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Abstract. We analyze our non-linear multigrid method presented in [3], applied to the partial
eigenvalue problem Ax = λx with symmetric, positive definite matrix A. The theory is then extended
to the generalized eigenvalue problem Ax = λBx with symmetric, positive definite matrices A and
B. The extension follows from a trivial argument. We prove that a coarse-space of a modest size can
be employed, provided its order of approximation is sufficiently high. The demands on the order of
approximation of the coarse-space are moderate.
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1. Introduction. In this paper, we analyze the non-linear multigrid of [3]
applied to the partial eigenvalue problem Ax = λx with symmetric, positive definite
matrix A. The theory is then extended to the generalized eigenvalue problem
Ax = λBx with symmetric, positive definite matrices A and B. The convergence
proof is local. This means that we prove rapid convergence assuming the input
iterate is sufficiently close to the solution. However, the assumption on the input
iterate is very weak; the Rayleigh quotient R(x) of the approximation x only has to
be smaller than the second eigenvalue. As a consequence, the convergence estimate
has a reasonable global significance. The key result shows that if a small coarse-space
(one obtained by aggressive coarsening) with sufficient order of approximation p is
used, the rate of convergence Q(x) satisfies

lim
cond(A)→∞

Q(x) = 0.(1.1)

The demand on the order of approximation of the coarse-space is by no means
extreme. For A being obtained by a proper discretization of an H1-equivalent form,
we can use a coarse-space exactly approximating linear functions with the resolution
H = hα, α > 1/2, while still guaranteeing (1.1). Here, h is the resolution on the fine
level.
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Republic (kopincov@kma.zcu.cz)
§Department of mathematics, University of West Bohemia, Univerzitńı 22, 306 14 Pilsen, Czech
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Thus, assuming large cond(A) (large problem), we prove extremely rapid
convergence for a small coarse-space with sufficient order of approximation p. The
convergence theory is fully algebraic; the verification of the assumptions means
to prove certain approximation property of the prolongator (coarse-space). The
approximation condition we need to be satisfied is a kind of weak approximation
condition with Aβ norm on the right-hand side and `2 (Euclidean) norm on the left-
hand side. The case of interest is β being integer larger than 1. It is therefore necessary
to control the approximation in `2-norm only.

The theory is developed for the eigenvalue problem Ax = λv with symmetric,
positive definite matrix A. Its extension to generalized eigenvalue problem Ax = λBx,
with both matrices A and B being symmetric, positive definite, follows from a trivial
argument.

The method of [3] is a special type of Exact Interpolation Scheme (EIS) proposed
by Brandt with collaborators in [4, 5] and long before that, by Mandel and Sekerka
in [20]. EIS is a non-linear multigrid scheme with the prolongator constructed
so that the current approximation x belongs to its range. While the authors of
[4, 5] use a quite complicated way of guaranteeing x ∈ Range P , we use a general
purpose prolongator and simply add the current approximation x as its first column.
The method was tested with extremely good results on problems of nuclear reactor
criticality computations ([3]). We stress that in these experiments, the assumptions
of our theory were not satisfied since the matrices A and B of the solved generalized
eigenvalue problem Ax = λBx were non-symmetric and the matrix B singular.

The paper provides theoretical grounds for the improvement of the method of [3].
Namely, it becomes clear that the small coarse-space can be used, provided that it has
higher approximation order. This confirms the intuitive guess: in typical applications,
good approximation of the first eigenvector can have coarser resolution, but requires
high-order approximation, since the typical first eigenvector is very smooth. The
approximation itself does not have to be very smooth since our theory requires good
approximation only in `2-sense. We stress again that the demands on the order of
approximation of the coarse-space are moderate.

The paper is organized as follows: in Section 2 we describe our algorithm. In
the key Section 3, we give the convergence proof. At the end of Section 3 we sketch
the verification of the assumptions of the convergence theorem for a problem with
H1-equivalent form. The Section 4 contains the generalization of the algorithm and
the theory for the case of generalized eigenvalue problem.

