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Abstract

In this paper, we present energy-stable numerical schemes for a Smectic-A liquid crystal model.
This model involve the hydrodynamic velocity-pressure macroscopic variables (u, p) and the micro-
scopic order parameter of Smectic-A liquid crystals, where its molecules have a uniaxial orientational
order and a positional order by layers of normal and unitary vector n.

We start from the formulation given in [E’97] by using the so-called layer variable φ such that
n = ∇φ and the level sets of φ describe the layer structure of the Smectic-A liquid crystal. Then,
a strongly non-linear parabolic system is derived coupling velocity and pressure unknowns of the
Navier-Stokes equations (u, p) with a fourth order parabolic equation for φ.

We will give a reformulation as a mixed second order problem which let us to define some
new energy-stable numerical schemes, by using second order finite differences in time and C0-
finite elements in space. Finally, numerical simulations are presented for 2D-domains, showing the
evolution of the system until it reaches an equilibrium configuration.

Up to our knowledge, there is not any previous numerical analysis for this type of models.

Key words: Liquid crystal, micro-macro model, second order time scheme, finite elements, energy
stability
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1 Introduction

The topic of Liquid Crystals (LCs) is a multidisciplinary field related to Chemistry, Engineering,
Biology, Medicine, Physics and Mathematics. Usually, the discovery of liquid crystals is attributed
to botanist F. Reinitzer who in 1888 found a substance that appeared to have two different melting
points. A year later, O. Lehmann solved the problem with the description of a new state of matter
midway between a liquid and a crystal. In 1922, G. Friedel spoke for the first time about mesophases
and in 1991 Pierre-Gilles de Gennes was awarded with Nobel Prize in Physics for his contributions
related to LCs, in particular, for discovering that ”methods developed for studying order phenomena
in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals
and polymers”. LCs are a state of matter that can be viewed as intermediate phases between solids
and isotropic fluids. Indeed, macroscopically such materials may flow like fluids but at microscopic
scale their molecules have orientational properties (due to elasticity effects) and they can experience
deformations as elastic solids, hence LCs can be considered as anisotropic liquids.

Furthermore, LCs can be divided into thermotropic and lyotropic phases, where thermotropic
phases change their state as the temperature is varying while lyotropic phase change of state as
concentration is varying.
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Examples of LCs can be widely found in the natural world and in technological applications.
For instance, most contemporary electronic devices use LCs for their displays and lyotropic liquid-
crystalline phases can be found in living systems, forming proteins and cell membranes.

Within thermotropic LCs can be distinguished into two main different phases: Nematic and Smectic
(see Figure 1.1 for schematic description of Nematic and Smectic phases). In Nematic phases, the rod-
shaped molecules have no positional order, but molecules self-align to have a long-range directional
order with their long axes roughly parallel. Thus, the molecules are free to flow and their center of
mass positions are randomly distributed as in a liquid, although they still maintain their long-range
directional order. Moreover, most Nematics are uniaxial, i.e., they have one axis that is longer and
preferred.

In Smectic phases (which are found at lower temperatures than the Nematic ones) molecules form
well-defined layers that can slide over one another, i.e., Smectics are thus positionally ordered along
one direction and are liquid-like within the layers. In particular, in Smectic-A phases, molecules are
oriented along the normal vector of the layer, while in Smectic-C phases they are tilted away from the
normal vector of the layer. We refer the reader to [Collings’90] for further information on the physics
and properties of the different LCs that can be found in the nature.

Figure 1.1: Different phases of Liquid Crystals

The dynamics interaction between the macroscopic level and the microscopic order of molecules
are modeled with (strongly nonlinear) parabolic PDE systems, involving:

• the macroscopic fluid dynamics in velocity-pressure variables of the Navier-Stokes type,

• a microscopic order variable modeled by a (vectorial) gradient flow system.
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We assume LCs confined in an open bounded domain Ω ⊂ RN (N = 2 or 3) with boundary ∂Ω
which is thermally isolated during the time interval [0,+∞). Then, the macroscopic dynamic can
be described by the velocity-pressure variables u : Ω × [0,+∞) → RN and p : Ω × [0,+∞) → R
respectively. For isotropic fluids, these variables are governed by the Navier-Stokes equations, but in
LCs the anisotropic microscopic configurations modify the macroscopic dynamics, and reciprocally,
the macroscopic movement has an influence on the orientation of molecules.

