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Compressible Navier-Stokes equation

Orp +div (pv) =0 : (1.1)
p(Oev + v - Vv) — pAv — (u+ p)Vdivv + VP(p) = pg (1.2)
V|x,=0 = V}(t)er, v|x,—¢=0 ; (1.3)
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Compressible Navier-Stokes equation

Orp +div (pv) =0 : (1.1)
p(Oev + v - Vv) — pAv — (u+ p)Vdivv + VP(p) = pg (1.2)
vl = Vi(t)ey, Wl =0 : (1.3)

0, - b (a0 - (a0 G ) o R0 e fL

p = p(x, t) unknown density

v = (vi(x,t), -+ ,v"(x,t)) unknown velocity

P = P(p) pressure, given smooth function of p,

for given p, > 0 we assume P'(p,) >0

g = (g'(xn,1),0,---,0,8"(xs)) given function T-periodic in t
V1(t) given function T-periodic in t
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Compressible Navier-Stokes equation

Orp +div (pv) =0 : (1.1)
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V]xmo = V(t)er, v]xe=0 - (1.3)

o g=(g'(xn,1),0,---,0,8"(x,)) given function T-periodic in t
e V(t) given functlon T-periodic in t
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Existence of time-periodic parallel solution

If ||g”|| < 1 then there exists

0= Pl Vo= (Ve L1l 0 B
strong solution to (1.1)—(1.3) satisfying
= 1

3 4
_ V,l,(x,,,t+ ) :V},(xn,t), >0 pi— z/0 Pp(Xn) dn.



Introduction

Existence of time-periodic parallel solution

If lg"]] < 1 then there exists

0= Pl Vo= (Ve L1l 0 B
strong solution to (1.1)—(1.3) satisfying

AR 3 s 1 4
Tt T =Vl t), T>0, pam ?/o 7 (Xn) dn

Aim
Description of perturbations around time-periodic solution and their
asymptotic properties.



Stability of parallel flows

Compressible Navier-Stokes equation (1.1)—(1.2)
Otp + div (pv) =0 (1.1)
p(Oev + v - Vv) — pAv — (u+ p)Vdivv + VP(p) = pg (1.2)

with

g (gl(Xn)7 07 D 707gn(xn))7 V‘X,,:O B V1e17 Vb=V = 0. (14)
If ||g"]] < 1 then there exists
Ps = Ps(xn) Ve = (Vs(Xn)a .. 5.0]
stationary solution to (1.1)—(1.2) and (1.4).

Examples: Plane Couette flow, Poiseuille flow,..



Related results

Kagei, Y.

Asymptotic behavior of solutions of the compressible Navier-Stokes
equation around parallel flows. Arch. Rational Mech. Anal. Vol. 205,
pp-585-650.

For Reynolds and Mach numbers sufficiently small and

lpo —psll <1, [lvo—Vs| <1,

solutions are asymptotically stable.
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Related results

Kagei, Y.
Asymptotic behavior of solutions of the compressible Navier-Stokes

equation around parallel flows. Arch. Rational Mech. Anal. Vol. 205,
pp-585-650.

For Reynolds and Mach numbers sufficiently small and

lpo =7l <1, [vo — Vsl <1,
solutions are asymptotically stable.

In the case n > 3, the disturbances behave in large time as solutions of the
linearized problem, whose asymptotic leading parts are given by solutions
of an n — 1 dimensional linear heat equation with convective term.

In the case n = 2, the asymptotic behavior is no longer described by the
linearized problem; and it is described by a nonlinear diffusion equation,
namely, by a 1-dimensional viscous Burgers equation.



Setting p = p, + ¢ and v = v, + w in (1.1)—(1.3):

Ot + v},axlqs + div (pp,w) = —div (¢w),

Orw — £ Aw — “+” Vdivw+V (P(pp)¢>
Pp By

+V1136X1W+%(8)2< )¢e1 + (Ox, p)w"el : f,
wlaq, = 0,

(¢, w)|e=0 = (0, wo).