2. Algorithm. Let A be a symmetric, positive definite n × n matrix with
eigenvalues λmin = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn = λmax. The particular case of
interest is A being a finite element stiffness matrix.

We solve the partial eigenvalue problem:

find λ1, v1 ∈ IRn : Av1 = λ1v1.(2.1)

We consider linear injective prolongator P : IRm → IRn, m < n. We are interested
in aggressive coarsening, i.e. m� n.

Our two-level algorithm with evolving coarse-space for solving (2.1) proceeds as
follows:

Algorithm 1.
1. For given input iterate x ∈ IRn, construct/update the coarse-level matrices

A2(x) = [x|P ]TA[x|P ], B2(x) = [x|P ]T [x|P ],(2.2)
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see Remark 2.2,
2. find the eigenvector v2 corresponding to the smallest eigenvalue of the coarse-

level problem

A2(x)v2 = λB2(x)v2(2.3)

(if the coarse-level problem (2.3) is to be solved iteratively, natural initial
guess for v2 is the first canonical basis vector e1 = (1, 0, . . . , 0)T ∈ IRm+1,
see Remark 2.1)

3. prolongate v← [x|P ]v2,
4. post-smooth xnew ← A−νv,
5. normalize xnew ← 1/‖xnew‖xnew.

Remark 2.1. Clearly, for the first canonical basis vector e1 = (1, 0, . . . , 0)T ∈
IRm+1 it holds that

x = [x|P ]e1.

The vector e1 is therefore (assuming x 6∈ Range (P )) a coarse level isomorphic
counterpart of the current approximation x; the coarse-level iteration started from e1
is therefore essentially (via the isomorphism [x|P ] : IRm+1 → Range ([x|P ])) started
from x.

Remark 2.2. Note that only the first column of the prolongator [x|P ] changes
from the iteration to the next iteration. Therefore only the first row and the first
column of matrices A2(x) and B2(x) have to be recalculated in each iteration. If the
coarse-level problem (2.3) is to be solved by the inverse power method

v2 ← A2(x)−1B2(x)v2,

the action of the inverse A2(x)−1 can be performed using pre-calculated Choleski
decomposition of the matrix A2(x) with the first column and the first row excluded.
This matrix is the same in every iteration.

The particular form (2.3) of the coarse-level problem will be derived in the next
section.

For the sake of convenience, we assume that the input iterate x is scaled so that
‖x‖ = 1 and the prolongated solution v = [x|P ]v2 is scaled so that ‖v‖ = 1. This
requires only cosmetic changes in the algorithm with no impact on the result. In
addition, we assume that the matrix A is scaled so that its lowest eigenvalue is equal
to 1. This is possible without loss of generality, because due to the scaling of the
vector x in Step 5, Algorithm 1 is independent on the scaling of A.

3. Local convergence estimate. Let R(w) denote the Rayleigh quotient

R(w) =
〈Aw,w〉
‖w‖2

, w 6= 0.(3.1)

We will measure the error of approximation w 6= 0 by the expression

r(x) =
‖Aw −R(w)x‖

‖w‖
.(3.2)

Clearly, r(w) = 0 if and only if w is an eigenvector of A.
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Let us set

T = Ker (PT ).(3.3)

We start our analysis with a simple observation: for the exact solution v2 of the
coarse-level problem (2.3) it holds that

(A−R(v)I)v ∈ T, v = [x|P ]v2.(3.4)

To prove it, we first notice that the fine-level eigenvalue problem is equivalent to
the non-linear equation

(A−R(v)I)v = 0.