The mathematical systems related with LCs have been widely study in recent times, where most of
these works are devoted to study Nematic phases. A simplified model for Nematic LCs was introduced
by Lin in [Lin’89] and studied by Lin and Liu in [Lin-Liu’95, Lin-Liu’00] and by Coutand and Shkoller
in [Coutand-Shkoller’01]. A simplified model for Smectic-A LC was proposed by E in [E’97] and
studied by Liu in [Liu’00], by Climent and Guillén in [Climent-Guillen’10, Climent-Guillen’14] and
by Wu and Segatti in [Wu-Segatti]. Both are simplified models from the original equations in the
continuum theory of liquid crystals due to Ericksen and Leslie, which was developed during the period
of 1958 through 1968. We refer the reader to [Climent-Guillen’13] for a detailed review about the
main results in the mathematical analysis of these models.

From the numerical analysis and simulations point of view, most of the effort of researchers have
been focused on approximating Nematic phases. We recommend the reader [Badia-Guillén-Gutiérrez’11,
Tierra-Guillen’14] (and the references therein) as state-of-the-art reviews of numerical schemes to ap-
proximate Nematic LCs and other energy-based models. For Smectic phases, the literature concerning
the development of numerical schemes (and the study of their properties) is still very scarce. The main
concern of this paper is to fulfill this lack of numerical approximations of Smectic phases, presenting
for the first time energy-stable numerical schemes to approximate these systems.

This work is organized as follows: In Section 2, we recall the theory of Smectic-A, starting with
the static Oseen-Frank’s theory and then detailing the dynamics of these systems. Afterwards, we
introduce a reformulation of the system that allows the spatial approximation of the system considering
C0 finite elements.

Then, numerical schemes to approximate this reformulation of the system are presented in Sec-
tion 3. We first introduce a finite element scheme for the spatial approximation and afterwards we
present a generic second order finite differences approximation in time.

We have carried out numerical simulations to study the performance of the proposed schemes.
In particular, we have detailed the results of these computations in Section 4. Finally, we state the
conclusion of our work in Section 5.

2 Smectic-A Liquid Crystals

2.1 Static Oseen-Frank’s theory of Smectic-A LCs

Let Ω ⊂ Rd (d = 2, 3) be the bounded domain occupied by the LC, with boundary ∂Ω. The equilibrium
states correspond to a minimum of a (elastic) free energy governing the system. An usual form for
this energy is the Oseen-Frank free energy:

Eela(d,∇d) =

∫
Ω

(
k1

2
(∇ · d)2 +

k2

2
(d · (∇× d))2 +

k3

2
|d× (∇× d)|2

)
dx, (2.1)

where d = d(x) is the director vector and ki > 0 are elastic constants (hereafter, | · | denotes the
euclidean norm). A further simplification is the equal constant case k1 = k2 = k3(= 1), where Eela
reduces to the Dirichlet energy functional:

Eela =
1

2

∫
Ω

(∇ · d)2dx. (2.2)
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For uniaxial Smectic LCs, the molecules are arranged in almost incompressible layers (whose normal
vector is denoted by n) of almost constant width. Moreover, each layer consists of a single optical
axis d perpendicular to the layer. In particular, for Smectic-A LCs, both unitary vectors coincide

d = n. (2.3)

On the other hand, due to the incompressibility of the layers

∇× n = 0, (2.4)

there exists a potential function φ : Ω→ R such that

n = ∇φ, (2.5)

and the level sets of φ will represent the layer structure. Moreover, if the domain Ω has a simply
connected boundary ∂Ω, then φ can be computed via the Poisson-Neumann problem:

−∆φ = −∇ · n in Ω, ∇φ ·m = n ·m on ∂Ω, (2.6)

where m denotes the exterior normal vector to ∂Ω.
Since d = n, ∇× n = 0 and n = ∇φ, the (elastic) Dirichlet functional can be reduced to

Eela =
1

2

∫
Ω

(∇ · n)2dx =
1

2

∫
Ω

(∆φ)2dx (2.7)

and the static minimization problem has a convex functional but with a non-convex constraint:

min
φ
Eela(∆φ) subject to |∇φ| = 1. (2.8)

The optimality system associates to this minimization problem reads:

δEela
δφ

:= ∆2φ−∇ · (ξ∇φ) = 0, |∇φ| = 1, (2.9)

where ξ is a Lagrange multiplier. In order to relax the non-convex constraint |∇φ| = 1, it is usual
to consider the following regularized energy (by considering a penalization of the Ginzburg-Landau
type):

E(φ) = Eela(∆φ) + Epen(∇φ) :=
1

2

∫
Ω
|∆φ|2 +

1

ε2

∫
Ω
F (∇φ), F (n) =

1

4
(|n|2 − 1)2. (2.10)

Then the relaxed minimization problem is now a problem without constraints but for a non-convex
functional:

min
φ
E(φ). (2.11)

