
NOTES ON THE TRACE PROBLEM FOR SEPARATELY

CONVEX FUNCTIONS
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Abstract. We discuss the following question: For a function f of two or more
variables which is convex in the directions of coordinate axes, how can its trace
g(x) = f(x, x, . . . , x) look like? In the two-dimensional case, we provide some
necessary and sufficient conditions, as well as some examples illustrating that
our approach does not seem to be appropriate for finding a characterization
in full generality. For a concave function g, however, a characterization in the
two-dimensional case is established.

1. Introduction

We say that a real function f : Rd → R is separately convex if it is convex on every
line parallel to a coordinate axis. The notion of separate convexity is investigated
due to its relationship with the concept of rank-one convexity (a function f on the
matrix space R

d×d is said to be rank-one convex if it is convex on every line with
a rank-one direction). In order to understand rank-one convexity, one can restrict
attention to particular subspaces of R

d×d (e.g. the diagonal or the symmetric
matrices). For example, this approach has been employed by S. Conti, D. Faraco,
F. Maggi and S. Müller [2, 3] in the study of the (still open) question whether the
Hessian of a rank-one convex function is a bounded measure. When the rank-one
convexity is considered on the subspace of diagonal matrices, the separate convexity
naturally appears.

The study of separately convex functions in the theory of non-linear elasticity
goes back to L. Tartar [11] (see also [7, 8, 9]). In the two-dimensional case, the
notion of separate convexity coincides with the notion of bi-convexity used in op-
timization (see e.g. [6]), when considered in R × R. For aspects of the separate
convexity in the theory of martingales, see [1], and for recent applications in the
studies of removable sets for convex functions, see [10].

A real function g on R is said to be the trace of f on the diagonal if g(t) =
f(t, t, . . . , t) for every t. In [11], L. Tartar asks for the precise class of functions g
which can be the trace of a separately convex function on R

2. The same problem
is posed in [7, Question 11]. He remarks that every C2 function (or even every
function semi-convex in the classical sense) can be a trace, at least locally, and
also mentions some unpublished observations by V. Šverák and D. Preiss. In [2],
S. Conti, D. Faraco and F. Maggi construct a function which can be a trace but
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its second derivative is not a bounded measure. They also mention another unpub-
lished result by B. Kirchheim and A. Lorent, namely that every C1,α function can
be a trace and that not every C1 function is a trace.

In fact, it turned out during the preparation of this manuscript that many of
the included results were obtained but unpublished more than 10 years ago by
B. Kirchheim, A. Lorent and L. Székelyhidi.

In the present paper, we prove some partial results on this topic, mostly in the
dimension 2, but also some observations in the general dimension. The only case in
which we were able to obtain a full characterization is the case of concave functions.
We proved the following results.

Theorem 1.1. Let g : R → R be a concave function. Then the following assertions

are equivalent:

(i) There exists a separately convex function f : R2 → R such that f(u, u) = g(u)
for each u ∈ R.

(ii) The function

x 7→
∫ 1

0

g(x+ t) + g(x− t)− 2g(x)

t2
dt

is locally bounded from below.

The argument is based on a general extension result (see Theorem 7.2) which
provides us moreover with a sufficient condition in the framework of semi-convex
functions (with a general modulus).

Theorem 1.2. Let a function g : R → R be semi-convex with a modulus ω such

that
∫ 1

0

ω(t)

t
dt <∞.

Then there exists a separately convex function f : R2 → R such that f(u, u) = g(u)
for each u ∈ R.

These results are special cases of Corollaries 7.3 and 7.4.
In fact, the implication (i) ⇒ (ii) holds without the assumption for g to be

concave, as follows from Proposition 4.1 and Remark 4.3. A stronger necessary
condition is formulated in Theorem 4.2. However, the implication (ii) ⇒ (i) does
not hold in general and also the property of being a trace cannot be characterized
solely in the terms of semi-convexity (cf. Example 9.3 and Example 9.1).

The paper is structured as follows. After introducing notation and basic facts,
we start with some simple results in general dimension. In Section 2, we discuss the
relationship between local and global extendibility, showing that they are essentially
the same. Section 3 contains a modest necessary condition for a function to be the
trace of a separately convex function on R

d.
A major part of the paper, however, is devoted to the two-dimensional case. In

Section 4, we begin by studying of necessary conditions, namely Proposition 4.1,
Theorem 4.2 and Remark 4.4. Basic tools for our constructions are provided in
Section 5. We formulate two extension Lemmata 5.3 and 5.5, the first of which was
inspired by the necessary conditions from the previous section. In fact, both of them
turned out to be consequences of a general extension result (see Lemma 5.1). Sec-
tion 6 contains a technical envelope-like lemma allowing us to apply our extension
lemmata to more general functions.
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Figure 1. A picture of a trace without one-sided derivative at
some point (Example 9.1).

Finally, the main results, Theorems 1.1 and 1.2, are proven in Section 7, both
of them derived from a general extension theorem (see Theorem 7.2). In Section 8,
we present a method that allows us to find a separately convex extension for a very
specific but in some sense broad class of traces which do not satisfy the assumptions
of Theorem 7.2.

We conclude the paper with four examples illustrating the limitations of our
methods. These are included in Section 9. In particular, we observe that there is
a trace of a separately convex function which does not have a one-sided derivative
at some point. Note that both main results above provide a separately convex
extension only for functions with one-sided derivatives.

The authors are grateful to Bernd Kirchheim for fruitful discussions on the topic,
especially on the background of studies of separately convex functions. The authors
also thank to Luděk Zaj́ıček for valuable discussions on semi-convex functions.

Notation and basic facts

In many places, we use the fact that every separately convex function on R
d is

necessarily locally Lipschitz. In particular, its trace is also locally Lipschitz.
Let M be a convex set and let f be a real function defined on a super set of M .

We say that the function f is semi-convex with modulus ω on M if

f(αx+ (1 − α)y) ≤ αf(x) + (1− α)f(y) + α(1 − α)‖x− y‖ω(‖x− y‖)
for every x, y ∈ M and every α ∈ (0, 1). A function semi-convex with a linear
modulus will be called just semi-convex. Semi-concave functions are then defined
in a similar manner.

For a real function f on R, we define its second order central difference at a point

x by ωf (x, t) := f(x+ t) + f(x− t)− 2f(x). Its modification ω∗
f (x, t) is defined for

t ≥ 0 so that ω∗
f (x, ·) is the greatest non-increasing minorant of ωf (x, ·) on [0,∞).

The following observation about traces of separately convex functions appeared
in [10].

Lemma 1.3. Let f : R2 → R be a separately convex function. Define g : R → R

by g(t) = f(t, t). Then

lim inf
t→0+

g(x+ t) + g(x− t)− 2g(x)

t
≥ 0

for every x.
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We will also use the following more or less standard notation. For a function
f defined on (a subset of) R

d, the symbol D+
v f(x) means the upper one-sided

derivative in a direction v ∈ Sd−1 of f at a point x.

2. Coincidence of local and global extendibility

Lemma 2.1. Let d ≥ 2. Then, for every G ∈ C2(R), there is a separately convex

function F : Rd → R such that F (t, t, . . . , t) = G(t) for each t ∈ R.

Proof. We will see later how to find an extension F0 for d = 2 (Lemma 5.5). For a
general d, it is sufficient to consider the function F (x1, x2, . . . , xd) = F0(x1, x2). �

Proposition 2.2. Let d ≥ 2 and let g : R → R be a locally Lipschitz function.

Assume that, for every bounded interval [a, b], there is a separately convex function

f[a,b] : R
d → R such that f[a,b](u, u, . . . , u) = g(u) for each u ∈ [a, b]. Then there is

a separately convex function f : Rd → R such that f(u, u, . . . , u) = g(u) for each

u ∈ R.

We prove a claim first.

Claim 2.3. For every bounded interval [a, b], there is a separately convex func-

tion f∗
[a,b] : R

d → R such that f∗
[a,b](u, u, . . . , u) = g(u) for each u ∈ [a, b] and

f∗
[a,b](u, u, . . . , u) ≤ g(u) for each u ∈ R \ [a, b].
Proof. Let G : R → R be a C2-function such that

G(u) ≤ 0, u ∈ R, G(u) = 0, u ∈ [a, b],

G(u) ≤ g(u)− f[a−1,b+1](u, u, . . . , u), u ∈ R \ [a− 1, b+ 1],

and let F : Rd → R be an extension given by Lemma 2.1. Then the function

f∗
[a,b] = f[a−1,b+1] + F

works. �

Proof of Proposition 2.2. Let G : R → R be a C2-function such that

G(u) ≤ 0, u ∈ R, G(u) = 0, |u| ≥ 1, G(0) < −1,

and let F : Rd → R be an extension given by Lemma 2.1. We choose an ε ∈ (0, 1)
so that

F (x) ≤ −1, x ∈ [−ε, ε]d.
For k = 0, 1, 2, . . . , there is a sufficiently large αk ≥ 0 such that the function

f (k)(x) = max
{

f∗
[2k,2k+1](x), f

∗
[−2k+1,−2k](x)

}

+ αkF
( 1

2k
x
)

fulfils
f (k)(x) ≤ 0, x ∈ [−2kε, 2kε]d.

It follows that every x ∈ R
d satisfies f (k)(x) ≤ 0 for all but finitely many k’s. Thus,

f = sup
(

{f∗
[−1,1]} ∪

{

f (k) : k = 0, 1, 2, . . .
}

)

is a well-defined separately convex function. At the same time,

f∗
[−1,1](u, . . . , u) ≤ g(u), u ∈ R, f∗

[−1,1](u, . . . , u) = g(u), u ∈ [−1, 1],

f (k)(u, . . . , u) ≤ g(u), u ∈ R, f (k)(u, . . . , u) = g(u), u ∈ [2k, 2k+1]∪ [−2k+1,−2k].