The coarse-level problem (2.3) is the result (equivalent) of the Galerkin formulation

find v ∈ Range ([x|P ]) : 〈(A−R(v)I)v,w〉 = 0 ∀w ∈ Range ([x|P ]).(3.5)

Indeed, (3.5) is equivalent to the problem

find v2 ∈ IRm+1 :〈(
A− 〈A[x|P ]v2, [x|P ]v2〉

〈[x|P ]v2, [x|P ]v2〉
I

)
[x|P ]v2, [x|P ]w2

〉
= 0 ∀w2 ∈ IRm+1,

that, after transposing prolongators [x|P ] in the right arguments of the inner products,
becomes 〈(

A2(x)− 〈A2(x)v2,v2〉
〈B2(x)v2,v2〉

B2(x)

)
v2,w2

〉
= 0 ∀w2 ∈ IRm+1

with matrices A2(x) and B2(x) given by (2.2). The above identity holds if and only
if the left argument of the above inner product is zero, which happens if and only if v2

is an eigenvector of (2.3). Thus, (3.5) and (2.3) are equivalent. As a consequence,
for the solution v2 of (2.3), the prolongated vector v = [x|P ]v2 satisfies (3.5) and
therefore

(A−R(v)I)v ∈ Range ⊥([x|P ]) = Ker ([x|P ]T ) ⊂ Ker (PT ),

proving (3.4).
We are interested in estimating r(xnew) = r(A−νv), v = [x|P ]v2, in terms of

r(x). To this end, we first estimate r(A−νv) in terms of r(v). We notice that in the
expression of r(w) in (3.2), R(w)w is the projection of Aw onto span{w} orthogonal
in Euclidean inner product. Therefore, by the minimizing property of the orthogonal
projection,

‖(A−R(A−νv)I)A−νv‖ ≤ ‖(A−R(v)I)A−νv‖
= ‖A−ν(A−R(v)I)v‖
≤ ‖A−ν‖T ‖(A−R(v)I)v‖,(3.6)

since (A−R(v)I)v ∈ T by (3.4). Here, ‖A−ν‖T is the operator norm on the subspace
T defined as

‖A−ν‖T = sup
v∈T\{0}

‖A−νv‖
‖v‖

.
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Thus, we conclude that

r(xnew) = r(A−νv) ≤ ‖A−ν‖T
‖v‖
‖A−νv‖

r(v).(3.7)

In the view of (3.6), the inverse power method given by the action of A−1 works as
a smoother and the entire method resembles the standard linear variational two-level
multigrid. The purpose of the coarse-level correction is to guarantee that the residual
in (3.4) belongs to space T = Ker (PT ), where the smoother A−1 is (hopefully) very
efficient in the reduction of the norm of the residual. The efficiency of the smoother
A−1 in the reduction of the residual that belongs to T is the subject of the following
lemma.

Our first key lemma allows us to estimate ‖A−ν‖T using approximation properties
of the prolongator P . The proof is based on the orthogonality trick of Céa ([2]) and
is a variation on the theme by Brandt [1].

Lemma 3.1. Let A be a symmetric, positive definite n× n matrix scaled so that
λmin = 1 and P : IRm → IRn, m < n, a linear injective prolongator. Consider
α ∈ (0, 1] and β > 0. We assume there is a linear mapping Q : IRn → Range (P )
such that

∀w ∈ IRn : ‖w −Qw‖ ≤ C

λ
αβ
2
max

‖w‖Aβ .(3.8)

Then the operator norm ‖A−β/2‖T on the subspace T defined in (3.3) satisfies

‖A−β/2‖T ≤
C

λ
αβ
2
max

.(3.9)

Remark 3.2. In specific applications, parameter α is related to the mesh
resolution H of the coarse level space (H = hα, h being the fine-level resolution).
Parameter β corresponds to p−approximation quality of the coarse space (β = p+ 1).

Remark 3.3. If Q is chosen to be the orthogonal projection onto Range (P ),
it holds that

‖(I −Q)w‖ ≤ ‖w‖ ≤ λβ/2min‖w‖Aβ = ‖w‖Aβ .

The condition (3.8) can be therefore always satisfied with C/λ
(αβ)/2
max ≤ 1 and (3.9)

gives

‖A−β/2‖T ≤ 1.