The optimality system associated to this problem reads〈
δE(φ)

δφ

〉
=

∫
Ω

∆φ∆φ+
1

ε2
f(∇φ) · ∇φ = 0 ∀φ, (2.12)

where f(n) = ∇nF (n) = (|n|2 − 1)n. In order to show which boundary conditions are admissible,
we need to split the computations into two different steps:
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1. Assume ∆φ|∂Ω = 0 [N1] or ∇φ ·m|∂Ω = 0 [D2], arriving at〈
δE(φ)

δφ

〉
= −

∫
Ω
w · ∇φ, w := ∇∆φ− 1

ε2
f(∇φ). (2.13)

2. Then, assume w ·m|∂Ω = 0 [N2] or φ|∂Ω = 0 [D1], to arrive at

δE(φ)

δφ
= ∇ ·w = ∆2φ− 1

ε2
∇ · f(∇φ) in Ω. (2.14)

Therefore, the admissible combinations for boundary conditions are:

[D1-D2] φ|∂Ω = φ1, ∇φ ·m|∂Ω = φ2,

[D1-N1] φ|∂Ω = φ1, ∆φ|∂Ω = 0,

[D2-N2] ∇φ ·m|∂Ω = φ2, w ·m|∂Ω = 0,

[N1-N2] ∆φ|∂Ω = 0, w ·m|∂Ω = 0.

(2.15)

Note that pairs [D1-N2] and [D2-N1] are not admissible boundary conditions in order to get (2.14).

2.2 Dynamics of Smectic-A LCs.

We are interested in the dynamics of Smectic-A LCs confined in the domain Ω during a time interval
(0, T ).

The macroscopic dynamic variables are denoted by (u, p), that represents the incompressible ve-
locity and the pressure of the flow, respectively. For the well known case of isotropic newtonian
fluids (assuming constant density), the equilibrium of forces is modeled in terms of these macroscopic
variables (u, p), arriving at the PDE system (linear momentum system):

Du

Dt
−∇ · σ = 0, ∇ · u = 0 in Ω× (0, T ), (2.16)

where
Du

Dt
= ut + (u · ∇)u is the convective time derivative (the derivative along the streamlines), σ

is the Cauchy stress tensor given by the so-called Stokes’ law:

σ = −pI + 2νD(u), (2.17)

where I represents the N -dimensional identity matrix and D(u) = (∇u +∇ut)/2 is the deformation
tensor (symmetric part of ∇u).

For Smectic-A LCs, we will consider the model proposed by E [E’97], where the elastic (and
dissipative) influence of the order vector n in the linear momentum system is modeled by the following
Cauchy stress tensor:

σ = −p I + σd(D(u),n) + σe(n), n = ∇φ, (2.18)

where σd = σd(D(u),n) is the dissipative (symmetric) stress tensor defined as:

σd = µ1(ntD(u)n)n⊗ n + µ4D(u) + µ5(D(u)n⊗ n + n⊗D(u)n), (2.19)

and σe is the (nonsymmetric) elastic tensor, defined as:

σe = −∇φ⊗w + ∆φ∇(∇φ), (2.20)

where w was defined in (2.13) and ⊗ denotes the tensorial product. Then, it is possible to derive a
PDE system for Smectic-A LC:
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I Conservation of linear momentum derives to the (u, p)-system:

Du

Dt
+∇p−∇ · (σd + λσe) = 0, ∇ · u = 0 in Ω× (0, T ), (2.21)

where λ > 0 is a constant coefficient coupling the kinetic and the elastic energy.

I Conservation of angular momentum derives the φ-equation:

Dφ

Dt
+ γ

δE

δφ
= 0 in Ω× (0, T ), (2.22)

where γ > 0 is a constant coefficient (elastic relaxation time) and
δE

δφ
is defined in (2.14). Note

that this equation can be viewed as a Allen-Cahn type from the phase-field framework.

The elastic tensor σe(n) must be chosen in order to assume that the dynamics is governed by the
(dissipative) energy equality:

d

dt

(
Ekin(u) + λE(φ)

)
+

∫
Ω
σd(D(u),n) : D(u) + λγ

∫
Ω

∣∣∣∣δEδφ
∣∣∣∣2 = 0, (2.23)

where Ekin(u) = 1
2

∫
Ω |u|

2 is the kinetic energy and

σd(D(u),n) : D(u) = µ1(ntD(u)n)2 + µ4|D(u)|2 + µ5|D(u)n|2 ≥ µ4|D(u)|2. (2.24)

Assuming time-independent boundary conditions for φ, that is φt|∂Ω = 0 and ∇φt ·m|∂Ω = 0, this
energy equality is deduced considering∫

