,k=30
−t2,k=30

0

5

10

15

20

125 150 175 200 225 250

k
s
u
1
,
(−

t 1
)
[M

P
a
]

x1 [mm]

ksu1,k=31
−t1,k=31

-90

-60

-30

0

30

60

125 150 175 200 225 250

k
n
u
2
,
(−

t 2
)
[M

P
a
]

x1 [mm]

knu2,k=31
−t2,k=31

(a) The energetic-solution (ES) variant:

0

20

40

60

80

125 150 175 200 225 250

k
s
u
1
,
(−

t 1
)
[M

P
a]

x1 [mm]

ksu1,k=697
−t1,k=697

-200

-150

-100

-50

0

50

100

125 150 175 200 225 250

k
n
u
2
,
(−

t 2
)
[M

P
a]

x1 [mm]

knu2,k=697
−t2,k=697

0

20

40

60

80

125 150 175 200 225 250

k
s
u
1
,
(−

t 1
)
[M

P
a]

x1 [mm]

ksu1,k=715
−t1,k=715

-200

-150

-100

-50

0

50

100

125 150 175 200 225 250

k
n
u
2
,
(−

t 2
)
[M

P
a]

x1 [mm]

knu2,k=715
−t2,k=715

(b) The maximally-dissipative local-solution (MDLS) variant:

Figure 17 Distribution of scaled displacements and tractions along the
glued and debonded interface before and right after the crack
initiation; the finest discretization is used.

similar both for ES and for MDLS.
Figure 19 shows the state of damage and distribution of plastic slip for a later time step,

in fact for both solution concepts the same imposed displacement is applied though of course
at different time steps. As expected, the damage usually achieves only one of the limit values:
undamaged ‘1’ or fully damaged ‘0’. There is no difference for all the three discretizations.
Nevertheless, the plastic slip smoothes out for the finer discretizations. Two hats in the distri-
bution for ES appear due to the step-wise breakage of the interface. The first crack included the
whole plastic zone developed prior to the crack initiation (the right hat) whose evolution has
stopped after damage. Later, another evolving plastic zone appeared (the left hat), compare
with Figure 17(a). In the MDLS case the crack length increases continuously and never goes
beyond the plastic region so that the distribution of plastic slip is not split into two parts.

As we mentioned in the previous example, it is difficult (and even not always automatic) to
guarantee the convergence in the MDLS case towards truly stress-driven local solutions. There-
fore, it is again worth checking a-posteriori approximate maximum dissipation principle (36).
Like in the previous example in Figure 11, now Figure 20 shows the differences in (36). The dif-
ferences are however greater then in the previous example, which is not much surprising because
this example exhibits clear tendency of delaminating bigger portion of ΓC at once and then some
rupture may happen under sub-critical driving force and the maximum-dissipation principle may
tend to be not completely satisfied, even though it need not be related to unphysically too-early
ruptures. This is therefore an interesting example where these effects seem to be slightly visible
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(b) The maximally-dissipative local-solution (MDLS) variant:

Figure 18 Convergence with refining space/time discretization of the dis-
tribution of displacements along a part of the glued and debonded
interface: (a) w=8.4µm (top) and w=9.6µm (bottom), (b)
w=20.88µm (top) and w=23.4µm (bottom).

and it is worth observing spatial distribution along ΓC of the residua in AMDP (37) counted for
t=T to see where this possible deviation from the IMDP occurred. To this goal, we can re-write
AMDP (37) as:

∆Rζ,τ (T ) =

∫

ΓC

(
Gd

(
ζKτ −ζ0

)
−

T/τ∑

k=1

fk−1
τ (ζkτ − ζk−1

τ )

)
dS, fkτ ∈−∂ζE(ukτ , ζk−1

τ , πkτ ), (55a)

∆Rπ,τ (T ) =

∫

ΓC

( T/τ∑

k=1

σyield
∣∣πkτ−πk−1

τ

∣∣− gk−1
τ (πkτ−πk−1

τ )

)
dS, gkτ ∈−∂πE(ukτ , ζkτ , πkτ ), (55b)

and we can then display the integrands in (55) as a function of x∈ΓC. This is done in Figure 21
even for three different discretizations, but it seems to reveal quite nice numerical convergence
so that, expectedly, the maximum-dissipation principle is well satisfied even in this relatively
sophisticated experiment. Again, it documents that the fractional-step-type algorithm (33)
efficiently calculated stress-driven local solution.