Proof. Let w ∈ T . As T = Ker (PT ) = Range (P )⊥ and Range (Q) =
Range (P ), it holds that w ⊥ Range (Q) and we can estimate using (3.8) and

Cauchy-Schwarz inequality,

‖A−β/2w‖2 = 〈A−βw,w〉
= 〈(I −Q)A−βw,w〉
≤ ‖(I −Q)A−βw‖‖w‖

≤ ‖w‖ C

λ
αβ
2
max

‖A−βw‖Aβ

= ‖w‖ C

λ
αβ
2
max

‖A−β/2w‖.
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Dividing both sides of the above estimate by ‖A−β/2w‖ yields (3.9).
The fact that the estimate (3.9) improves with growing λmax (that, assuming

fixed λmin = 1, indicates the size of the problem) is, in the context of the final
convergence theorem, addressed in Remark 3.7.

Example 1. Let us say that we want to guarantee optimal work for a single
smoother A−1. Here A is a stiffness matrix obtained by finite difference discretization
of the Laplace operator. We choose β = 2 and the piecewise linear coarse-space (in the
discrete sense) with the resolution H = hα, where h is the resolution of the fine-level
mesh. The matrix A2 is then the finite difference discretization of the biharmonic
operator and (3.8) holds with uniform C [2]. In this case, we get

‖A−1‖T ≤
C

λαmax
.

If we use the discrete analogue of cubic elements on the coarse-space, (3.8) holds with
β = 4 and we have

‖A−2‖T ≤
C

λ2αmax
.

Lemma 3.4. Let x be the iterate on the entry of Algorithm 1 and v = [x|P ]v2

the prolongated solution of the coarse-level problem (2.3). Then

R(v) = inf
u∈ Range ([x|P ])

R(u) ≤ R(x).(3.10)

Proof. We will derive the coarse-level problem (2.3) by minimizing R(u) on the
subspace Range ([x|P ]).

The minimizer v of R(u) on Range ([x|P ]) satisfies the condition

d

dt
|t=0R(v + tw) = 0 ∀w ∈ Range ([x|P ]).

We have

d

dt
|t=0R(v + tw) =

d

dt
|t=0
〈A(v + tw),v + tw〉

‖v + tw‖2

=
2〈Av,w〉‖v‖2 − 2〈v,w〉‖v‖2A

‖v‖4

=
2

‖v‖2
〈Av −R(v)v,w〉 .

Thus the minimizer v ∈ Range ([x|P ]) is the solution of the Galerkin problem (3.5)
that leads to the coarse-level problem (2.3). Let v2,i be the generalized eigenvectors
of (2.3) and λ2,i the corresponding eigenvalues. We assume the natural numbering
λ2,i ≤ λ2,i+1. Clearly, λ2,i = R([x|P ]v2,i). The eigenvalues λ2,i = R([x|P ]v2,i)
are (all) extremes and saddle points of R(v) on Range [x|P ]. The value λ2,1 =
R([x|P ]v2,1) = R([x|P ]v2) is therefore the global minimum.

The following lemma puts into relation the expressions r(x) and r(v).
Lemma 3.5. Let A be an n × n symmetric, positive definite matrix with unique

minimal eigenvalue λmin and {vi} the orthonormal system of its eigenvectors, with
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λi being the eigenvalue corresponding to vi. Assume A is scaled so that λmin = 1
and the eigenvalues are numbered so that λmin = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn = λmax.
In addition, for the sake of convenience, we assume that the input iterate x and the
prolongated solution of the coarse-level problem v = [x|P ]v2 are normalized such that
‖x‖ = ‖v‖ = 1. Then, under the assumption that R(x) < λ2, it holds that

r2(v) ≤ λmax −R(v)

λ2 −R(x)
r2(x) ≤ λmax

λ2 −R(x)
r2(x).(3.11)