Non-dimensional version

Dimensionless variables

0o
ok

{10:V cow) + |8t | comxog } + IV cogwy-

i O i - i
e =5 tzvt, w=Vw, ¢=p%p P=pV3P,

& i1 = uVv o
=V 7= VIV, g iig
Here,
1= 5 V/ oo 'U/ = ___El_(i)i) T s K:’"
P*£V7 P*EV’ 74 ! e

Reynolds number Re = v, Mach number Ma = ~! and time period T.



Non-dimensional version

Dimensionless variables

2
o et

{10:V  cow) + |t | comxon } + IV  cogwy-

i l i ~ ~
Xe— 0, t:Vt’ w=Vw, ¢=p~%p P=pV3P,

o 3 - wV o
Vo= Vi, Bp=pupp VI=VV!, g=

Here,

!/ /P/ o TR

v

o o a1 v ¢

Let us write x, t, w and ¢ instead of X, t, w and 5 :



Non-dimensional version

Nondimensional form

On the layer Q = R"~1 x (0,1):

Or + V;&qﬁb + y2div (ppw) = —div (¢pw),

v v . P'(pp)
Orw — FPAW — p—delV w—+V (qub)

Here, v = v + /.

+V;8X1W+72yp ( o p)d)e]_ +( o p)W"el = f,\
wlaq =0,
(¢, w)|t=0 = (¢0, wo)-

(2.1)

(2.2)

(2.3)

(2.4)



Non-dimensional version

Nondimensional form

On the layer Q = R™! x (0,1):

Ot + v;(x,77 £)0x @ + Y2div (pp(xn)w) = —div (pw), (2.0}
L e i (P X”)¢>
£ pp(%n) Pp(>n) 72pp(xn)
+V/}(Xm t)aXIW—f-m(@Xan(Xm ))¢e1 +( Xn p( ))W el a0 f
(2.2)
wlsq = 0, (2.3)

(¢, w)|e=0 = (0, wo). (2.4)

Here, v = v + /.
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Regularity assumptions

Let m > [n/2] 4+ 1. We assume that:
2] ,
g e ([ (o 7] rrtdio ),
j=0
g e chtlo ]

vt e cllo, ).

P() e CTHA(R).



Properties of u, = T(pp(xn), Vp(Xn, t))

1
0 )= / Pp(3n) iy = 1, vp(xm 1) = T (3 (o, 1), 0),
0

with o
P'(p) > 0 for p1 < p < po,
for some constants 0 < p1 < 1 < po.



Properties of time-periodic solution

Properties of u, = T(pp(xa), Vp(Xa, t))

1
0< p1 < poloxe) < p2, [ palsn)dtn = 1, vilons ) = T (44 ens ).,
0
with o
P'(p) > 0 for p1 < p < pa,
for some constants 0 < p1 < 1 < po.

Moreover,
g Y n
11— pplemiqoa) < ?VUP |cm=1(p1,00) T 18" [cm(j0,11))s

~ C
IP'(pp) — ¥l (o, < ?V!g"!cqo,l])-



Main results ([3])

Global existence and decay estimate

Suppose that n > 2. Let m be an integer satisfying m > [n/2] + 1. There
are positive numbers vg and o such that if v > vg and v /(v + V) > 2
then the following assertions hold true.

There is a positive number g such that if ug = " (¢o, wo) € (H™ N L})(Q)
satisfies suitable compatibility condition and ||ug||gm~r < €0, then there
exists a unique global solution u(t) = T(¢(t), w(t)) of (2.1)~(2.4) in

ﬂj[:%(]) C/([0,00); H™=2%(Q)) which satisfies

n=1_ 'k
2

0% u(t)ll2 = Ot~ "% ~



Main results

Main results ([3])

Asymptotic behavior n = 2
Moreover, there holds

lu(t) — (eu@)()]2 = O(t~3*7), V6 > 0,

as t — oo. Here, ul® = 4 (xy, t) is a given function and o = o(xq, t) is
a function satisfying

1
0o — 518)2(10 + KOy 0 + aoaxl(az) =0 obiy— / do(x1,x2) dxa,
0

with given constants kg, ap € R, k1 > 0.