Ω
(u-system) · u + λ

∫
Ω

(φ-equation)
δE

δφ
, (2.25)

because the following equality holds [E’97]:

−∇ · σe = −δE(φ)

δφ
∇φ+∇(E(φ)), (2.26)

hence

−
∫

Ω
(∇ · σe) · u +

∫
Ω
u · ∇φ δE

δφ
= 0. (2.27)

Accordingly, the differential problem reads:

(P )



Du

Dt
−∇ · σd(D(u),n) +∇p̃− λ δE

δφ
∇φ = 0 in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

Dφ

Dt
+ γ

δE

δφ
= 0 in Ω× (0, T ),

where σd(D(u),n) is the symmetric tensor defined in (2.19), p̃ = p + λE is a modified potential

function (that for simplicity it is renamed as p) and the expression of
δE

δφ
depending on φ is given in

(2.14). This differential problem must be ended with initial conditions

u|t=0 = u0, φ|t=0 = φ0 in Ω,

6



and the non-slip condition u = 0 on ∂Ω× (0, T ) and one admissible boundary conditions for φ given

in (2.15). For instance, w ·m|∂Ω = 0 (that is [N2]) implies the conservation property
d

dt

∫
Ω
φ = 0.

Note that the equilibrium solutions (u = 0 and φ∗ satisfying
δE

δφ
(φ∗) = 0 and the corresponding

boundary conditions for φ∗) are equilibrium solutions associated to system (P ), where the pressure
reduces to:

p̃ = p+ λE(φ∗) = constant.

The fact that system (P ) satisfies the (dissipative) energy law (2.23), and therefore the free en-
ergy Ekin(u) + λE(φ) has a physical dissipation, play an essential role in the main mathematical
results of problem (P ), which can be summarized as follows (see [Climent-Guillen’13] for a review on
mathematical analysis of Nematic and Smectic-A LCs):

I [Liu’00] Imposing time-independent Dirichlet boundary conditions for φ, one has

1. existence of global in time weak solutions of (P ), satisfying the regularity

φ ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H4(Ω)), (2.28)

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (2.29)

and the energy inequality associated to (2.23) (changing in (2.23) the equality = 0 by the
inequality ≤ 0).

2. existence (and uniqueness) of local in time regular solutions, which is global in time for
large viscosity coefficient µ4 (dominant viscosity case),

3. convergence by subsequences at infinite time towards equilibrium solutions (0, φ?) (with φ?

being a solution of δE
δφ (φ?) = 0).

These results extend the same type of results already obtained for nematic liquid crystal in
[Lin-Liu’95, Lin-Liu’00].

I [Climent-Guillen’10] Imposing time-dependent Dirichlet conditions for φ, one has existence of
time-periodic weak solutions, which are regular for large viscosity µ4.

These results extend the same type of results already obtained for nematic liquid crystal [Climent et al.’10,
Climent et al.’09].

I [Wu-Segatti] Imposing periodic boundary conditions for φ, one has convergence to a unique
equilibrium solution of the whole sequence (u(t), φ(t)) as time t→ +∞.

I [Climent-Guillen’14] Imposing time-independent Dirichlet conditions for φ, one has convergence
to a unique equilibrium solution of the whole sequence (u(t), φ(t)) as time t→ +∞.

2.3 Reformulation as a mixed second order problem

In this section, we derive a new formulation of system (P ) that will allow us to consider numerical
schemes in the C0 finite element framework. For simplicity, we will consider 2D domains and the
[D2-N2] boundary conditions for φ, although it is not difficult to extend the same arguments to the
3D case and other admissible boundary conditions for φ, see (2.15) above.

We start introducing a new unknown

ψ := −∆φ. (2.30)
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Hence, we can rewrite the elastic energy in terms of ψ, i.e.,

Eela =
1

2

∫
Ω

(∆φ)2dx =
1

2

∫
Ω
ψ2dx. (2.31)

Accordingly, we can write the following reformulation of problem (P ) for unknowns (u, p, φ, ψ):

(RP )



Du

Dt
−∇ · σd(D(u),∇φ) +∇p+

λ

γ

(
φt + u · ∇φ

)
∇φ = 0 in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

1

γ

(
φt + u · ∇φ

)
−∆ψ − 1

ε2
∇ · f(∇φ) = 0 in Ω× (0, T ),

−∆φ− ψ = 0 in Ω× (0, T ),

u = 0, ∇φ ·m = 0, (∇φ+
1

ε2
f(∇φ)) ·m = 0, on ∂Ω× (0, T ),

u|t=0 = u0, φ|t=0 = φ0 in Ω.