Proof. The vectors x and v can be expressed as a linear combination of the
eigenvectors {vi} as

x =
∑
i

ci(x)vi, v =
∑
i

ci(v)vi

with ∑
i

c2i (x) =
∑
i

c2i (v) = 1.(3.12)

Further,

R(x) =
〈Ax,x〉
‖x‖2

=
∑
i

ci(x)2λi

= c21(x) +
∑
i>1

c2i (x)λi

= 1−
∑
i>1

c2i (x) +
∑
i>1

c2i (x)λi

= 1 +
∑
i>1

c2i (x)(λi − 1).(3.13)

Similarly, by replacing x by v, we get

R(v) = 1 +
∑
i>1

c2i (v)(λi − 1).(3.14)

From Lemma 3.4, it follows that R(v) ≤ R(x) and therefore,∑
i>1

c2i (v)(λi − 1) ≤
∑
i>1

c2i (x)(λi − 1).(3.15)

Further, since R(x)x is the orthogonal projection of Ax onto span{x}, we have by
Pythagoras theorem and (3.12),

r2(x) =
‖Ax−R(x)x‖2

‖x‖2

=
‖Ax‖2 −R2(x)‖x‖2

‖x‖2
7



=
‖Ax‖2

‖x‖2
−R2(x)

= c21(x) +
∑
i>1

c2i (x)λ2i −

(
c21(x) +

∑
i>1

c2i (x)λi

)2

= 1−
∑
i>1

c2i (x) +
∑
i>1

c2iλ
2
i (x)−

(
1−

∑
i>1

c2i (x) +
∑
i>1

c2i (x)λi

)2

= 1 +
∑
i>1

c2i (x)(λ2i − 1)−

(
1 +

∑
i>1

c2i (x)(λi − 1)

)2

=
∑
i>1

c2i (x)(λ2i − 1)− 2
∑
i>1

c2i (x)(λi − 1)−

(∑
i>1

c2i (x)(λi − 1)

)2

=
∑
i>1

c2i (x)(λi − 1)(λi + 1)− 2
∑
i>1

c2i (x)(λi − 1)−

(∑
i>1

c2i (x)(λi − 1)

)2

=
∑
i>1

c2i (x)(λi − 1)(λi + 1− 2)−

(∑
i>1

c2i (x)(λi − 1)

)2

=
∑
i>1

c2i (x)(λi − 1)2 −

(∑
i>1

c2i (x)(λi − 1)

)2

.

By replacing x in the previous estimate by v we get

r2(v) =
∑
i>1

c2i (v)(λi − 1)2 −

(∑
i>1

c2i (v)(λi − 1)

)2

.

Assume for now that r(x) 6= 0. Using the two identities above, (3.13), (3.14) and
the inequality (3.15), we estimate

r2(v)

r2(x)
=

∑
i>1 c

2
i (v)(λi − 1)2 −

(∑
i>1 c

2
i (v)(λi − 1)

)2∑
i>1 c

2
i (x)(λi − 1)2 −

(∑
i>1 c

2
i (x)(λi − 1)

)2
≤

(λn − 1)
∑
i>1 c

2
i (v)(λi − 1)−

(∑
i>1 c

2
i (v)(λi − 1)

)2
(λ2 − 1)

∑
i>1 c

2
i (x)(λi − 1)−

(∑
i>1 c

2
i (x)(λi − 1)

)2
=

(
λn − 1−

∑
i>1 c

2
i (v)(λi − 1)

)∑
i>1 c

2
i (v)(λi − 1)(

λ2 − 1−
∑
i>1 c

2
i (x)(λi − 1)

)∑
i>1 c

2
i (x)(λi − 1)

=
(λn −R(v))

∑
i>1 c

2
i (v)(λi − 1)

(λ2 −R(x))
∑
i>1 c

2
i (x)(λi − 1)

≤ λn −R(v)

λ2 −R(x)
,

which completes the proof of (3.11) for r(x) 6= 0. If r(x) = 0, x is an eigenvector
of A, hence a fixed-point of the coarse-level correction step, thus v is an eigenvector,
r(v) = 0 and (3.11) holds trivially.
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Assuming R(x) < λ2, Lemma 3.5 gives the estimate

r2(v) ≤ λmax
λ2 −R(x)

r2(x).