Consequently, we have f(u, . . . , u) = g(u) for each u ∈ R. �
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3. Necessary condition in general dimension

Unlike to the two-dimensional case, we were able to obtain only a very weak
necessary condition for a function to be the trace of a separately convex function
of three or more variables. The procedure we will use in Section 4 can be applied
also in dimension three, at least for a concave g, but the resulting condition is not
a very interesting one, because it is satisfied by every concave function.

Proposition 3.1. Let d ≥ 1. Suppose that f : Rd → R is a separately convex

function. Then

D+
v f(x) ≥ −D+

−vf(x)

for every direction v ∈ Sd−1 and x ∈ R
d.

Proof. The proposition will be proven by induction on d. For d = 1 it is sufficient
to use the fact that the corresponding inequality holds for every convex function.
(Although it is not needed here, we also note that the validity for d = 2 follows
from Lemma 1.3.) Now, assume that the proposition is valid up to d− 1 for some
d ≥ 2. We will prove the validity for d.

Aiming for a contradiction suppose that

D+
v f(x) < −D+

−vf(x)

for a separately convex function f : Rd → R, x ∈ R
d and a direction v ∈ Sd−1.

Since f is separately convex and by the induction procedure, we can suppose that v
is not in the linear hull of any d− 1 coordinate directions. This means that we can
assume v = 1√

d
(1, 1, . . . , 1). We can also suppose that x = (0, 0, . . . , 0), f(x) = 0

and

(1) D+
v f(x) = − 1√

d
<

1√
d
= −D+

−vf(x).

Moreover, there is no loss in generality in assuming that

(2) f(ta) = tf(a)

for every a ∈ R
d and t ≥ 0. Indeed, if f satisfies (1), so does the function

x 7→ lim sup
r→0+

1

r
f(rx),

which additionally satisfies (2).
For t ∈ [−1, 1] put

ut = (−t,−t, . . . , 1), xt = (−t,−t, . . . ,−t) and yt = (−t,−t, . . . , t).
Due to the separate convexity, (1) and (2), we have

f(ut) ≥ f(yt) +
|ut − yt|
|xt − yt|

· (f(yt)− f(xt)) =
1 + t

2t
f(yt)−

1− t

2t
f(xt)

=
1 + t

2
f(y1)−

1− t

2
f(x1) =

1 + t

2
f(y1) +

1− t

2

for t > 0, which gives us (letting t→ 0+)

(3) f(u0) ≥
f(y1) + 1

2
.

By separate convexity we have for 0 < r < s < t < 1
(

1− r

t

)

f
(r

s
us

)

≤
(

1− r

s

)

f
(r

t
ut

)

+
(r

s
− r

t

)

f (ur) .
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Figure 2. (a) Values of the functions αi, βi, i = 1, 2. (b) An
illustration concerning of inequalities in (4) and (5).

Using (2) we obtain
(

1− r

t

) r

s
f (us) ≤

(

1− r

s

) r

t
f (ut) +

(r

s
− r

t

)

f (ur) ,

r(t− r)

st
f (us) ≤

r(s− r)

st
f (ut) +

r(t − s)

st
f (ur) ,

(t− r)f (us) ≤(s− r)f (ut) + (t− s)f (ur) .

This implies that f is convex on the line connecting u1 and u0. Similar way we
obtain that f is convex on the line connecting u−1 and u0. On the other hand

f(u1) + f(u−1)

2
=
f(u1)− 1

2
<
f(y1) + 1

2
≤ f(u0)

which tells us that f restricted to R
d−1 ×{1} is a separately convex function on (a

copy of) Rd−1 such that D+
wf(0) < −D+

−wf(0) with w = 1√
d−1

(1, 1, . . . , 1) ∈ Sd−2.

But this is not possible due to the induction procedure, a contradiction. �

4. Necessary conditions in two dimensions

The purpose of this section is to find criteria on a function g to be the trace on
the diagonal of a separately convex function f of two variables. We start with some
investigation of the behaviour of f on the diagonals x = y and x = −y.

Consider f a separately convex function on R
2. Define functions αi, βi, i = 1, 2

on [0,∞) by (cf. Figure 2(a))

α1(t) := f(t, t), α2(t) := f(−t,−t), β1(t) := f(t,−t) and β2(t) := f(−t, t).
Pick p, q, r, s > 0, p > q and r > s. Using the separate convexity of f we can obtain
(see Figure 2(b))

(4)

f(−p, s) ≥f(−q, s) + p− q

q + s
· (f(−q, s)− f(s, s))

=
q + s+ p− q

q + s
f(−q, s)− p− q

q + s
f(s, s)

=
s+ p

q + s
f(−q, s)− p− q

q + s
f(s, s)
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and similarly

(5) f(−p, r) ≥ p+ r

p+ s
f(−p, s)− r − s

p+ s
f(−p,−p).

Putting these two together we then obtain

(6)

f(−p, r) ≥p+ r

p+ s

(

s+ p

q + s
f(−q, s)− p− q

q + s
f(s, s)

)

− r − s

p+ s
f(−p,−p)

=
p+ r

q + s
· f(−q, s)− p+ r

p+ s
· p− q

q + s
· f(s, s)− r − s

p+ s
f(−p,−p).

This can be rewritten to the more symmetric form

(7)
f(−p, r)
p+ r

≥ f(−q, s)
q + s

− p− q

(p+ s)(q + s)
· f(s, s)− r − s

(p+ s)(p+ r)
· f(−p,−p).

In the special case of p = r and q = s we then obtain

(8)
f(−r, r)

r
≥ f(−s, s)

s
− r − s

s(r + s)
· f(s, s)− r − s

r(r + s)
· f(−r,−r).

Due to the symmetry this implies also

(9)
f(r,−r)

r
≥ f(s,−s)

s
− r − s

s(r + s)
· f(−s,−s)− r − s

r(r + s)
· f(r, r).

The last two formulas can be rewritten as

(10)
β2(r)

r
− β2(s)

s
≥ − r − s

s(r + s)
· α1(s)−

r − s

r(r + s)
· α2(r)

and

(11)
β1(r)

r
− β1(s)

s
≥ − r − s

s(r + s)
· α2(s)−

r − s

r(r + s)
· α1(r).

Moreover, formulas (10) and (11) imply

(12)
β(r)

r
− β(s)

s
≥ −r − s

r + s
·
(

α(s)

s
+
α(r)

r

)

,

where we denoted α = α1 + α2 and β = β1 + β2. It turns out that it is sometimes

useful to work with functions γ(t) := α(t)
t

and δ(t) := β(t)
t
. If we rewrite (12) using

γ and δ we obtain

(13)
δ(r) − δ(s)

r − s
≥ −γ(r) + γ(s)

r + s
.

Suppose that δ′(r) exists (which is the case for almost every r, since δ is locally
Lipschitz on (0,∞)), then

(14) δ′(r) = lim
s→r−

δ(r)− δ(s)

r − s
≥ lim

s→r−
−γ(r) + γ(s)

r + s
= −γ(r)

r
.

Using the local Lipschitzness of δ we thus obtain

(15) δ(a)− δ(b) =

a
∫

b

δ′(t) dt ≥ −
a

∫

b

γ(t)

t
dt
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for a > b > 0. This in particular means that

(16) δ(a)− lim inf
b→0+

δ(b) ≥ − lim inf
b→0+

a
∫

b

γ(t)

t
dt.

Assume from now on that f(0, 0) = 0, then, using Lemma 1.3, we obtain that
lim infb→0+ δ(b) ≥ 0. This gives us

(17)
β(a)

a
= δ(a) ≥ − lim inf

b→0+

a
∫

b

γ(t)

t
dt = − lim inf

b→0+

a
∫

b

α(t)

t2
dt,

which can be rewritten to the form

(18) β(a) ≥ −a lim inf
b→0+

a
∫

b

α(t)

t2
dt.

This gives us

Proposition 4.1. Let g be a locally Lipschitz function on R. Suppose that there is

a separately convex function h on R
2 such that g(t) = h(t, t) for every t ∈ R. Then

(19) h(x+ u, x− u) + h(x− u, x+ u)− 2h(x, x) ≥ −u · lim inf
v→0+

u
∫

v

ωg(x, t)

t2
dt,

for every x, u ∈ R, u > 0. In particular, for every bounded interval I ⊂ R, there is

a constant C(g, I) such that

− lim inf
b→0+

∫ 1

b

ωg(x, t)

t2
dt < C(g, I)

for every x ∈ I.

Proof. The first part of the proposition follows directly from (18) applied on the
separately convex function f defined as f(y, z) = h(x+ y, x+ z)− h(x, x). Indeed,
in this case the left hand side in (19) is equal to

h(x+ u, x− u) + h(x− u, x+ u)− 2h(x, x) = f(u,−u) + f(−u, u) = β(u),

whereas the argument of the integral inside the “lim inf” on the right hand side is
equal to

ωg(x, t)

t2
=
g(x+ t) + g(x− t)− 2g(x)

t2

=
h(x+ t, x+ t) + h(x− t, x− t)− 2h(x, x)

t2

=
f(t, t) + f(−t,−t)

t2
=
α(t)

t2
.

The second part of the proposition follows immediately from (19) and from the
local Lipschitzness of h. �
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Now, return to formula (12) and consider the special case of α(s) = α(r) which
gives us

(20)

β(r)

r
− β(s)

s
≥− r − s

r + s
·
(

α(s)

s
+
α(s)

r

)

= −r − s

r + s
· r + s

rs
· α(s)

=− r − s

rs
· α(s) = −

(

α(s)

s
− α(s)

r

)

= −
r

∫

s

α(s)

t2
dt.

Pick some 0 < s1 < r1 < s2 < r2 < · · · < sk < rk < w with α(si) = α(ri),
i = 1, . . . , k and consider the function α̃ on [0,∞) defined as

α̃(t) :=

{

α(si) if t ∈ [si, ri],

α(t) otherwise.

By (20) and (15) we obtain that

β(ri)

ri
− β(si)

si
≥ −

ri
∫

si

α(si)

t2
dt = −

ri
∫

si

α̃(t)

t2
dt,

β(si+1)

si+1
− β(ri)

ri
≥ −

si+1
∫

ri

α(t)

t2
dt = −

si+1
∫

ri

α̃(t)

t2
dt

and

β(w)

w
− β(rk)

rk
≥ −

w
∫

rk

α(t)

t2
dt = −

w
∫

rk

α̃(t)

t2
dt.