3 Numerical approximations

In this section, we will introduce a numerical scheme to approximate system (RP ). In particular we
present a C0-finite element approximation in space and a second-order finite difference scheme in time.

3.1 A generic FEM space-discrete scheme

Firstly, we will define a space-discrete scheme using C0-finite elements. Let {Th}h>0 be a regular trian-
gulations family of Ω with h denoting the mesh size. Then, the unknowns (u, p, φ, ψ) are approximated
by the conforming finite element spaces:

(Uh, Ph,Φh,Ψh) ⊂ (H1(Ω), L2(Ω), H1(Ω), H1(Ω)) (3.1)

via the following mixed variational formulation of (RP ): Find

(u(t), p(t), φ(t), ψ(t)) ∈ Uh0 × Ph0 × Φh ×Ψh (3.2)

such that

(
ut, ū

)
+ c
(
u,u, ū

)
+
(
σd(D(u),∇φ), D(ū)

)
−
(
p,∇ · ū

)
+
λ

γ

((
φt + u · ∇φ

)
∇φ, ū

)
= 0,(

∇ · u, p̄
)

= 0,

1

γ

(
φt + u · ∇φ, φ̄

)
+
(
∇ψ,∇φ̄

)
+

1

ε2

(
f(∇φ),∇φ̄

)
= 0,(

∇φ,∇ψ̄
)
−
(
ψ, ψ̄

)
= 0,

(3.3)
for any (ū, p̄, φ̄, ψ̄) ∈ Uh0×Ph0×Φh×Ψh, where Uh0 := Uh∩H1

0(Ω) and Ph0 := Ph∩L2
0(Ω). Hereafter(

·, ·
)

denotes the L2(Ω)-scalar product and c
(
·, ·, ·

)
is the trilinear antisymmetric form defined by

c
(
u,v,w

)
=
(

(u · ∇)v,w
)

+
1

2

(
(∇ · u)v,w

)
∀u,v,w ∈ Uh. (3.4)
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On the other hand, from (2.19) and the symmetry of σd(D(u),∇φ), one has

−
(
∇ · σd(D(u),∇φ), ū

)
=
(
σd(D(u),∇φ), D(ū)

)
= µ1

(
(∇φtD(u)∇φ), (∇φtD(ū)∇φ)

)
+ µ4

(
D(u), D(ū)

)
+ 2µ5

(
D(u)∇φ,D(ū)∇φ

)
.

(3.5)

We assume the following inf-sup stability condition:

I For (Uh0, Ph0): sup
u∈Uh0

(p,∇ · u)

‖u‖H1
0

≥ β1‖p‖L2 for all p ∈ Ph0.

The following choices could be considered [Girault-Raviart’86]:

I (P1−bubble)× P1 for (Uh, Ph), P1 × P1 for (Φh,Ψh).

Lemma 3.1 Each possible solution (u(t), p(t), φ(t), ψ(t)) of the space-discrete scheme (3.3) satisfies
the following space-discrete version of the energy law (2.23):

d

dt
Etot

(
u(t),∇φ(t), ψ(t)

)
+
(
σd(D(u(t)),∇φ(t)), D(u(t))

)
+
λ

γ
‖φt(t) + u(t) · ∇φ(t)‖2L2 = 0, (3.6)

where
Etot(u,∇φ, ψ) := Ekin(u) + λ

(
Eela(ψ) + Epen(∇φ)

)
, (3.7)

with

Ekin(u) =
1

2
‖u‖2L2 , Eela(ψ) =

1

2
‖ψ‖2L2 , Epen(∇φ) =

1

ε2

∫
Ω
F (∇φ). (3.8)

Proof. At the initial time we have ψ(0) = −∆φ(0), so we can replace equation (3.3)4 by its time
derivative (

∇φt,∇ψ̄
)
−
(
ψt, ψ̄

)
= 0,

and then taking (ū, p̄, φ̄, ψ̄) = (u(t), p(t), φt(t), λ ψ(t)) as test functions in the space-discrete scheme
(3.3) and using the equalities

c
(
u(t),u(t),u(t)

)
= 0,

and (
f(∇φ(t)),

d

dt
∇φ(t)

)
=

d

dt

∫
Ω
F (∇φ(t)), (3.9)

one arrives at (3.6).