From here and (3.7) we get

r2(A−νv) ≤ ‖A−ν‖2T
‖v‖2

‖A−νv‖2
λmax

λ2 −R(x)
r2(x).(3.16)

Since λ1 = 1 and ‖v‖ = 1, for v expressed as v =
∑
i ci(v)vi we have

‖v‖2

‖A−νv‖2
=

1

c21(v) +
∑
i>1 c

2
i (v)λ−2νi

≤ 1

c21(v)
.(3.17)

By Lemma 3.4 and ‖v‖2 =
∑
i c

2
i (v) = 1 we get

R(x) ≥ R(v) = c21(v) +
∑
i>1

c2i (v)λi ≥ c21(v) + λ2
∑
i>1

c2i (v) = c21(v) + λ2(1− c21(v)).

Thus, 0 > R(x) − λ2 ≥ c21(v)(1 − λ2), hence 0 < λ2 − R(x) ≤ c21(v)(λ2 − 1) and
therefore,

1

c21(v)
≤ λ2 − 1

λ2 −R(x)
.

The above estimate, (3.17) and (3.16) give

r(A−νv) ≤
√
λmax‖A−ν‖T

√
λ2 − 1

λ2 −R(x)
r(x).(3.18)

Now we are ready to formulate our final convergence theorem. In this theorem,
we do not assume anymore that the smallest eigenvalue satisfies λmin = 1.

Define the condition number of the symmetric, positive definite matrix A by

cond(A) =
λmax
λmin

.

Theorem 3.6. Let A be a symmetric, positive definite n × n matrix with
unique minimal eigenvalue λmin. We assume the eigenvalues are numbered so that
λmin = λ1 < λ2 ≤ . . . ≤ λn = λmax. Consider α ∈ (0, 1] and β > 0 such that
αβ − 1 > 0. We assume there is a linear mapping Q : IRn → Range (P ) such that

∀u ∈ IRn : λ
β
2
min‖u−Qu‖ ≤ C

cond(A)
αβ
2

‖u‖Aβ .

In addition, assume that the input iterate x is reasonably close to the first eigenvector
v1 so that R(x) ∈ [λ1, λ2). Then the result xnew on the exit of Algorithm 1 with
ν ≥ β/2 satisfies the estimate

r(xnew) = r(A−νv) ≤ Q(x)r(x), Q(x) =
C

cond(A)
αβ−1

2

√
λ2

λmin
− 1

λ2−R(x)
λmin

.
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The rate of convergence Q(x) satisfies

lim
cond(A)→∞

Q(x) = 0.(3.19)

Proof. For the scaled matrix 1/λminA, the proof follows directly from Lemma 3.1
and (3.18). (We make the substitution A← 1/λminA in (3.18), (3.8) and (3.9). For
the scaled matrix 1/λminA, λmax = λmax(A) becomes λmax(1/λminA) = cond(A),

λ2 becomes λ2(1/λminA) = λ2/λmin, ‖w‖A becomes ‖w‖(1/λmiin A) = λ
−1/2
min ‖w‖A

and R(w) becomes

〈(1/λminA)w,w〉
‖w‖2

= 1/λminR(w), w 6= 0.)

The proof is immediately extended to the case of unscaled matrix A, once we notice
that the Algorithm 1 works independently of the scaling of A.