Putting these inequalities together we then obtain

(21)
β(w)

w
− β(s1)

s1
≥ −

w
∫

s1

α̃(t)

t2
dt.

The formula (21) leads to the following

Theorem 4.2. Let g be a locally Lipschitz function on R. Suppose that there is a

separately convex function h on R
2 such that g(t) = h(t, t) for every t ∈ R. Then

for every bounded interval I ⊂ R, there is a constant C∗(g, I) such that

−
1

∫

0

ω∗
g(x, t)

t2
dt < C∗(g, I)

for every x ∈ I.

Proof. Fix a bounded interval I = [a, b], pick x ∈ I and let p ∈ [0, 1] be the last
point of a global minimum of ωg(x, ·) on [0, 1].

Let In = [an, bn], n ∈ A be the (at most) countable system of non-degenerate
maximal intervals in [0, p] with the property that the function ω∗

g(x, t) (as a function
of t) is constant on every In. Then ωg(x, an) = ωg(x, bn) and ωg(x, t) ≥ ω∗

g(x, t)
for t ∈ In for every n ∈ A. We will consider only the (most difficult) case, when
lim infn→∞ an = 0, the other cases can be resolved similarly. So suppose that there
are n1, n2, . . . such that ci := ani

ց 0.
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Define real functions κn on [0, p], n ∈ N by

κn(t) :=

{

ωg(x, ak) if t ∈ Ik and k ≤ n,

ωg(x, t) otherwise.

Then κn ց ω∗
g(x, ·) as n→ ∞. Define

δ(t) :=
h(x+ t, x− t) + h(x− t, x+ t)− 2h(x)

t
.

Then using (21) together with Lebesgue’s Monotone Convergence Theorem we ob-
tain that

(22) δ(p)− δ(ci) ≥ − sup
n

p
∫

ci

κn(t)

t2
dt = −

p
∫

ci

lim
n→∞

κn(t)

t2
dt = −

p
∫

ci

ω∗
g(x, t)

t2
dt.

Since the value ω∗
g(x, t) is always non-positive we obtain similarly as in the case of

formula (18) that

2
√
2L ≥ δ(p) ≥ − lim inf

i→∞

∫ p

ci

ω∗
g(x, t)

t2
dt = −

∫ p

0

ω∗
g(x, t)

t2
dt,

where L is the Lipschitz constant of h on [a− 1, b+ 1]2.
It remains to estimate the integral from p to 1. Let K be the Lipschitz constant

of g on [a− 1, b+ 1]. Then ωg(x, p) ≥ −2p ·K and hence

−
1

∫

p

ω∗
g(x, t)

t2
dt ≤ 2p ·K

1
∫

p

1

t2
dt = 2p ·K

(

1

p
− 1

)

= 2K(1− p) ≤ 2K

so we are done since K depends only on I and g. �

Remark 4.3. From Theorem 4.2 one can easily see that under the assumptions of
Proposition 4.1 the integral

∫ 1

0

ωg(x, t)

t2
dt

exists.

Remark 4.4. If we decided to push this direction of finding necessary conditions
for a real function to be the trace of a separately convex function to its limits, we
might formulate it as follows:

Let g be a locally Lipschitz function on R. Suppose that there is a separately

convex function h on R
2 such that g(t) = h(t, t) for every t ∈ R. Then for every

bounded interval I ⊂ R, there is a constant C(g, I) such that

(23)

−
m−1
∑

i=1

[

pi − pi+1

(pi + ri+1)(pi+1 + ri+1)
· (g(x+ ri+1)− g(x))

+
ri − ri+1

(pi + ri+1)(pi + ri)
· (g(x− pi)− g(x))

]

< C(g, I)

for every x ∈ I, m ∈ N and every pair of decreasing sequences {pi}mi=1 and {ri}mi=1

from (0, 1]. Indeed, it is sufficient (for a fixed x) to consider formula (7) for f
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defined by f(u, v) := h(u + x, v + x) − h(x, x) with the choice p = pi, q = pi+1,
r = ri, s = ri+1 which gives us

f(−pi, ri)
pi + ri

− f(−pi+1, ri+1)

pi+1 + ri+1
≥− pi − pi+1

(pi + ri+1)(pi+1 + ri+1)
· f(ri+1, ri+1)

− ri − ri+1

(pi + ri+1)(pi + ri)
· f(−pi,−pi).

Now, it remains to take a sum over i to obtain

f(−p1, r1)
p1 + r1

− f(−pm, rm)

pm + rm
≥ −

m−1
∑

i=1

[

pi − pi+1

(pi + ri+1)(pi+1 + ri+1)
· f(ri+1, ri+1)

+
ri − ri+1

(pi + ri+1)(pi + ri)
· f(−pi,−pi)

]

and use the local Lipschitzness of h. There doesn’t seem to be, however, a direct
geometric interpretation of this condition similar to Theorem 4.2. It might be worth
mentioning though that the formula (7) also has an integral-like form

(24)
f(−p, r)
p+ r

≥ f(−q, s)
q + s

−
p+s
∫

q+s

f(s, s)

t2
dt−

p+r
∫

p+s

f(−p,−p)
t2

dt.

Remark 4.5. It is also worth noting that (due to the symmetry) the formula (13)
holds when replacing δ with γ and vice versa, this gives us

(25)
γ(r)− γ(s)

r − s
≥ −δ(r) + δ(s)

r + s
.

Considering the limit s→ r−, the formula (25) implies that

(26) β(r) ≥ α(r) − rα′(r),

provided α′(r) exists. This inequality sometimes gives a better estimate than (18).
For instance for the function g(t) = −|t|3 the formula (18) gives

f(t,−t) + f(−t, t) ≥ t

∫ t

0

2s ds = t3, t > 0,

however, the formula (26) gives

f(t,−t) + f(−t, t) ≥ g(t) + g(−t)− t(g′(t)− g′(−t)) = −2t3 + 6t3 = 4t3, t > 0.

This observation is also implicitly included in the proof of Lemma 5.5, namely in
the definition of the function η.

5. Extension lemmata

We start this section with a general extension lemma which we then apply in
two particular situations (Lemmata 5.3 and 5.5). The lemma is based on a simple
geometric idea. If the values on the diagonals x = ±y are given, we consider the
function which is affine on every line segment which is parallel to a coordinate axis
with the endpoints belonging to these diagonals (i.e., the dashed line segments in
Figure 2(a)).

In fact, the first extension result we obtained was Lemma 5.3 in which the values
on the diagonal x = −y are extracted from the formula (18). Note that the second
extension result Lemma 5.5 assumes the symmetric formula (26) at the same time.
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Lemma 5.1. Let α1, α2, β1, β2 : R → R be locally Lipschitz even functions such

that, for all choices i, j ∈ {1, 2},

lim
x→0

αi(x)

x
= 0, lim

x→0

βj(x)

x
= 0

and the functions

α′
i(x) +

1

x

(

βj(x)− αi(x)
)

, β′
j(x) +

1

x

(

αi(x) − βj(x)
)

,

are non-decreasing on their domains for x > 0.
Then the function F : R2 → R given by

F (x, y) =























1
2x [(x+ y)α1(x) + (x− y)β1(x)], x ≥ |y|, x 6= 0,
1
2x [(x+ y)α2(x) + (x− y)β2(x)], x ≤ −|y|, x 6= 0,
1
2y [(y + x)α1(y) + (y − x)β2(y)], y > |x|,
1
2y [(y + x)α2(y) + (y − x)β1(y)], y < −|x|,
0, x = y = 0,

is separately convex.

Claim 5.2. Let E be a subset of (0,∞) for which λ((0,∞) \ E) = 0 and let

γ : E → R be non-decreasing on E. Then

γ(q)− γ(p) + y

[

γ(q)

q
− γ(p)

p
+

∫ q

p

γ(t)

t2
dt

]

≥ 0

whenever |y| ≤ p ≤ q and p, q ∈ E.

Proof. It is sufficient to prove the inequality for y = ±p. Since
∫ q

p

γ(t)

t2
dt ≥

∫ q

p

γ(p)

t2
dt = γ(p) ·

(1

p
− 1

q

)

,

we can write

γ(q)− γ(p) + p

[

γ(q)

q
− γ(p)

p
+

∫ q

p

γ(t)

t2
dt

]

≥ p

[

γ(q)

q
− γ(p)

p
+
γ(p)

p
− γ(p)

q

]

=
p

q

(

γ(q)− γ(p)
)

≥ 0.

Since
∫ q

p

γ(t)

t2
dt ≤

∫ q

p

γ(q)

t2
dt = γ(q) ·

(1

p
− 1

q

)

,

we can write

γ(q)− γ(p)− p

[

γ(q)

q
− γ(p)

p
+

∫ q

p

γ(t)

t2
dt

]

≥ γ(q)− γ(p)− p

q
γ(q) + γ(p)− γ(q) +

p

q
γ(q) = 0.

�

Proof of Lemma 5.1. (I) We prove first that F is separately convex on the quarters
from its definition. We consider the set {(x, y) : x ≥ |y|} only, since the proof for
other quarters is essentially the same. For the simplicity, we write α, β instead of
α1, β1. Notice that F is affine in the direction y, so we just need to show that F is
convex in the direction x.
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Let y be fixed. For almost every x > |y|, we have

(27) Fx(x, y) =
1

2

(

α′(x) + β′(x)
)

+
y

2x

(

α′(x) − β′(x)
)

− y

2x2
(

α(x) − β(x)
)

.

We want to show that this partial derivative is non-decreasing on its domain, that
is to prove that

α′(p) + β′(p) +
y

p

(

α′(p)− β′(p)
)

− y

p2
(

α(p)− β(p)
)

≤ α′(q) + β′(q) +
y

q

(

α′(q)− β′(q)
)

− y

q2
(

α(q) − β(q)
)

whenever |y| < p ≤ q and the derivatives exist.
Define

γ(x) = α′(x) +
1

x

(

β(x) − α(x)
)

,

δ(x) = β′(x) +
1

x

(

α(x) − β(x)
)

,

̺(x) =
1

x2
(

α(x) − β(x)
)

.