Remark 3.1 Since (
σd(D(u(t)),∇φ(t)), D(u(t))

)
≥ µ4

∫
Ω
|D(u(t))|2,

from (3.6), one has the following energy inequality

d

dt
Etot

(
u(t),∇φ(t), ψ(t)

)
+ µ4‖D(u(t))‖2L2 +

λ

γ
‖φt(t) + u(t) · ∇φ(t)‖2L2 ≤ 0.
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3.2 Generic second order in time scheme

We assume an uniform partition of [0, T ]: tn = nk, with k = T/N denoting the time step. We consider
fully coupled second order in time semi-implicit finite difference schemes, defined as:

Given (un, φn, ψn), compute (un+1, pn+ 1
2 , φn+1, ψn+ 1

2 ) ∈ Uh0 × Ph0 × Φh ×Wh such that for any
(ū, p̄, φ̄, ψ̄) ∈ Uh0 × Ph0 × Φh ×Wh:

(
δtu

n+1, ū
)

+ c
(
ũ,un+ 1

2 , ū
)

+
(
σd(D(un+ 1

2 ),∇φ̃), D(ū)
)

−
(
pn+ 1

2 ,∇ · ū
)

+
λ

γ

((
δtφ

n+1 + un+ 1
2 · ∇φ̃

)
∇φ̃, ū

)
= 0,(

∇ · un+ 1
2 , p̄
)

= 0,

1

γ

(
δtφ

n+1 + un+ 1
2 · ∇φ̃, φ̄

)
+
(
∇ψn+ 1

2 ,∇φ̄
)

+
1

ε2

(
fk(∇φn+1,∇φn),∇φ̄

)
= 0,(

ψn+1, ψ̄
)
−
(
∇φn+1,∇ψ̄

)
= 0

(3.10)

where δt denotes the discrete time derivative (δta
n+1 := (an+1 − an)/k), unknown pn+ 1

2 is an approx-

imation at midpoint tn+ 1
2 := (tn + tn+1)/2 (directly computed), while un+ 1

2 := (un+1 + un)/2 and

ψn+ 1
2 := (ψn+1 + ψn)/2.

To assure the second order accuracy of the previous scheme, fk(∇φn+1,∇φn), ũ and ∇φ̃ have to

be defined as second order approximations of f(∇φ(tn+ 1
2 )), u(tn+ 1

2 ) and ∇φ(tn+ 1
2 ), respectively.

Lemma 3.2 The following discrete energy inequality holds:

δtEtot(u
n+1,∇φn+1, ψn+1) + µ4‖D(un+ 1

2 )‖2L2(Ω) +
λ

γ

∥∥δtφn+1 + un+ 1
2 · ∇φ̃

∥∥2

L2(Ω)
+
λ

ε2
NDn+1

phobic ≤ 0,

(3.11)
where

NDn+1
phobic =

∫
Ω
fk(∇φn+1,∇φn) · δt∇φn+1 − δt

(∫
Ω
F (∇φn+1)

)
.

Proof. Considering ψ0 = PL
2

Ψh
(−∆φ0) (where PL

2

Ψh
denotes the L2-projection onto Ψh), by induction

and using from the previous time step that(
ψn, ψ̄

)
− (∇φn,∇ψ̄) = 0,

we can replace equation (3.10)5 by its discrete time derivative(
δtψ

n+1, ψ̄
)
−
(
δtφ

n+1,∇ψ̄
)

= 0.

Then, taking as test functions in the scheme (3.10)

(ū, p̄, φ̄, ψ̄) = (un+ 1
2 , pn+ 1

2 , λ δtφ
n+1, λ ψn+ 1

2 ),

the term
(
δtφ

n+1,∇ψn+ 1
2

)
cancels, and by using the expressions

c
(
ũ,un+ 1

2 ,un+ 1
2

)
= 0, (3.12)

and (
σd(D(un+ 1

2 ),∇φ̃), D(un+ 1
2 )
)
≥ µ4

∫
Ω
|D(un+ 1

2 )|2, (3.13)

one arrives at (3.11).
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Definition 3.1 The scheme (3.10) is energy-stable if it holds

δtEtot(u
n+1,∇φn+1, ψn+1) + µ4‖D(un+ 1

2 )‖2L2(Ω) +
λ

γ

∥∥δtφn+1 + un+ 1
2 · ∇φ̃

∥∥2

L2(Ω)
≤ 0. (3.14)

In particular, energy-stable schemes satisfy the energy decreasing in time property,

Etot(u
n+1,∇φn+1, ψn+1) ≤ Etot(un,∇φn, ψn), ∀n.

In particular, depending on the approximation considered of fk(∇φn+1,∇φn) we will obtain different
numerical schemes, with different discrete energy laws. We refer the reader to [Tierra-Guillen’14] for
more detailed information about different ways of efficient handling this term.

Lemma 3.3 (Global energy-stability) Assuming the scheme (3.10) is energy-stable, then the fol-
lowing estimates hold:

un+1 in l2(0, T ;H1
0), ψn+1 in l∞(0, T ;L2), and ∇φn+1 in l4(0, T ;L4).