Remark 3.7. On the first sight, the statement of Theorem 3.6 might be perceived
as surprising, since the rate of convergence of the analyzed method improves with the
increasing condition number of the matrix A. This result ceases to be hard to accept
once we acknowledge the following: the crucial element that determines the rate of
convergence is the operator norm ‖(1/λminA)−ν‖T . Ideally, T = Ker (PT ) is a high-
energy space that behaves (with respect to the action of A−ν) similarly as the invariant
subspace

T = span{vi : λi ≥ Cλmax}, C ∈ (0, 1].

Obviously, for this model subspace we get

‖(1/λminA)−ν‖T ≤
(

1

C cond(A)

)ν
.

The improvement of the rate of convergence with growing cond(A) is therefore natural;
it can be simply explained by the fact that the action of A−1, if understood as a
smoother, is extremely powerful.

Example 2. Assume that A has been obtained by a finite difference
approximation of the Laplace operator and λmin ≈ 1. Then A2 is the finite difference
approximation of the biharmonic operator. Assume we use a coarse-space based on
piecewise linear interpolation with the resolution H = hα. Then we can prove the
weak approximation property

∀u ∈ IRn∃v ∈ IRn : ‖u− Pv‖2 ≤ C

λ2αmax
‖u‖2A2 .

The assumption of Theorem 3.6 therefore holds with β = 2. Clearly, assuming α > 1/2
we have αβ − 1 > 0 and therefore (3.19) holds for x such that R(x) < λ2.

If we use the discrete analogue of cubic elements, it holds that

∀u ∈ IRn∃v ∈ IRn : ‖u− Pv‖2 ≤ C

λ4αmax
‖u‖2A4 .

The weak approximation condition in the assumption of Theorem 3.6 holds therefore
with β = 4. Then αβ−1 > 0 (and thereby, (3.19)) holds for α > 1/4 and R(x) < λ2.
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In other words, for a problem that represents a serious challenge in the context
of the contemporary (and the near future) scientific computing (say, 108 of degrees
of freedom), we need a coarse space of the size that ranks in hunderds of degrees of
freedom, that is, a coarse-space of a negligible size. This claim is certainly supported
by the presented theory, but requires detailed justification both on the theorethical
and the computational front.

4. Generalized eigenvalue problem. Consider the generalized eigenvalue
problem

Ax = λBx, or, B−1Ax = λx,(4.1)

with both A and B being symmetric, positive definite matrices. The matrix B−1A is a
symmetric operator in the Hilbert space (IRn, 〈B·, ·〉). Therefore, both the algorithm
and the theory can be, in principle, (that is, regardless of algorithmic feasibility)
adapted for the generalized eigenvalue problem simply by replacing systematically
‖·‖ ← ‖·‖B , 〈·, ·〉 ← 〈B·, ·〉 and A← B−1A in the algorithm, derivation of the coarse-
level matrices in (3.5) and in the theory, including the inherent norm ‖·‖Aβ = ‖Aβ/2 ·‖
in (3.8). It turns out that the resulting algorithm is the one of [3] with no need to
construct B−1 and, as such, is indeed algorithmically feasible.

The transpose T becomes a B-adjoint operator ∗ and the orthogonal complement
⊥ a B-orthogonal complement ⊥B . As a consequence, the subspace T = Ker (PT )
changes to T = Ker (P ∗) = Ker (PTB). The coarse-level matrices A2(x) and B2(x)
are then the result of coarsening of A← B−1A and I in (3.5) with the replaced inner
product 〈·, ·〉 ← 〈B·, ·〉. The coarse-level matrices are

A2(x) = [x|P ]TAorig[x|P ], B2(x) = [x|P ]TB[x|P ];(4.2)

B−1 is therefore involved neither in the construction of the coarse-level matrices, nor
elsewhere in the algorithm. Here, Aorig stands for matrix A before the replacement
A← B−1A. To prove it, we rewrite (3.5) as (denoting Aorig as A again)

find v2 ∈ IRm+1 :〈
B

(
B−1A− 〈BB

−1A[x|P ]v2, [x|P ]v2〉
〈B[x|P ]v2, [x|P ]v2〉

I

)
[x|P ]v2, [x|P ]w2

〉
∀w2 ∈ IRm+1.