We can compute

̺′(x) =
1

x2
(

α′(x)− β′(x)
)

− 2

x3
(

α(x) − β(x)
)

=
1

x2
(

γ(x)− δ(x)
)

.

By Claim 5.2,

γ(q)− γ(p) + y

[

γ(q)

q
− γ(p)

p
+

∫ q

p

γ(t)

t2
dt

]

≥ 0,

δ(q)− δ(p)− y

[

δ(q)

q
− δ(p)

p
+

∫ q

p

δ(t)

t2
dt

]

≥ 0.

Summing up these inequalities and using the formula for ̺′, we obtain

γ(q) + δ(q)− γ(p)− δ(p) + y

[

γ(q)

q
− δ(q)

q
− γ(p)

p
+
δ(p)

p
+

∫ q

p

̺′(t) dt

]

≥ 0.

That is,

α′(q) + β′(q)− α′(p)− β′(p) + y

[

1

q

(

α′(q)− β′(q)
)

− 2

q2
(

α(q) − β(q)
)

−1

p

(

α′(p)− β′(p)
)

+
2

p2
(

α(p) − β(p)
)

+
1

q2
(

α(q)− β(q)
)

− 1

p2
(

α(p)− β(p)
)

]

≥ 0,

which leads quickly to the desired inequality.
(II) It remains to show that the separate convexity is not disrupted on the

diagonals x = ±y. Due to the symmetry, we show only that

Fx−(a, a) ≤ Fx+(a, a) for a.e. a > 0.

Using (27), we rewrite this requirement in the form

1

2a
[α1(a)− β2(a)] ≤ α′

1(a)−
1

2a

(

α1(a)− β1(a)
)

for a.e. a > 0.

It is sufficient to realize that

α′
1(x) +

1

x

(

β1(x)− α1(x)
)

≥ 0 and α′
1(x) +

1

x

(

β2(x) − α1(x)
)

≥ 0
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for x > 0 on the domain of these functions. These functions are assumed to be
non-decreasing for x > 0. They have the limits from the right at 0, considered with
respect to the domain of α′

1, and we check that these limits are equal to 0. Since
limx→0+

1
x
(βj(x)− αi(x)) = 0, the function α′

1 itself has the limit. The limit must

be 0, as limx→0+
1
x
α1(x) = 0. �

Lemma 5.3. Let α : R → R be a locally Lipschitz even function such that

• limx→0 α(x)/x = 0,

• the integral
∫ 1

0 α(x) dx/x
2 is convergent,

• the function α′(x)/x is non-decreasing on its domain for x > 0.

Let β : R → R be given by

β(x) = −x
∫ x

0

α(t)

t2
dt

and F : R2 → R be given by

F (x, y) =







1
2x [(x+ y)α(x) + (x− y)β(x)], |x| ≥ |y|, x 6= 0,
1
2y [(y + x)α(y) + (y − x)β(y)], |x| < |y|,
0, x = y = 0.

Then the function F is separately convex.

Proof. Due to Lemma 5.1, it is sufficient to show that the functions

γ(x) = α′(x) +
1

x

(

β(x) − α(x)
)

, δ(x) = β′(x) +
1

x

(

α(x)− β(x)
)

,

are non-decreasing on their domains for x > 0. We can compute

(28) β′(x) = −
∫ x

0

α(t)

t2
dt− x · α(x)

x2
=

1

x

(

β(x) − α(x)
)

,

(29) β′′(x) = −α(x)
x2

− 1

x2
(

α′(x)x − α(x)
)

= − 1

x
α′(x).

It follows that

γ(x) = α′(x) + β′(x) and δ(x) = 0.

Now, let 0 < p < q be elements of the domain of γ. Then

γ(q)− γ(p) = α′(q)− α′(p) +

∫ q

p

β′′(x) dx = α′(q)− α′(p)−
∫ q

p

α′(x)

x
dx

≥ α′(q)− α′(p)−
∫ q

p

α′(q)

q
dx = α′(q)− α′(p)− (q − p) · α

′(q)

q

= p ·
(α′(q)

q
− α′(p)

p

)

≥ 0.

�

Remark 5.4. It might be useful to have an upper bound for the function F from
Lemma 5.3. It is possible to prove that, if there is a p > 0 such that α′(x)/x is
constant on [p,∞), then

F (x, y) ≤ α
(1

2
(x + y)

)

+ β
(1

2
(x− y)

)

+ C, x, y ∈ R,

where C = 1
2pα

′(p)− α(p).



NOTES ON THE TRACE PROBLEM 15

Lemma 5.5. For every G ∈ C2(R), there is a separately convex function F : R2 →
R such that F (t, t) = G(t) for each t ∈ R.

Proof. Without loss of generality, we suppose that G(0) = 0 and G′(0) = 0. Let
M > 0 be such that |G′′(x)| ≤M for |x| ≤ 1. For every x ∈ R, we define

α1(x) = G(|x|), α2(x) = G(−|x|),
so we have

|α′′
i (x)| ≤M, |α′

i(x)| ≤Mx, |αi(x)| ≤
1

2
Mx2, i = 1, 2, 0 < x ≤ 1.

For every x > 0, we furthermore define

θi(x) =
1

x
αi(x), i = 1, 2, θ(x) =

∫ x

0

min{θ′1(y), θ′2(y)} dy,

η(x) = −θ(x) + sup
{

− yα′′
i (y) + α′

i(y) : 0 < y ≤ x, i = 1, 2
}

.

Since

(30) θ′i(x) =
1

x
α′
i(x)−

1

x2
αi(x),

we have

|θ′i(x)| ≤
3

2
M, |θ(x)| ≤ 3

2
Mx, |η(x)| ≤ 7

2
Mx, i = 1, 2, 0 < x ≤ 1.

So, for x ∈ R, we can define

β(x) = β1(x) = β2(x) = |x|
∫ |x|

0

η(y)

y
dy.

Since

(31) β′(x) =

∫ x

0

η(y)

y
dy + x · η(x)

x
=

1

x
β(x) + η(x), x > 0,

β is locally Lipschitz.
To show that Lemma 5.1 can be applied, we have to check that, given i ∈ {1, 2},

the functions

γ(x) = α′
i(x) +

1

x

(

β(x)− αi(x)
)

, δ(x) = β′(x) +
1

x

(

αi(x) − β(x)
)

,

are non-decreasing for x > 0. We have

γ(x) = α′
i(x) +

∫ x

0

η(y)

y
dy − θi(x),

thus we obtain from (30) that

γ′(x) = α′′
i (x) +

η(x)

x
− 1

x
α′
i(x) +

1

x2
αi(x).

By the definitions of η and θ,

η(x) ≥ −θ(x)− xα′′
i (x) + α′

i(x) ≥ −θi(x)− xα′′
i (x) + α′

i(x),

and it follows that γ′(x) ≥ 0. Hence, γ is non-decreasing for x > 0 indeed. Further,
using (31), we get for x > 0 that

δ(x) = η(x) + θi(x) = θi(x)− θ(x) + sup
{

− yα′′
j (y) + α′

j(y) : 0 < y ≤ x, j = 1, 2
}

.

Therefore, δ is the sum of two functions which are non-decreasing. �
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6. One more lemma

Lemma 5.3 allows us to find an extension for a substantially restricted class
of functions. In the following lemma, we minorize a more general function by a
function which meets the assumptions of Lemma 5.3 and has the same value at a
given point.

Lemma 6.1. Let ϕ : [0, r] → (−∞, 0] be a non-increasing function such that

ϕ(x)/x→ 0 as xց 0. Let α : R → (−∞, 0] be given by

α(x) = sup
{

ax2 + c : a, c ≤ 0, ay2 + c ≤ ϕ(y) for 0 ≤ y ≤ r
}

, x ∈ R.

Then

• α is Lipschitz and α(x)/x→ 0 as x→ 0,
• α′(x)/x is non-decreasing on its domain for x > 0,

•
∫∞
0

α(x)
x2 dx ≥ 2ϕ(r)

r
+ 3

∫ r

0
ϕ(x)
x2 dx.

The proof of the lemma is provided in several steps. Without loss of generality,
we assume that ϕ is lower semi-continuous. We define

ψ(0) = 0, ψ(x) = −ϕ(x)
x

, 0 < x ≤ r.

For each x > 0, we choose ax ≤ 0 and cx ≤ 0 so that

axx
2 + cx = α(x) and axy

2 + cx ≤ ϕ(y) for 0 ≤ y ≤ r.

Claim 6.2. Such ax and cx can be chosen.

Proof. Let us consider sequences anx ≤ 0 and cnx ≤ 0 such that

anxy
2 + cnx ≤ ϕ(y) for 0 ≤ y ≤ r

and
anxx

2 + cnx → α(x).

It is sufficient to show that the sequences are bounded, as then a subsequence of
(anx , c

n
x) converges. Let

κ = min
n∈N

{anxx2 + cnx}.
We can write

κ ≤ anxx
2 + cnx ≤ anxx

2, κ ≤ anxx
2 + cnx ≤ cnx ,

and so 0 ≥ anx ≥ κ/x2, 0 ≥ cnx ≥ κ. �

Claim 6.3. The function x 7→ ax is non-decreasing.

Proof. Let 0 < x < y. We have

axx
2 + cx = α(x) ≥ ayx

2 + cy,

ayy
2 + cy = α(y) ≥ axy

2 + cx.

Summing up these inequalities,

axx
2 + ayy

2 + cx + cy ≥ ayx
2 + axy

2 + cy + cx,

i.e.,
ay(y

2 − x2) ≥ ax(y
2 − x2).

Consequently, ay ≥ ax. �

Claim 6.4. The function α′(x)/x is non-decreasing on its domain for x > 0.
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Proof. By Claim 6.3, it is sufficient to realize that

α′(x)

x
= 2ax if α′(x) exists.