Proof. By induction respect to the time step n, (3.14) implies the following bounds independent of
k, h, ε (if |u0|2 + |ψ0|2 ≤ C and

∫
Ω F (∇φ0) ≤ C ε2, with C > 0 independent of k, h and ε):

Etot(u
n+1,∇φn+1, ψn+1) ≤ C, k

∑
n

(
‖D(un+1)‖2L2(Ω) +

∥∥δtφn+1 + un+ 1
2 · ∇φ̃

∥∥2

L2(Ω)

)
≤ C, (3.15)

hence the following (k, h, ε)-independent estimates hold

un+1 and ψn+1 in l∞(0, T ;L2),
1

ε2

∫
Ω
F (∇φn+1) in l∞(0, T ),

D(un+1) in l2(0, T ;L2).

In particular, by applying Korn’s inequality to un+1, one also has the (k, h, ε)-independent estimate

un+1 in l2(0, T ;H1
0).

On the other hand, owing to the inequality
∫

Ω F (∇φ) ≥
(
‖∇φ‖4L4(Ω)− |Ω|

)
, one also has the following

(k, h)-independent estimate
∇φn+1 is bounded in l4(0, T ;L4),

although this bound depends on ε.

3.2.1 How to define fk(∇φn+1,∇φn)

There are several possible ways of approximating potential f(∇φ) (check [Tierra-Guillen’14] for a de-
tailed review). Indeed, in the last years many works from different physical applications have appeared
in the literature, presenting new ways of dealing with this kind of potentials. For the Cahn-Hilliard
equation, implicit approximations have been often considered [Elliot-French’89, Elliot-French’87, Elliot-French-Milner’89,
Feng-Prohl’04, Copetti-Elliot’92, Gomez et al.’08] where a Newton method is usually employed in or-
der to compute the nonlinear scheme. There is an implicit-explicit approximation of the potential
that does not introduce any numerical dissipation which have been widely used in phase field mod-
els [Du-Nicolaides’91, Feng’06, Hua et al.’11, Hyon-Kwak-Liu’10] and in the Liquid Crystals context
[Lin-Liu-Zhang’07]. On the other hand, many authors split the potential into a convex and a non-
convex part in order to assure the existence of some numerical dissipation to obtain a unconditional
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energy-stable scheme [Eyre, Becker-Feng-Prohl’08, Hu et al.’09, Kim-Kang-Lowengrub’04, Wise’10,
Mello-Filho’05, Gomez-Hughes’11], although the resulting schemes are nonlinear. The idea of split-
ting the potential has been also considered for thin film epitaxy [Shen et al.’12]. Moreover, some
linear schemes have been studied in [Shen-Yang’10, Badia-Guillén-Gutiérrez’11, Guillen-Tierra’13,
Guillen-Tierra’14, Wu-van Zwieten-van der Zee’13].

Solvability of scheme (3.10) will depend on the approximation of the potential term fk(∇φn+1,∇φn).
In the case of energy-stable schemes (non-linear schemes), solvability follows from the discrete en-
ergy law (3.11) and either an application of the Brouwer fixed-point theorem (cf. Corollary 1.1 of
[Girault-Raviart’86]) or an application of the Leray-Schauder fixed-point theorem in a finite dimen-
sional setting. But, the uniqueness of these nonlinear schemes is not clear in general, depending on
the behavior of

λ

ε2k

(
fk(∇φn+1,∇φn)− fk(∇φ̃n+1,∇φn),∇φn+1 −∇φ̃n+1

)
(3.16)

where ∇φn+1 and ∇φ̃n+1 are two possible solutions of the scheme. In fact, using a convex-concave
semi-implicit approximation (assuming implicitly the convex part and explicitly the concave one) the
uniqueness is deduced from the monotony of fk(·,∇φn) (because the convex part of the potential is
treated implicitly). In the case of the concave part treated implicitly, one can not deduce unconditional
uniqueness and a constraint of time step k small enough must be imposed.

3.2.2 How to define ũ and ∇φ̃

The scheme (3.10) has been designed as second order approximations of the associated model, but it

is necessary to define ũ and ∇φ̃ as second order approximations of u(tn+ 1
2 ) and n(tn+ 1

2 ), respectively.
We propose two different ways of dealing with these terms:

1. The first one consists on choosing a Crank-Nicolson approach,

ũ = (un+1 + un)/2 and ∇φ̃ = (∇φn+1 +∇φn)/2. (3.17)

In this case we obtain a nonlinear one-step scheme.