Finally, the scaled deformed shape of the bulk layer is shown in Figure 22 for various load
steps and the finest discretization in comparison with the original undeformed one. The partic-
ular load steps selected for ES are: the first step k=1, the first crack observation (before and
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(b) The maximally-dissipative local-solution (MDLS) variant:

Figure 19 Convergence with refining space/time discretization of the dis-
tribution of the damage parameter ζ and scaled plastic slip π
along a part of the glued and debonded interface for w=30µm.
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Figure 20 Satisfaction of the approximate maximum-dissipation principle
(36a) (left) and (36b) (right) for two discretizations.

after) k=30 and k=31 and a successive crack length change k=45. The total debonding of ΓC

which occured at the load-step k=1695 is not plotted as it seems physically unrealistic. For
MDLS the plotted data correspond to: the first step k=1, the step right before the first crack
observation k=697, an intermediate state for k=715 and two time steps k=729 and k=730 which
correspond to debonding of the whole not loaded part, just before and after, respectively. As
mentioned above, the loading causes receding contact after debonding.

5 Conclusions

An energy-based model for interface debonding with a fracture-mode-sensitive crack growth un-
der rate-independent conditions has been considered. The sensitivity of the model to opening
Mode I and shearing Mode II cracks has been achieved by considering two internal variables
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Figure 21 Convergence with refining space/time discretization of the inte-
grands in (55), documenting spatial distribution along ΓC of the
numerical error of the approximate Hill maximum dissipation
principle for the damage parameter ζ (left) and plastic slip π
(right).
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(a) The energetic-solution (ES) variant (time-step τ=3×10−4):
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(b) The maximally-dissipative local-solution (MDLS) variant (time-step τ=3×10−5):

Figure 22 Deformed and the undeformed original undeformed shapes of the
bulk layer for various time instances and the finest discretiza-
tion. ES ruptures here about 2× earlier than the stress-driven
(i.e. MDLS) one, cf. also Fig. 15. Displacement depicted mag-
nified 150×.

along the interface: damage parameter ζ and plastic slip π, the latter being inactive in Mode
I. The numerical implementation of spatial discretization via SGBEM has permitted the whole
problem to be defined only by the boundary and interface data. Two solution concepts have been
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applied and compared in the numerical analysis: The energy-conserving concept of energetic so-
lution (ES) and a stress-driven, maximally-dissipative local-solution concept (MDLS). Simple
two-dimensional examples have validated the model and have shown that it provides expected
results: typically, due to ES’s search for global minimizers of the energetic functional, they
may rupture earlier under less work of external loading (thus dissipating less energy, exhibiting
sometimes unphysical tendency to prefer less dissipative Mode I) than MDLS’s. Examples of
such not entirely realistic responses are on Figure 12(a) and 22(a). While for the used MDLS
concept, some of the expected responses have been achieved together with a-posteriori validation
of (an approximate variant of an integrated version of) the Hill’s maximum-dissipation princi-
ple. Another possibility of elimination or reducing of the undesired attributes of ES includes
adding a small viscosity similarly as in [42] for mixed-mode insensitive variant although it is
computationally very difficult to obtain as documented in [46], and is intended to discuss it in
future releases.

Acknowledgement

The authors are indebted to an anonymous reviewer for many useful suggestions that improved
the presentation in particular aspects. A part of the work has been accomplished during the
stages of R.V. and T.R. at Universidad de Sevilla whose hospitality is acknowledged. Moreover,
the authors acknowledge the support from the Spanish Ministry of Education (Ref. SAB2010-
0082) and Spanish Ministry of Economy and Competitiveness (Project MAT2012-37387), from
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brittle interface model to the crack initiation and propagation at fibre-matrix interface
under biaxial transverse loads. ArXiv preprint, arXiv:1311.4596.

[32] A. Matzenmiller, S. Gerlach, M. Fiolka. A critical analysis of interface constitutive models
for the simulation of delamination in composites and failure of adhesive bonds. J. Mech.
Mater. Struct., 5:185–211, 2010.
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Nonlin. Anal., Th. Meth. Appl. (in print, DOI: 10.1016/j.na.2014.09.020).
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