Since the function y 7→ axy
2 + cx is a minorant of α and has the same value at x,

it has also the same derivative. That is, α′(x) = 2axx. �

Claim 6.5. α(x)/x → 0 as x→ 0.

Proof. Let ε > 0. We want to find a δ > 0 such that

α(x) ≥ −εx, 0 < x ≤ δ.

Since ϕ(x)/x → 0 as xց 0, there is a δ0 > 0 such that

ϕ(x) ≥ −εx, 0 ≤ x ≤ δ0.

We check that the choice

δ = − εδ20
2ϕ(r)

works (we omit the trivial case ϕ(r) = 0). Let x ∈ (0, δ] be given. We put

a = − ε

2x
, c = −ε

2
x.

For 0 ≤ y ≤ δ0, using the AG-inequality,

ay2 + c = −ε
2

(y2

x
+ x

)

≤ −εy ≤ ϕ(y).

For δ0 < y ≤ r,

ay2 + c ≤ ay2 = − ε

2x
· y2 ≤ − ε

2δ
· δ20 = ϕ(r) ≤ ϕ(y).

Hence ay2 + c ≤ ϕ(y) for 0 ≤ y ≤ r, and so

α(x) ≥ ax2 + c = −εx.
�

Claim 6.6. We have α(0) = 0 and α(x) = ϕ(r) for x ≥ r.

Proof. We obtain α(0) = 0 from Claim 6.5 and from the fact that α is non-increasing
for x ≥ 0. If we consider a = 0 and c = ϕ(r), then ϕ(y) ≥ ϕ(r) = ay2 + c for
0 ≤ y ≤ r. Therefore, α(x) ≥ ax2 + c = ϕ(r) for every x ∈ R. At the same time, if
x ≥ r, then α(x) ≤ α(r) ≤ ϕ(r). �

Claim 6.7. α is Lipschitz.

Proof. By Claims 6.5 and 6.6, there is an M > 0 such that

α(x) ≥ −Mx, x ≥ 0.

We show that α is Lipschitz with the constant 3M . It is sufficient to show that

α(y)− α(x) ≥ −3M(y − x) when 0 < x ≤ y and y ≤ 2x.

We have
axx ≥ −M,

as −Mx ≤ α(x) = axx
2 + cx ≤ axx

2. Hence,

α(y)−α(x) ≥ axy
2+cx−axx2−cx = ax(y+x)(y−x) ≥ 3axx(y−x) ≥ −3M(y−x).

�
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Claim 6.8. For every 0 ≤ p < q ≤ r, we have
∫ q

p

ϕ(x)

x2
dx ≤ q − p

q
·
(

− ψ(p)
)

.

Proof. The formula is valid when p = 0, as ϕ ≤ 0 and ψ(0) = 0. When p > 0,
∫ q

p

ϕ(x)

x2
dx ≤

∫ q

p

ϕ(p)

x2
dx = ϕ(p)

(1

p
− 1

q

)

=
q − p

q
· ϕ(p)

p
=
q − p

q
·
(

− ψ(p)
)

.

�

Claim 6.9. Let numbers 0 ≤ p < q ≤ r have the property that α(p) = ϕ(p), α(q) =
ϕ(q) and α(x) < ϕ(x) for p < x < q. Then

−
∫ q

p

α(x)

x2
dx ≤ q − p

q
·
(

ψ(q) + ψ(p)
)

.

Proof. Let a and c be the numbers such that

ap2 + c = α(p) and aq2 + c = α(q),

i.e.,

a =
α(q) − α(p)

q2 − p2
, c =

q2α(p)− p2α(q)

q2 − p2
.

Let us prove that
α(x) ≥ ax2 + c, x ∈ R.

We need to check that c = c̄ where c̄ is the greatest number such that

ϕ(y) ≥ ay2 + c̄, 0 ≤ y ≤ r.

Suppose the opposite, i.e., c̄ < c. There is a point x such that ϕ(x) = ax2 + c̄ (due
to our assumption that ϕ is lower semi-continuous). There are four possibilities,
and we verify that none of them is possible.

(a) If p = 0 and x = 0, then 0 = ϕ(0) = a · 02 + c̄ = c̄ < c = 0 by Claim 6.6.
(b) If p > 0 and 0 ≤ x ≤ p, then we just need to show that ap ≤ a, since then

we can compute

ϕ(x) ≥ apx
2 + cp = app

2 + cp − ap(p
2 − x2) ≥

≥ α(p)− a(p2 − x2) = ax2 + c > ax2 + c̄ = ϕ(x).

It follows from
α(p) = app

2 + cp, α(q) ≥ apq
2 + cp,

that
a(q2 − p2) = α(q)− α(p) ≥ ap(q

2 − p2).

(c) If q ≤ x ≤ r, then we just need to show that a ≤ aq, since then we can
compute

ϕ(x) ≥ aqx
2 + cq = aqq

2 + cq + aq(x
2 − q2) ≥

≥ α(q) + a(x2 − q2) = ax2 + c > ax2 + c̄ = ϕ(x).

It follows from
α(q) = aqq

2 + cq, α(p) ≥ aqp
2 + cq,

that
a(q2 − p2) = α(q)− α(p) ≤ aq(q

2 − p2).

(d) If p < x < q, then

α(x) < ϕ(x) = ax2 + c̄ ≤ α(x).
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So, c = c̄ indeed. Now, assuming p > 0, we arrive at
∫ q

p

α(x)

x2
dx ≥

∫ q

p

(

a+
c

x2

)

dx = a(q − p) + c
(1

p
− 1

q

)

=
α(q) − α(p)

q2 − p2
· (q − p) +

q2α(p)− p2α(q)

q2 − p2
· q − p

pq

=
q − p

q + p

[

α(q)

q
+
α(p)

p

]

=
q − p

q + p

[

ϕ(q)

q
+
ϕ(p)

p

]

≥ q − p

q

[

ϕ(q)

q
+
ϕ(p)

p

]

= −q − p

q

(

ψ(q) + ψ(p)
)

.

Assuming p = 0, we obtain a = α(q)/q2, c = 0 from Claim 6.6 and compute
∫ q

p

α(x)

x2
dx ≥

∫ q

p

a dx = aq =
α(q)

q
= −ψ(q) = −q − p

q

(

ψ(q) + ψ(p)
)

.

�

Claim 6.10. We have
∫ ∞

0

α(x)

x2
dx ≥ 2

ϕ(r)

r
+ 3

∫ r

0

ϕ(x)

x2
dx.

Proof. We may assume that
∫ r

0

ϕ(x)

x2
dx > −∞.

Let us denote

V+ψ = sup
n
∑

i=1

(

ψ(xi)− ψ(xi−1)
)

+
,

V−ψ = sup
n
∑

i=1

(

ψ(xi)− ψ(xi−1)
)

−
,

where the supremum is taken over all partitions 0 = x0 < x1 < · · · < xn = r. For
0 < p < q ≤ r, we have

∫ q

p

ϕ(x)

x2
dx ≤

∫ q

p

ϕ(p)

x2
dx = ϕ(p)

(1

p
− 1

q

)

≤ ϕ(p)

p
− ϕ(q)

q
= −ψ(p) + ψ(q).

That is,

−
(

ψ(q)− ψ(p)
)

≤ −
∫ q

p

ϕ(x)

x2
dx, 0 ≤ p < q ≤ r

(the formula is valid also when p = 0 due to the assumption ϕ(x)/x → 0). Given
a partition 0 = x0 < x1 < · · · < xn = r,

n
∑

i=1

(

ψ(xi)− ψ(xi−1)
)

−
≤ −

n
∑

i=1

∫ xi

xi−1

ϕ(x)

x2
dx = −

∫ r

0

ϕ(x)

x2
dx.

Thus,

V−ψ ≤ −
∫ r

0

ϕ(x)

x2
dx

and

V+ψ = V−ψ + ψ(r)− ψ(0) ≤ ψ(r) −
∫ r

0

ϕ(x)

x2
dx.
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Now, let us consider the set

G = {x ∈ [0, r] : α(x) < ϕ(x)}.
This set is open due to Claims 6.6, 6.7 and our assumption that ϕ is lower semi-
continuous. Thus, we can write

G =
⋃

i

(pi, qi)

where the intervals (pi, qi) are pairwise disjoint. Applying Claims 6.8 and 6.9, we
can compute

−
∫ r

0

α(x)

x2
dx = −

∫ r

0

ϕ(x)

x2
dx+

∫

G

ϕ(x)

x2
dx−

∫

G

α(x)

x2
dx

≤ −2

∫ r

0

ϕ(x)

x2
dx+ 2

∫

G

ϕ(x)

x2
dx−

∫

G

α(x)

x2
dx

= −2

∫ r

0

ϕ(x)

x2
dx+ 2

∑

i

∫ qi

pi

ϕ(x)

x2
dx−

∑

i

∫ qi

pi

α(x)

x2
dx

≤ −2

∫ r

0

ϕ(x)

x2
dx+

∑

i

qi − pi
qi

(

− 2ψ(pi) + ψ(qi) + ψ(pi)
)

≤ −2

∫ r

0

ϕ(x)

x2
dx+

∑

i

(

ψ(qi)− ψ(pi)
)

+

≤ −2

∫ r

0

ϕ(x)

x2
dx+ V+ψ

≤ −2

∫ r

0

ϕ(x)

x2
dx+ ψ(r) −

∫ r

0

ϕ(x)

x2
dx.

It remains just to realize that, due to Claim 6.6,
∫ ∞

r

α(x)

x2
dx = ϕ(r) ·

∫ ∞

r

1

x2
dx = ϕ(r) · 1

r
.

�

7. Sufficient conditions

In this section, we combine Lemma 5.3 with Lemma 6.1 and obtain a general
extension result. The basic idea of its proof is that we touch a function g from below
by the trace of a separately convex function at every point of a dense set. Taking the
supremum of extensions of those functions, we obtain a separately convex function
with g as the trace. The only thing we need to take care of is that the supremum
is finite at every point.