Main results

Main results ([3])

Asymptotic behavior n > 3
Furthermore, there holds

L
lu(t) = (ou®)(t)ll2 = O(t~"7 ~2ma(2)),
as t — oco. Here, 0 = o(xX/, t) is a function satisfying
. \
8[—0' orE K/]_a)zqa s K/I/A//U s K/Oaxlo- R 05 O-‘t:() T / ¢O(X/7Xn) erH
0

with given constants kg € R, k1,k” > 0; where A" =92 +--- + 92 _;
and n,(t) = log(1 + t) when n = 3 and np(t) =1 when n > 4.



Sketch of the proof

Approach

(i) Spectral analysis of linearized problem (B.-Kagei [12]) ie.,

0r¢ + vy 05, ¢ + div (ppw) = 0,
.8tw — p—"pAW — %Vdiv w+V (#ﬁp)(ﬁ)
—i—v;aXlWJr%(@i vy )der + (8Xnv;)w"e1 =0,

W|BQ = 07

(¢, w)|e=0 = (0, wo).



Sketch of the proof

Approach

(i) Spectral analysis of linearized problem (B.-Kagei [12]) ie.,

0t + vp 0y & + div (ppw) = 0,
v v : ﬁ'(P )
—i—v;(‘)XlWJr%(ai vy )der + (8Xnv;)w"e1 =0,
W|BQ = 07

(¢, w)|e=0 = (0, wo).

(ii) Decomposition of solution and decay estimates based on the spectral
analysis, energy method (B. [3]). ’



Fourier transform of linearized problem x’ — ¢’

diii v i =
HE“+L§’(t)U:0a t>s, u|t:s:u07

on Xg = (H* x L2)(0,1). Here, ng(t) is an operator on Xp with domain

~

D(Lg(t)) = H* x (H* N HY).



spectral properties of linearized problem

o~

Le(t) =
i€1vy(t) i2ppl ¢ V0. (pp - )
g2 (P R+ ZETE S
0., (2le ) _iZTelo,, L(lgP-02)- Zo2
0 | 0 0
+| (@2 vie)el iGva(t)hor B (va()el

0 0 iE1vA(t)



spectral properties of linearized problem

By energy method the case |¢/| > r > 0 has an exponential decay ([1]).

We treat the case [¢/| < 1.



Floquet theory

We define operator B on space Y1, = L,%er([O, T]; Xo) with domain

per

D(Bg') = Hper ([0, T1: X0) N Lpe ([0, T]; H x (H? N Hp)),

in the following way
- Bgv=0:v + /L\gl(-)v,

for v € D(Bg). Moreover we define formal adjoint operator B, with

respect to inner product 4 T fo -, -)dt as

Biv = —ev + Li()v,
for v € D(BS) = D(By).



Spectral properties of B

(i) Let 1 <1< m+ 1. There exists g1 > 0 such that spectrum of

operator Bg: on Ylie, satisfies

2km
Bﬁ’ U{ )\5/ I?}U{AZRG)\ZC]]_},
kEZ

with 0 < —Re ¢ < %ql uniform for all I. Here, —\¢r + i# are
simple eigenvalues of Be:.

—A¢r has an expansion
—Xg = irob1 + r1éf + £"1E"7 + O(I€'P),

where kg € R and k1 > 0, & > 0.



Spectral properties of B

(i) Let 1 <1< m+1. There exists g1 > 0 such that spectrum of

operator Be: on Ylie, satisfies

2km
Bg/ U{ )\5/ I?}U{AZRGAqu},
kEZ

with 0 < —Re ¢ < 2q1 uniform for all I. Here, —\¢r + /21;.7r are
simple eigenvalues of Be:.

q;




Spectral properties of B

(ii) There exist ug and uf, eigenfunctions associated with —A¢ and
—Xgl, respectively, with the following properties:

(g (t), w3 (t) = 1,
uer(8) = uO(e) + i€’ - D (1) + 1€ Pu@(e 1),

ut(t) = u*@ i D(e) + 1€ PP 1),

fort € Jr.



Floquet transform based on ug and ug,
We define operators Z(t) : L2(Q2) — L?(R"1) by
P(t)u=F YPu(t)a},

P o (t)u = X1(4, ug (1)),
for u € L2(Q) and t € [0, c0).