This is equivalent to〈(
A2(x)− 〈A2(x),v2,v2〉

〈B2(x)v2,v2〉
B2(x)

)
v2,w2

〉
= 0 ∀w2 ∈ IRm+1

with matrices A2(x) and B2(x) given by (4.2). The above identity holds if and only
if the left argument of the above inner product is equal to zero. This happens if
and only if v2 is the generalized eigenvector of the coarse-level generalized eigenvalue
problem

A2(x)v2 = λB2(x)v2.

The inverse power method x← A−νv in Step 4 of Algorithm 1 becomes

x← (A−1B)νv,
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that is

x← v;

for i = 1, . . . , ν do

{
b← Bx;

solve Ax = b

}.

For the readers convenience, we now summarize the resulting algorithm and the
convergence theorem.

Algorithm 2.
1. For given input iterate x ∈ IRn, construct/update the coarse-level matrices

A2(x) = [x|P ]TA[x|P ], B2(x) = [x|P ]TB[x|P ],

see Remark 2.2,
2. find the eigenvector v2 corresponding to the smallest eigenvalue of the coarse-

level problem

A2(x)v2 = λB2(x)v2,(4.3)

(if the coarse-level problem (2.3) is to be solved iteratively, natural initial
guess for v2 is the first canonical basis vector e1 = (1, 0, . . . , 0)T ∈ IRm+1,
see Remark 2.1),

3. prolongate v← [x|P ]v2,
4. post-smooth

xaux ← v;

for i = 1, . . . , ν do

{
b← Bxaux;

solve Axaux = b

},

5. normalize xnew ← 1/‖xaux‖xaux.
Define the mutual condition number

cond(A,B) =
λmax(B−1A)

λmin(B−1A)
,

the generalized Rayleigh quotient

RB(w) =
〈Aw,w〉
〈Bw,w〉

, w 6= 0

and

rB(w) =
‖(B−1A−RB(w)I)w‖B

‖w‖B
, w 6= 0.
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Remark 4.1. The definitions of cond(A,B), RB and rB are derived from the
definitions of cond(A), R and r, respectively, using the rules A← B−1A, ‖·‖ ← ‖·‖B
and 〈·, ·〉 ← 〈·, ·〉B.

The mutual condition number cond(A,B) is the condition number of B−1A in
the Hilbert space (IRn, 〈·, ·〉B), where B−1A is a symmetric operator. The Rayleigh
quotient RB has been obtained from

RB(x) ≡ 〈B
−1Ax,x〉B
〈x,x〉B

.

The origin of rB in r is obvious.
Theorem 4.2. Let A and B be symmetric, positive definite n× n matrices with

unique minimal generalized eigenvalue λmin. We assume the generalized eigenvalues
are numbered so that λmin = λ1 < λ2 ≤ . . . ≤ λn = λmax. Consider α ∈ (0, 1]
and β > 0 such that αβ − 1 > 0. We assume there is a linear mapping Q : IRn →
Range (P ) such that

∀u ∈ IRn : λ
β
2
min‖u−Qu‖B ≤

C

cond(A,B)
αβ
2

‖(B−1A)β/2u‖B .

In addition, assume that the input iterate x is reasonably close to the first eigenvector
v1 so that RB(x) ∈ [λ1, λ2). Then the result xnew on the exit of Algorithm 2 with
ν ≥ β/2 satisfies the estimate

rB(xnew) ≤ Q(x)rB(x), Q(x) =
C

cond(A,B)
αβ−1

2

√
λ2

λmin
− 1

λ2−RB(x)
λmin

.

The rate of convergence Q(x) satisfies

lim
cond(A,B)→∞

Q(x) = 0.
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[13] P. Vaněk, Acceleration of Convergence of a Two-level Algorithm by Smoothing Transfer
Operator, Appl. Math. 37(1992).
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