Proposition 7.1. Let g : [a, b] → R be a Lipschitz function. For every differentia-

bility point u of g, let us denote

ϕu(x) = min
{

g(u+ t)− g(u)− g′(u)t : |t| ≤ x, u + t ∈ [a, b]
}

, x ≥ 0.

If there are constants K, ε > 0 and a dense subset D ⊂ [a, b] consisting of differen-

tiability points of g such that
∫ ε

0

ϕu(x)

x2
dx ≥ −K, u ∈ D,
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then there is a separately convex function f : R2 → R such that f(u, u) = g(u) for
each u ∈ [a, b].

Proof. For every u ∈ D, we define

αu(x) = sup
{

ax2 + c : a, c ≤ 0, ay2 + c ≤ ϕu(y) for 0 ≤ y ≤ b− a
}

, x ∈ R.

We notice that

(32) u+ t ∈ [a, b] ⇒ αu(t) ≤ ϕu(|t|) ≤ g(u+ t)− g(u)− g′(u)t.

By Lemma 6.1,

• αu is Lipschitz and αu(x)/x→ 0 as x→ 0,
• α′

u(x)/x is non-decreasing on its domain for x > 0,

•
∫∞
0

αu(x)
x2 dx ≥ 2ϕu(b−a)

b−a + 3
∫ b−a
0

ϕu(x)
x2 dx.

Let L be a Lipschitz constant of g. As ϕu(x) ≥ −2Lx for x ≥ 0, the assumption of
the proposition implies that there is a K ′ > 0 such that

∫ b−a

0

ϕu(x)

x2
dx ≥ −K ′, u ∈ D.

Considering the constant C = 4L+ 3K ′, we obtain

(33)

∫ ∞

0

αu(x)

x2
dx ≥ −C, u ∈ D.

For every u ∈ D, we further define functions βu : R → R and Fu : R2 → R by

βu(x) = −x
∫ x

0

αu(t)

t2
dt,

Fu(x, y) =







1
2x [(x+ y)αu(x) + (x− y)βu(x)], |x| ≥ |y|, x 6= 0,
1
2y [(y + x)αu(y) + (y − x)βu(y)], |x| < |y|,
0, x = y = 0.

The function Fu is separately convex due to Lemma 5.3. Using (33), we can write

βu(x) = −x
∫ x

0

αu(t)

t2
dt ≤ −x

∫ ∞

0

αu(t)

t2
dt ≤ Cx, x ≥ 0, u ∈ D.

Since αu(x) ≤ 0 ≤ Cx for x ≥ 0 at the same time, it follows that

(34) Fu(x, y) ≤ Cmax{|x|, |y|}, x, y ∈ R, u ∈ D.

Finally, we put

fu(x, y) = Fu(x− u, y − u) + g(u) + g′(u) · 1
2
(x+ y − 2u), x, y ∈ R, u ∈ D,

and

(35) f(x, y) = sup
u∈D

fu(x, y), x, y ∈ R.

For u ∈ D, the function fu is separately convex, as Fu is separately convex. Due
to (34), we have

fu(x, y) ≤ Cmax{|x− u|, |y − u|}+ g(u) + L · 1
2
|x+ y − 2u|.

If x and y are fixed, then the values on the right hand side are bounded. Thus, f
is a well-defined separately convex function.
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It remains to show that f(v, v) = g(v) for each v ∈ [a, b]. Given v ∈ [a, b] and
u ∈ D, we denote t = v − u and use (32) to compute

fu(v, v) = Fu(t, t) + g(u) + g′(u)t = αu(t) + g(u) + g′(u)t ≤ g(v).

It follows that f(v, v) ≤ g(v) for v ∈ [a, b]. It is sufficient to check the opposite
inequality f(v, v) ≥ g(v) for the elements of a dense subset of [a, b] only. For u ∈ D,
we have

f(u, u) ≥ fu(u, u) = Fu(0, 0) + g(u) + g′(u) · 0 = g(u).

This completes the proof of the proposition. �

Theorem 7.2. Let g : R → R be a locally Lipschitz function. For every differen-

tiability point u of g, let us denote

ϕu(x) = min
{

g(u+ t)− g(u)− g′(u)t : |t| ≤ x
}

, x ≥ 0.

If there are an ε > 0 and a dense subset D ⊂ R consisting of differentiability points

of g such that the function

u ∈ D 7→
∫ ε

0

ϕu(x)

x2
dx

is bounded on every bounded subset of D, then there is a separately convex function

f : R2 → R such that f(u, u) = g(u) for each u ∈ R.

Proof. It is sufficient to apply Propositions 7.1 and 2.2. �

Corollary 7.3. Let a function g : R → R be locally semi-concave with a linear

modulus. Then the following assertions are equivalent:

(i) There is a separately convex function f : R2 → R such that f(u, u) = g(u)
for each u ∈ R.

(ii) The function

x 7→
∫ 1

0

ωg(x, t)

t2
dt

is locally bounded from below.

Proof. The implication (i) ⇒ (ii) is valid for every locally Lipschitz function (Propo-
sition 4.1 and Remark 4.3). We prove the opposite implication (ii) ⇒ (i) for a
concave g only. This is allowed by Lemma 5.5, as the functions which are locally
semi-concave with a linear modulus are exactly the ones which can be expressed as
a sum of a concave function and a C2-function.

For a concave function g which satisfies (ii), let us show that the property from
Theorem 7.2 is met. Let D be the (necessarily dense) set of all differentiability
points of g. Due to the concavity, for every u ∈ D, we have

ϕu(x) = min
{

g(u+ t)− g(u)− g′(u)t : t = ±x
}

≥
(

g(u+ x)− g(u)− g′(u)x
)

+
(

g(u− x)− g(u)− g′(u)(−x)
)

= ωg(u, x),

and the implication follows. �
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Corollary 7.4. Let a function g : R → R have the property that every bounded

interval I admits a modulus ω = ωI with
∫ 1

0

ω(t)

t
dt <∞

such that g|I is semi-convex with the modulus ω. Then there is a separately convex

function f : R2 → R such that f(u, u) = g(u) for each u ∈ R.

Proof. Proposition 2.2 allows us to assume that g is semi-convex on the whole line
with a suitable modulus ω = ωR. We may suppose that ω is continuous (see e.g.
[4, Corollary 3.6]). Let us define

Ω(t) =

∫ t

0

ω(s) ds, t ≥ 0.

Notice that

(36)

∫ 1

0

Ω(t)

t2
dt =

[

−Ω(t)

t

]1

0

+

∫ 1

0

Ω′(t)

t
dt = −Ω(1) +

∫ 1

0

ω(t)

t
dt <∞.

By [5, Proposition 2.8], we can write

(37) g(z + t)− g(z)− tg′+(z) ≥ −2Ω(|t|), z, t ∈ R.

Now, considering the function ϕu from Theorem 7.2 for a differentiability point u
of g, we obtain

ϕu(x) ≥ −2Ω(x), x ≥ 0,

and it is sufficient to use (36). �

Remark 7.5. There is a proof of Theorem 1.2 which is more natural in a manner
and does not need the machinery of Section 6. Let us briefly sketch the construction
of f . The modulus can be chosen so that it satisfies, among the continuity, that
ω(t)/t is non-increasing on (0,∞) and constant on [p,∞) for some p > 0 (see e.g.
[4, Corollary 3.6]). We pick

α(x) = −2Ω(|x|), x ∈ R.

The assumptions of Lemma 5.3 are fulfilled by (36) and the additional properties
of ω. Let β and F be as in Lemma 5.3 and let f be defined by

f(x, y) = sup
u∈R

(

F (x− u, y − u) + g(u) + g′+(u) ·
1

2
(x+ y − 2u)

)

, x, y ∈ R,

(cf. with (35)). One can show that the function is well-defined using Remark 5.4
and (37). Moreover, f(u, u) = g(u) for each u ∈ R, which is a consequence of (37).

8. A modification of the extension method

Although the extension methods developed in previous sections can be applied to
a reasonably general class of functions, there is a natural group of traces that does
not seem to be covered. It should be also noted that, in the view of Corollary 8.2,
there is no analogue of Theorem 4.2 which, instead of the symmetric difference,
would consider the values of a function only on one side.
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Proposition 8.1. Let γ : (c,∞) → R be a three times differentiable function such

that

(38) γ ≥ 0, γ′ ≤ 0, γ′′ ≥ 0, γ′′′ ≤ 0

on (c,∞). Then the function f : (−e−c, e−c)2 → R given by

f(x, y) =































−γ(log 1
x
) · (2y − x)

−γ′(log 1
x
) · 1

2x (x− y)(2x− y), e−c > x ≥ |y|, x 6= 0,
−γ(log(− 1

x
)) · (2x− y)

−γ′(log(− 1
x
)) · 3

2 (y − x), −e−c < x ≤ −|y|, x 6= 0,
0, x = y = 0,
f(y, x), in the remaining cases,

is separately convex.

Proof. The proof is a straightforward computation provided in two steps. Firstly
we prove the separate convexity only in the quadrants Q1 := {x > |y|}, Q2 := {y >
|x|}, Q3 := {x < −|y|} and Q4 := {y < −|x|}, simply by proving the non-negativity
of the (unmixed) second partial derivatives. Secondly we verify that the diagonals
x = y and x = −y do not spoil the convexity by observing that f is continuous and
then by computing the first derivatives on these diagonals. Due to the symmetry
we need to prove the convexity only on the lines parallel to the x-axis.

Define functions

A1(x, y) := −γ
(

log
1

x

)

· (2y − x)− γ′
(

log
1

x

)

· 1

2x
(x− y)(2x− y),

A3(x, y) := −γ
(

log
(

− 1

x

)

)

· (2x− y)− γ′
(

log
(

− 1

x

)

)

· 3
2
(y − x),

A2(x, y) := A1(y, x) and A4(x, y) := A3(y, x).

Then f(x, y) = Ai(x, y) for (x, y) ∈ Qi, i = 1, . . . , 4, whenever one of the functions
is defined.