Floquet transform based on u¢ and Ugr

We define operators Z(t) : L2(Q2) — L?(R"1) by
P(t)u=F HPa(t)i},
Pe(t)d = (0, v (2)),
for u € L2(Q) and t € [0, c0).
P (t) satisfies:

P (£)(0: + L(1))u(t) = (0 = N) P (t)u(t),
where multiplier A : [2(R"~1) — [?(R"~!) is defined by
Ao = F {5},
for o € L2(R"1). :



Floquet transform based on ug and ug,

We define operators 2 (t) : L2(R""1) — L?(Q) by

2(t)o=F H2e(1)3),

Qg/(l‘)a = 5(\1U§/(-, 1.')(/7'\,
for o € L>(R"1) and t € [0, 00).



Projections P(t)

We define projections P(t) on L?() as

P(t)u = F ~H{Ru(@, g (1)) ug (- D)},
for t € [0,00) and u € L%(Q).



Projections P(t)

We define projections P(t) on L?(Q) as

for t € [0,00) and u € L%(Q).



spectral properties of linearized problem

Projections P(t)

We define projections P(t) on L?(Q) as

for t € [0,00) and u € L2(Q).

There holds

P(t)(0r + L(t))u(t) = (0r + L(t))P(t)u(t) = 2(t)(0r — N) P (t)u(t).



Properties of 2(t) and 2 (t)
(i) o _
100505, (2 ()o)l 12) < Clloll2o-1)s
for0<2j+l<m+1 k=0,1,...,and o € L2(R" 1).
(if)
10105 (2 (£)u) | 2(ro-1) < Cllull 2@
for0<2j<m+1, k=0,1,..., and u € [2(Q).

(i) 2 (t) is decomposed as

(1) = 2 4 div' 20 £ N 9By,
Here,

20(t)o = (F x5 HuO(, t).



Properties of 2(t) and 2 (t)

(iv) Z(t) is decomposed as

2(t) = 2O 1+ div' PD(1) + A 2O(1).
For u= T(¢,w),

1 o~
_ POy = 77 510G, 0O} = 9\1{)?1/0 &(+, xn)dxn} = [H]1,
2W(t)u = F7Hzu (@, O (1)},

PO F @O, ).
@(p)(t), p =0,1,2, share the boundedness properties of & (t).



Nonlinear problem

Nonlinear problem

Problem (2.1)—(2.4) is written in the form
Oru+ L(t)u=F,

3 W|5Q = 0, u|t:0 = up.

Here, v — T(d w): F = T(div(ow),f) with £ = T(FL . . 7} is the
nonlinearity.



Decomposition of u(t)

We decompose the solution u(t) into



Decomposition of u(t)

We decompose the solution u(t) into

(i) P(t)u(t) - Floquet theory

P(t)(0¢ + L(t))u(t) = P(t)F(t).
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Decomposition of u(t)

We decompose the solution u(t) into

(i) P(t)u(t) - Floquet theory

2(t)(0: — NP (t)u(t) = 2(t) P (t)F(t).



Decomposition of u(t)

We decompose the solution u(t) into

u(t) = P(t)u(t) + (I — P(t))u(t).
(i) P(t)u(t) - Floquet theory

2 (t)(0: — NP (t)u(t) = 2(t) P (t)F(t).

(i) (I = P(t))u(t) = us(t) - Energy method

Otloo + L(t)uso = (I — P(2))F,

Weolon = 0, Use|t=0-= (I — P(0))uo.



A priori and decay estimates

For ||up|| ymnr1 < 1 we obtain a priori estimate

[

N3

]
10Lu(E)|Fim—2r < Clltiol|Zymey 1,

j=0
decay estimates
|88 u()ll2 <-C(1+ €)% ~2||to]l pmeur, k = 0,1,
lut) = o1()u@ ()]l < CA + €)% =2 luol| g,

for t € [0, 00) with constant C > 0 independent of t. Here,

o1(t) = P (t)u(t).



Asymptotic behavior

Asymptotic behavior

Since

then

satisfies



Asymptotic behavior

Asymptotic behavior

Since
2 (t)(0r — N Z(t)u(t) = 2(t) P (t)F(t),
then
o1(t) = P (t)u(t),
satisﬁ_es
(0e = Noi(t) = Z(t)F(2),
and

S

t
o1(t) = eI P (s)up + / =N P (2)F(z2)dz.