2. The second way consists on using a BDF2 approximation for each one of the unknowns, i.e.,

ũ = (3un − un−1)/2 and ∇φ̃ = (3∇φn −∇φn−1)/2. (3.18)

Then, using these two-step approximations, the linearity and the solvability conditions of the
schemes will depend just on the choice of the potential term fk(∇φn+1,∇φn).

4 Numerical simulations

In this section we study the behavior of the numerical schemes presented through the paper. In
particular, we will focus on the second order scheme obtained using the generic scheme (3.10) with
the linear potential approximation OD2 (whose efficiency have been studied for the Cahn-Hilliard
equation in [Tierra-Guillen’14]):

fk(∇φn+1,∇φn) = f(∇φn) +
1

2
f ′(∇φn)(∇φn+1 −∇φn), (4.1)

that it is a second order in time approximation of the potential f(∇φ(tn+ 1
2 )). In particular, for the

Ginzburg-Landau potential f(∇φ) considered in this paper, a direct computation yields to

fk(∇φn+1,∇φn) = (∇φn · ∇φn+1)∇φn + |∇φn|2∇φ
n+1 −∇φn

2
− ∇φ

n+1 +∇φn

2
. (4.2)
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By using ideas from [Guillen-Tierra’13, Guillen-Tierra’14], the unique solvability of the scheme (3.10)
using the approximation (4.2) can be assured under the constraint k < 2ε2/γ. Nevertheless, energy-
stability of scheme (3.10) and (4.2) (possibly assuming constraints of type k small enough in function
of h and ε), remain as an open problem.

In order to complete a fully linear scheme, we take the linear BDF2 approximations presented in
(3.18).

The domain considered is Ω = (−1, 1)2 with an uniform space partition of size h = 1/32, the time
step set to k = 10−5 and the physical parameters set to µ1 = µ4 = µ5 = λ = γ = 1 and ε = 0.05.
A finite element approximation is considered in space, using the software FreeFem++ [Hetch’12] for
carrying out the simulations under the following choices for the discrete spaces:

(u, p) ∼ P2 × P1 and (φ, ψ) ∼ P1 × P1.

We consider the initial conditions

φ(0) = sin(x) cos(y)2, ψ(0) = −∆φ(0), u1(0) = 0, u2(0) = 0,

the boundary conditions

u = ∇φ ·m = (∇ψ +
1

ε2
f(∇φ)) ·m = 0 on ∂Ω

(which correspond to [D2-N2] in (2.15)) and we compute a first step (n1,u1) using the scheme (3.10)
with the Crank-Nicolson approximation described in (3.17), i.e.,

ũ = (un+1 + un)/2 and ñ = (nn+1 + nn)/2,

in order to be able to use the BDF2 approximation for ũ and ñ in the rest of time iterations.
The dynamics of the layer φ and the velocity field u are presented in Figures 4.1-4.2 while in

Figures 4.3-4.4 we plot the evolution of the kinetic and elastic energy. The dynamics consists on the
deformation of the layer configuration to reach an equilibrium configuration, that induces movement
in the fluid part. Moreover, the total energy dissipates until there are no changes on the layer and on
the velocity field, i.e., the system is reaching an equilibrium configuration.
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Figure 4.1: From left to right and up to down, the evolution of φ in time t =
0.00001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035 and 0.04
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Figure 4.2: From left to right and up to down, the evolution of φ in time t = 0.045, 0.05, 0.06, 0.07, 0.08
and 0.086
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Figure 4.3: Kinetic energy

15



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
20

40

60

80

100

120

140

Time

E
la

s
ti
c
 E

n
e
rg

y

Smectic−A simulations. k=10
−5

 

 

OD2

Figure 4.4: Elastic energy

5 Conclusions

In this paper, we have presented a new reformulation of the Smectic-A liquid crystals system, where
a new unknown ψ = −∆φ have been introduced in order to arrive at a mixed second-order problem.
This new formulation allows us to recover a dissipative energy law, that is in correspondence with the
energy law associated to the original problem.

We approximate this new formulation using second-order finite differences in time and by C0-finite
elements in space. For this scheme, we deduce a discrete version of the dissipative energy law derived
in the continuous problem.

Finally, numerical simulations are reported to show that the proposed scheme capture the dynamics
of Smectic-A liquid crystals. More extensive numerical tests and studies of other effects, such as the
influence of physical parameters and the interaction with other type of fluids will be also investigated
in the future.
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[Guillen-Tierra’13] Guillén-González, F.; Tierra, G.; On linear schemes for a Cahn Hilliard Diffuse
Interface Model. J. Comput Physics. 234 (2013) 140-171.
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