First we compute the partial derivatives. A simple computation shows that

(39)

∂A1

∂x
(x, y) =

1

2x2

[

2x2γ
(

log
1

x

)

+ (y2 − 4x2 + 4xy)γ′
(

log
1

x

)

+ (2x2 − 3xy + y2)γ′′
(

log
1

x

)

]

,

(40)
∂A2

∂x
(x, y) =

1

2y

[

− 4yγ
(

log
1

y

)

+ (3y − 2x)γ′
(

log
1

y

)

]

,

(41)

∂A3

∂x
(x, y) =

1

2x

[

− 4xγ
(

log
(

− 1

x

)

)

+ (7x− 2y)γ′
(

log
(

− 1

x

)

)

+ 3(y − x)γ′′
(

log
(

− 1

x

)

)

]

,

(42)
∂A4

∂x
(x, y) = γ

(

log
(

− 1

y

)

)

− 3

2
γ′
(

log
(

− 1

y

)

)

,



NOTES ON THE TRACE PROBLEM 25

(43)

∂2A1

∂x2
(x, y) =

1

2x3

[

− 2(x+ y)2γ′
(

log
1

x

)

+ (x− y)(4x+ 3y)γ′′
(

log
1

x

)

+ (x − y)(y − 2x)γ′′′
(

log
1

x

)

]

,

(44)
∂2A2

∂x2
(x, y) = −1

y
γ′
(

log
1

y

)

,

(45)

∂2A3

∂x2
(x, y) =

1

2x2

[

2(2x+ y)γ′
(

log
(

− 1

x

)

)

− (7x+ y)γ′′
(

log
(

− 1

x

)

)

+ 3(x− y)γ′′′
(

log
(

− 1

x

)

)

]

,

(46)
∂2A4

∂x2
(x, y) = 0.

Now, (x + y)2 ≥ 0 for any x, y and x > |y| implies (x − y)(4x + 3y) ≥ 0 and

(x − y)(y − 2x) ≤ 0. Hence, using (43), we obtain that ∂2f
∂x2 (x, y) ≥ 0 whenever

x > |y|. Similarly, ∂
2f
∂x2 (x, y) ≥ 0 whenever y > |x| using (44). Using the symmetry

of f we obtained that f is separately convex in both Q1 and Q2.
To verify separate convexity in Q3 and Q4 we observe that x < −|y| implies

2x+ y ≤ 0, 7x + y ≤ 0 and x − y ≤ 0, which, using (45), implies ∂2f
∂x2 (x, y) ≥ 0 in

Q3 and similarly we get the same result for Q4 using (46).
To prove the second part, we note that it is easy to check that f is continuous

in the direction of the x-axis in the points (a,±a), including (0, 0). So we just need
to observe the following four inequalities.

If 0 < x = y then (using (39) and (40))

γ
(

log
1

x

)

+
1

2
γ′
(

log
1

x

)

=
∂A1

∂x
(x, x) ≥ ∂A2

∂x
(x, x) = −2γ

(

log
1

x

)

+
1

2
γ′
(

log
1

x

)

.

If 0 > x = y then (using (41) and (42))

γ
(

log
(

− 1

x

)

)

− 3

2
γ′
(

log
(

− 1

x

)

)

=
∂A4

∂x
(x, x) ≥ ∂A3

∂x
(x, x)

= −2γ
(

log
(

− 1

x

)

)

+
5

2
γ′
(

log
(

− 1

x

)

)

.

If 0 < x = −y then (using (39) and (42))

γ
(

log
1

x

)

− 7

2
γ′
(

log
1

x

)

+ 3γ′′
(

log
1

x

)

=
∂A1

∂x
(x,−x) ≥ ∂A4

∂x
(x,−x)

= γ
(

log
1

x

)

− 3

2
γ′
(

log
1

x

)

.

Finally, if 0 > x = −y then (using (40) and (41))

−2γ
(

log
(

− 1

x

)

)

+
5

2
γ′
(

log
(

− 1

x

)

)

=
∂A2

∂x
(x,−x) ≥ ∂A3

∂x
(x,−x)

= −2γ
(

log
(

− 1

x

)

)

+
9

2
γ′
(

log
(

− 1

x

)

)

− 3γ′′
(

log
(

− 1

x

)

)

.

The above inequalities reduce to inequalities

3γ
(

log
1

x

)

≥ 0 and − 2γ′
(

log
1

x

)

+ 3γ′′
(

log
1

x

)

≥ 0
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whenever x > 0 and

3γ
(

log
(

− 1

x

)

)

− 4γ′
(

log
(

− 1

x

)

)

≥ 0

and

−2γ′
(

log
(

− 1

x

)

)

+ 3γ′′
(

log
(

− 1

x

)

)

≥ 0

whenever x < 0, which all hold due to (38). �

Corollary 8.2. Let h : [0, a) → R be a function which is bounded from below

such that h(0) = 0 and h′+(0) = 0. Then there exists a separately convex function

f : (−a, a)2 → R such that its trace g(t) = f(t, t) is an odd function with g′(0) = 0
and g(t) ≤ h(t) for 0 ≤ t < a.

To prove the corollary, we need the following observation.

Claim 8.3. Let κ : (c,∞) → R be a function which is bounded from above with

κ(x) → 0 as x → ∞. Then κ has a majorant γ : (c,∞) → R of the class C∞ so

that γ(x) → 0 as x→ ∞ and

(−1)kγ(k)(x) ≥ 0, x > c, k = 0, 1, 2, . . . .

Proof. Without loss of generality, we consider the following special case. Let c = 0
and κ be of the form

κ =
∞
∑

i=1

2−i · 1(0,ai]

where ai ≥ 1 for i ∈ N. Let us show that

(47) γ =
∞
∑

i=1

2−i · γi

where

γi(x) =
2ai
x+ ai

, x > 0,

works. We have

γ
(k)
i (x) = (−1)kk! · 2ai

(x+ ai)k+1
.

Hence |γ(k)i (x)| ≤ k! · 2ai
(0+ai)k+1 ≤ 2 · k!, so the derivatives of the partial sums in

(47) converge uniformly on (0,∞). We can write

(−1)kγ(k)(x) = (−1)k
∞
∑

i=1

2−i · γ(k)i (x) = k!

∞
∑

i=1

2−i · 2ai
(x+ ai)k+1

≥ 0.

�

Proof of Corollary 8.2. Let

κ(x) = −h(e
−x)

e−x
, x > c := log

1

a
,

and let γ : (c,∞) → R be a majorant given by Claim 8.3. Then Proposition 8.1
provides us with a separately convex function f : (−a, a)2 → R such that

f(t, t) = −f(−t,−t) = −t · γ
(

log
1

t

)

for 0 < t < a.
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Its trace g(t) = f(t, t) is an odd function. Since γ(x) → 0 as x → ∞, we obtain
g′(0) = 0. For 0 < t < a, we can write

g(t) = −t · γ
(

log
1

t

)

≤ −t · κ
(

log
1

t

)

= h(t).

�

9. Examples

The first example illustrates that the traces of separately convex functions may
not have a property typical for the semi-convex functions, the existence of one-sided
derivatives at every point (see Figure 1 in the introduction).

Example 9.1. Define a real function h on R by h(x) := max(1− x2, 0). Then h is
a Lipschitz function whose derivative exists everywhere except −1 and 1 and

h′(x)

x
=

{

−2 if 0 < |x| < 1,

0 if |x| > 1.

Also,
∫ x

0

h(t)− h(0)

t2
dt =

{

−x if 0 < x ≤ 1,

−2 + 1
x

if x > 1.

So using Lemma 5.3 we can obtain a separately convex function f̃ such that f̃(t, t) =
h(t) for t ∈ R and such that

(48) f̃(x, y) ≤ 1 + 2max(|x|, |y|)
whenever x, y ∈ R.

For n ∈ N define functions hn : R → R and fn : R2 → R by hn(x) := 3−nh(3nx−
2) and fn(x, y) := 3−nf̃(3nx − 2, 3ny − 2). Consider functions g : R → R and
f : R2 → R defined by

g(x) := sup
n
hn(x) and f(x, y) := sup

n
fn(x, y).

First observe that f is finite by (48) and therefore f is a separately convex function
on R

2 such that f(t, t) = g(t) for t ∈ R. Note that g = hn on [3−n, 3−n+1] which
in particular means that g (2 · 3−n) = 3−n and g (3−n) = 0. Therefore, g′+(0) does
not exist and, in particular, g is not semi-convex with any modulus.

Example 9.2. Define a function g : (−1, 1) → R by g(x) = |x|
log |x| for x 6= 0 and

g(0) = 0. Then g is C1 on (−1, 1) but

−

1
2

∫

0

ωg(0, t)

t2
dt = −

1
2

∫

0

2

t log t
dt = ∞.

Note that g is also concave on (−1, 1) and so by modifying it outside a neighbour-
hood of 0 we can obtain a concave C1 function on R which (using e.g. Proposi-
tion 4.1) cannot be the trace of a separately convex function. On the other hand, it
might be worth noting that the function g̃ defined by g̃(x) = x

log |x| (and g̃(0) = 0)

actually can be extended to a separately convex function f̃ on (−1, 1)2 using Propo-
sition 8.1 (applied on γ(t) = 1

t
).
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The next example are actually two examples, in the first one we show that there
is a function that satisfies the necessary condition from Proposition 4.1, but it is
not a trace by Theorem 4.2. The second one illustrates that even the condition
from Theorem 4.2 is not sufficient.

Example 9.3. Define functions ϕ : R → R and ϕu : R → R, u > 0, by

ϕ(x) :=

{

− cos(πx)+1
2 if |x| ≤ 1,

0 if |x| > 1,

and

ϕu(x) := uϕ
(x

u

)

.

Put ti =
1
2i , ui =

1
i2i and define functions φi : R → R and ψ : R → R by

φi(x) := ϕui
(x− ti) and ψ :=

∞
∑

i=10

φi.

t10t11t12t13. . .

u10

u10 u10

u11

u11 u11

Figure 3. The graph of ψ.