Asymptotic behavior

Asymptotic behavior

Since
2 (t)(0r — N Z(t)u(t) = 2(t) P (t)F(t),
then
o1(t) = P (t)u(t),
satisﬁ_es
(0e = Noi(t) = Z(t)F(2),
and

S

£
i) o My / (=M 2 (1)F () dsz.



Asymptotic behavior

Asymptotic behavior n = 2

Since there holds

Sl—s ngl{551ef(iﬁo£1+ﬁ1§f+o(§f))t3}’

and

?(S)Uo = [¢0]1 + 8X1¢@(1)(S)U0 + 83(1:@(0)(5)%),

we obtain

=M P (s)uy = 5‘“1{e_(i“°§1+“15%)t[$0]}.



Asymptotic behavior n = 2

&
sl / (=2 (1) (2)dz.



Asymptotic behavior n = 2

&
sl / (=2 (1) (2)dz.
We have

t
|| NP @)zl < €1+ 1) ol
s

only. Further investigation necessary!



Asymptotic behavior n = 2

&
o1(t) = et P (s)up + / =N P (2)F(z)dz.
We have

t
|| NP @)zl < €1+ 1) ol
S

only. Further investigation necessary!

Since 02(t) is the slowest decaying term in F, we write

F=03F; + Fa,

where F» = F — O'%Fl contains terms involving u.., its derivatives and
terms of order O(010x 1) like o1u1, and O(a3), but not just O(c?).



Asymptotic behavior n = 2

Combining

E — O'%Fl + F» and u = alu(o) SR e

with decomposition of &7 (z) we see that

P (2)F(2) = —0[pw']1 + 8, PV (2)F(2) + 82 2P (2)F(2)

=0 [0%¢(0) W(O)’l]l 405 [<15W1 — a1¢(0)a1 W(O)’l]l

+0, PW(2)(03F1(2) + F2(2)) + 82 PP (2)F(2).



Asymptotic behavior

Asymptotic behavior n = 2

Therefore

P (2)F(z) = —ay1(z)0y, 03 + fast terms.
Here,

a1(2) = [pOwO(2)] - (Fi(2), *D(2)),

depends only on z and it is T-periodic in z.



Asymptotic behavior

Asymptotic behavior n = 2

Therefore
P (2)F(z) = —ay1(z)0y, 03 + fast terms.

Here,

a1(2) = [pOwO(2)] - (Fi(2), *D(2)),

depends only on z and it is T-periodic in z.

We compute

t t
/ MNP (2)F(z)dz = — / et ay(2)0,, 07 dz + fast terms.

S S



Asymptotic behavior n = 2

t t :
/e(tz)/\al(z)(?xlo%dz:/ Lt e

s s

t
- / a2\ (7)) —)a edr

Define

where

Then 0:b(t) = a1(t) — ao, b(t + T) = b(t) and b(0) = b(T) = 0.



Asymptotic behavior

We calculate

t T
| 1(2) — )0 (oR)dz = [ ocb(2)et= Mo (oF)ez

= [B@)el 0, (o2 (@], - [ )0 (0 (o (2))) e
= b0 (03(O) + [ b2)e N (o3 2z

t
— / b(2)0y, e, (03 (2))dz.
0

Using
e
105 e llizm) < C(L+£)* 2|l 1(r),

forocLX(R)and k=01 ., we obtain fast decay.



Asymptotic behavior

[% Brezina, J., Kagei, Y. (2011). Decay properties of solutions to the
linearized compressible Navier-Stokes equation around time-periodic
parallel flow. Mathematical Models and Methods in Applied Sciences
Vol 22 No. 7.

[% Brezina, J., Kagei, Y. Spectral properties of the linearized
compressible Navier-Stokes equation around time-periodic parallel
flow. Ml Preprint Series, Kyushu University 2012-9.

[ Brezina, J. Asymptotic behavior of solutions to the compressible
Navier-Stokes equation around a time-periodic parallel flow. M/
Preprint Series, Kyushu University 2012-10.

[s Y. Kagei. Asymptotic behavior of solutions of the compressible
Navier-Stokes equation around parallel flows. Arch. Rational Mech.
Anal. Vol. 205, pp.585—-650.



Thank you for your attention !

h.brezina@gmail.com
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