We will prove that there is a constant C such that

(49) −
∞
∫

0

ωψ(x, s)

s2
ds ≤ C

for every x ∈ R. On the other hand, we will prove that

(50) −
1

∫

0

ω∗
ψ(0, s)

s2
ds = ∞.

Figure 4. The graph of ξ.
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Moreover, in the view of Example 9.2, one might also wonder whether a function
ξ : R → R defined by

ξ(x) :=

{

ψ(x) if x ≥ 0,

−ψ(−x) if x < 0,

can be the trace of a separately convex function f on R
2. In this case, we will argue

that no such function f exists using Remark 4.4. The function ξ, however, satisfies
the necessary condition from Theorem 4.2. Indeed, we will prove that there is a
constant C∗ such that

(51) −
∞
∫

0

ω∗
ξ (x, s)

s2
ds ≤ C∗

for every x ∈ R.
We start the proof with the following formulae. One can verify that there are

constants C1, C2 and C3 such that the following three inequalities hold (indepen-
dently of u and x):

(52) −
∞
∫

0

ωϕu
(x, s)

s2
ds ≤ C1 min

{

1,
u2

x2

}

,

(53) −
∞
∫

0

ω∗
ϕu

(x, s)

s2
ds ≤ C2,

(54) −
∞
∫

0

ω∗
−ϕu

(x, s)

s2
ds ≤ C3.

To prove (50), we can compute

−
1

∫

0

ω∗
ψ(0, s)

s2
ds ≥

∞
∑

i=10

ti
∫

ti+1

ui+1

s2
ds =

∞
∑

i=10

(

ui+1

ti+1
− ui+1

ti

)

=

∞
∑

i=10

1

2(i+ 1)
= ∞.

We prove (49) only for the most difficult case x ∈ (0, t10). We can write

ωφi
(x, s) = ωϕui

(x − ti, s)

and

−
∞
∫

0

ωφi
(x, s)

s2
ds ≤ C1 min

{

1,
u2i

(x − ti)2

}

.

Pick such a j ≥ 10 that x ∈ [tj+1, tj). For 10 ≤ i ≤ j − 1, we can compute

ti − x ≥ ti − tj ≥ ti − ti+1 = 2−(i+1), and thus

u2i
(x− ti)2

≤ 1

i222i
· 22(i+1) =

4

i2
.
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The integral in (49) is then equal to

−
∞
∫

0

j−1
∑

i=10

ωφi
(x, s)

s2
ds−

∞
∫

0

ωφj
(x, s)

s2
ds−

∞
∫

0

∞
∑

i=j+1

ωφi
(x, s)

s2
ds

≤ C1

j−1
∑

i=10

u2i
(x− ti)2

+ C1 + C2 ≤ C1

∞
∑

i=10

4

i2
+ C1 + C2 =: C <∞.

Using Remark 4.4, we show that the function ξ can not be the trace of a sep-
arately convex function. Consider sequences ri = ti =

1
2i and pi =

3
2 · 1

2i , i ≥ 10.

Note that ξ(ri) = −ui = − 1
i2i and since (using i ≥ 10)

ti + ui =
1

2i

(

1 +
1

i

)

≤ 3

2
· 1

2i
≤ 1

2i

(

2− 2

i− 1

)

= ti−1 − ui−1,

we obtain that ξ(−pi) = 0. Formula (23) gives us

∞ >−
∞
∑

i=10

[

ξ(ri+1) ·
pi − pi+1

(pi + ri+1)(pi+1 + ri+1)
+ ξ(−pi) ·

ri − ri+1

(pi + ri+1)(pi + ri)

]

=

∞
∑

i=10

1

(i+ 1)2i+1
· 3
2
·

1
2i − 1

2i+1

(32 · 1
2i +

1
2i+1 ) · (32 · 1

2i+1 + 1
2i+1 )

=

∞
∑

i=10

1

(i+ 1)
· 3
2
· 1

(3 + 1) · (32 + 1)
=

∞
∑

i=10

3

20
· 1

(i+ 1)
,

which is not possible.
It remains to show (51). First note that the integral in (51) is trivially equal to

0 for x = 0. To finish the proof, fix x 6= 0. The integral can be divided into two
parts

I1 := −
|x|
∫

0

ω∗
ξ (x, t)

t2
dt and I2 := −

∞
∫

|x|

ω∗
ξ (x, t)

t2
dt.

It remains to find constants A and B independent of x such that I1 ≤ A and I2 ≤ B.
One can show that I1 ≤ C3 for x < 0 and I1 ≤ 3C2 for x > 0. Let L be a Lipschitz
constant of ξ (we can take a Lipschitz constant of ϕ). Then we can estimate

ωξ(x, t) = ξ(x+ t) + ξ(x− t)− 2ξ(x) = ξ(t+ x)− ξ(t− x)− 2ξ(x)

≥− 2L|x| − 2ξ(x) ≥ −4L|x|.
Moreover, since the function t 7→ −4L|x| is non-increasing, we also obtain that
ω∗
ξ (x, t) ≥ −4L|x|. Now, we can write

I2 ≤ 4L|x|
∞
∫

|x|

1

t2
dt =

4L|x|
|x| = 4L,

and we are done.

The last example illustrates that there is a concave function which is a trace,
but does not satisfy the sufficient condition from Theorem 1.2. The idea of the
construction is based on the observation that the integrals in condition (ii) from
Theorem 1.1 do not need to converge (locally) uniformly.
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δ λ

a1a1−λ1 a1+λ1

Figure 5. (a) The function gδ,λ for the choice δ = 1
6 and λ = 1

2 .

(b) The function g1 for the choice a1 = 3
5 and λ1 = 2

5 .

Example 9.4. For 1 > λ ≥ δ > 0 define a function gδ,λ : R → R by (cf. Fig-
ure 5(a))

gδ,λ(x) :=











−λ
δ
x2 + λ2 − λδ if |x| ≤ δ,

−2λ|x|+ λ2 if δ < |x| ≤ λ,

−x2 if |x| > λ.

The function gδ,λ is even and an easy computation gives that g′δ,λ(x) exists for
x > 0 and moreover

g′δ,λ(x)

x
=











− 2λ
δ

if 0 < x ≤ δ,

− 2λ
x

if δ < x ≤ λ,

−2 if x > λ.

Therefore the function x 7→ g′δ,λ(x)

x
is clearly non-decreasing. It is easy to see that

gδ,λ is also always concave. Moreover, for x ≥ λ,
(55)

x
∫

0

gδ,λ(t)− gδ,λ(0)

t2
dt = −λ

δ

δ
∫

0

t2

t2
dt+

λ
∫

δ

−2λt+ λδ

t2
dt+

x
∫

λ

−t2 + λδ − λ2

t2
dt

= −λ− 2λ log

(

λ

δ

)

+ (λ− δ)− (x− λ) +
(x− λ)(δ − λ)

x

≥ −λ− 2λ log

(

λ

δ

)

+ (λ− δ)− (x− λ) + (δ − λ)

= −2λ log

(

λ

δ

)

− x.

If we additionally assume that

(56) δ =
λ

e
1
λ

which implies log

(

λ

δ

)

=
1

λ

we obtain

(57)

x
∫

0

gδ,λ(t)− gδ,λ(0)

t2
dt ≥ −2− x,
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assuming x ≥ λ. Also,

(58) −
λ
∫

0

gδ,λ(t)− gδ,λ(0)

t2
dt = 2+ δ ≥ 2.

This in particular means, using Lemma 5.3, that there is a separately convex func-
tion fδ,λ on R

2 such that fδ,λ(t, t) = gδ,λ(t) for every t ∈ R. Moreover, it will have
the property that

(59) fδ,λ(u, v) ≤ fδ,λ(0, 0)− x

x
∫

0

gδ,λ(t)− gδ,λ(0)

t2
dt ≤ 1 + 2x+ x2

whenever |u| ≤ x, |v| ≤ x and λ ≤ x.
Fix sequences {δn} and {λn} satisfying (56) and a sequence {an} ⊂ [0, 1], an ց 0,

satisfying an − λn > an+1 + λn+1. Define functions fn : R2 → R, gn : R → R,
n ∈ N, f : R2 → R and g : R → R by (cf. Figure 5(b))

gn(x) := gδn,λn
(x− an)− 2anx+ a2n,

fn(x, y) := fδn,λn
(x − an, y − an)− an(x+ y) + a2n,

g(x) := sup
n
gn(x) and f(x, y) := sup

n
fn(x, y).

Note that fn is a separately convex function such that fn(t, t) = gn(t), t ∈ R, which
then implies f(t, t) = g(t), t ∈ R. Also gn(x) = −x2 for x 6∈ [an−λn, an+λn] =: In
and, since In ∩ Im = ∅ for n 6= m, g is concave (because it is locally concave due to
the concavity of every gn).

We need to show that f is finite at every (u, v) ∈ R
2, but this is easy since using

(59) we obtain

fn(u, v) = fδn,λn
(u− an, v − an)− an(u+ v) + a2n

≤ 1 + 2x+ x2 + 2an(x− an) + a2n ≤ 2 + 4x+ x2,

provided |u− an| ≤ x, |v − an| ≤ x and λn ≤ x.
It remains to prove that g is not semi-convex with any modulus ω satisfying

(60)

∫ 1

0

ω(t)

t
dt <∞.

So suppose that g is semi-convex with such a modulus ω. This gives us

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y) + α(1 − α)|x − y|ω(|x− y|)
which can be for α = 1

2 rewritten as

(61) −g(x) + g(y)− 2g
(

x+y
2

)

|x− y|2 ≤ ω(|x− y|)
2|x− y| .

Considering x = an + t and y = an − t we then obtain

(62) −g(an + t) + g(an − t)− 2g(an)

4t2
≤ ω(2t)

4t
.
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This implies that, using (58),
∫ 2λn

0

ω(t)

t
dt = 2

∫ λn

0

ω(2t)

2t
dt

≥ −
∫ λn

0

g(an + t) + g(an − t)− 2g(an)

t2
dt ≥ 2 + 2

for every n, which is a contradiction with (60).
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