Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

Jan Březina

Banff 2012

Compressible Navier-Stokes equation

$$\partial_t \rho + \operatorname{div}(\rho v) = 0$$
 (1.1)

$$\rho(\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}) - \mu \Delta \mathbf{v} - (\mu + \mu') \nabla \operatorname{div} \mathbf{v} + \nabla P(\rho) = \rho \mathbf{g}$$
 (1.2)

$$v|_{x_n=0} = V^1(t)\mathbf{e}_1, \quad v|_{x_n=\ell} = 0$$
 (1.3)

$$\Omega_{\ell} = \{x = (x', x_n); x' = (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1}, 0 < x_n < \ell\}$$

Compressible Navier-Stokes equation

$$\partial_t \rho + \operatorname{div}(\rho v) = 0 \tag{1.1}$$

$$\rho(\partial_t v + v \cdot \nabla v) - \mu \Delta v - (\mu + \mu') \nabla \operatorname{div} v + \nabla P(\rho) = \rho g$$
 (1.2)

$$v|_{x_n=0} = V^1(t)\mathbf{e}_1, \quad v|_{x_n=\ell} = 0$$
 (1.3)

$$\Omega_{\ell} = \{x = (x', x_n); x' = (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1}, 0 < x_n < \ell\}$$

- $\rho = \rho(x, t)$ unknown density
- $v = (v^1(x, t), \dots, v^n(x, t))$ unknown velocity
- $P = P(\rho)$ pressure, given smooth function of ρ , for given $\rho_* > 0$ we assume $P'(\rho_*) > 0$
- $\mathbf{g} = (g^1(x_n, t), 0, \dots, \underline{0}, g^n(x_n))$ given function \overline{T} -periodic in t
- $V^1(t)$ given function \overline{T} -periodic in t

Compressible Navier-Stokes equation

$$\partial_t \rho + \operatorname{div}(\rho v) = 0 \tag{1.1}$$

$$\rho(\partial_t v + v \cdot \nabla v) - \mu \Delta v - (\mu + \mu') \nabla \operatorname{div} v + \nabla P(\rho) = \rho g$$
 (1.2)

$$v|_{x_n=0} = V^1(t)\mathbf{e}_1, \quad v|_{x_n=\ell} = 0$$
 (1.3)

- $\mathbf{g} = (g^1(x_n, t), 0, \dots, \underline{0}, g^n(x_n))$ given function \overline{T} -periodic in t
- $V^1(t)$ given function \overline{T} -periodic in t

Existence of time-periodic parallel solution

If $\|g^n\| \ll 1$ then there exists

$$\overline{\rho}_p = \overline{\rho}_p(x_n)$$
 $\overline{v}_p = (\overline{v}_p^1(x_n, t), 0, \dots, 0)$

strong solution to (1.1)–(1.3) satisfying

$$\overline{v}_p^1(x_n, t + \overline{T}) = \overline{v}_p^1(x_n, t), \ \overline{T} > 0, \quad \rho_* = \frac{1}{\ell} \int_0^\ell \overline{\rho}_p(x_n) dx_n.$$

Existence of time-periodic parallel solution

If $||g^n|| \ll 1$ then there exists

$$\overline{\rho}_p = \overline{\rho}_p(x_n)$$
 $\overline{v}_p = (\overline{v}_p^1(x_n, t), 0, \dots, 0)$

strong solution to (1.1)–(1.3) satisfying

$$\overline{v}_p^1(x_n, t + \overline{T}) = \overline{v}_p^1(x_n, t), \ \overline{T} > 0, \quad \rho_* = \frac{1}{\ell} \int_0^\ell \overline{\rho}_p(x_n) dx_n.$$

Aim

Description of perturbations around time-periodic solution and their asymptotic properties.

Stability of parallel flows

Compressible Navier-Stokes equation (1.1)–(1.2)

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = 0$$
 (1.1)

$$\rho(\partial_t v + v \cdot \nabla v) - \mu \Delta v - (\mu + \mu') \nabla \operatorname{div} v + \nabla P(\rho) = \rho g$$
 (1.2)

with

$$\mathbf{g} = (g^{1}(\mathbf{x}_{n}), 0, \cdots, 0, g^{n}(\mathbf{x}_{n})), \ v|_{\mathbf{x}_{n}=0} = V^{1}\mathbf{e}_{1}, \ v|_{\mathbf{x}_{n}=\ell} = 0.$$
 (1.4)

If $||g^n|| \ll 1$ then there exists

$$\overline{\rho}_s = \overline{\rho}_s(\mathbf{x}_n)$$
 $\overline{\mathbf{v}}_s = (\overline{\mathbf{v}}_s^1(\mathbf{x}_n), 0, \dots, 0)$

stationary solution to (1.1)–(1.2) and (1.4).

Examples: Plane Couette flow, Poiseuille flow,...

Kagei, Y.

Asymptotic behavior of solutions of the compressible Navier-Stokes equation around parallel flows. *Arch. Rational Mech. Anal.* Vol. 205, pp.585–650.

For Reynolds and Mach numbers sufficiently small and

$$\|\rho_0 - \overline{\rho}_s\| \ll 1, \ \|v_0 - \overline{v}_s\| \ll 1,$$

solutions are asymptotically stable.

Kagei, Y.

Asymptotic behavior of solutions of the compressible Navier-Stokes equation around parallel flows. *Arch. Rational Mech. Anal.* Vol. 205, pp.585–650.

For Reynolds and Mach numbers sufficiently small and

$$\|\rho_0 - \overline{\rho}_s\| \ll 1, \ \|v_0 - \overline{v}_s\| \ll 1,$$

solutions are asymptotically stable.

In the case $n \ge 3$, the disturbances behave in large time as solutions of the linearized problem, whose asymptotic leading parts are given by solutions of an n-1 dimensional linear heat equation with convective term.

Kagei, Y.

Asymptotic behavior of solutions of the compressible Navier-Stokes equation around parallel flows. *Arch. Rational Mech. Anal.* Vol. 205, pp.585–650.

For Reynolds and Mach numbers sufficiently small and

$$\|\rho_0 - \overline{\rho}_s\| \ll 1, \ \|v_0 - \overline{v}_s\| \ll 1,$$

solutions are asymptotically stable.

In the case $n \geq 3$, the disturbances behave in large time as solutions of the linearized problem, whose asymptotic leading parts are given by solutions of an n-1 dimensional linear heat equation with convective term.

In the case n=2, the asymptotic behavior is no longer described by the linearized problem; and it is described by a nonlinear diffusion equation, namely, by a 1-dimensional viscous Burgers equation.

Setting $\rho = \overline{\rho}_p + \phi$ and $v = \overline{v}_p + w$ in (1.1)–(1.3):

$$\partial_{t}\phi + \overline{v}_{p}^{1}\partial_{x_{1}}\phi + \operatorname{div}\left(\overline{\rho}_{p}w\right) = -\operatorname{div}\left(\phi w\right),$$

$$\partial_{t}w - \frac{\mu}{\overline{\rho}_{p}}\Delta w - \frac{\mu + \mu'}{\overline{\rho}_{p}}\nabla \operatorname{div}w + \nabla\left(\frac{P'(\overline{\rho}_{p})}{\overline{\rho}_{p}}\phi\right)$$

$$+ \overline{v}_{p}^{1}\partial_{x_{1}}w + \frac{\mu}{\overline{\rho}_{p}^{2}}(\partial_{x_{n}}^{2}\overline{v}_{p}^{1})\phi\mathbf{e}_{1} + (\partial_{x_{n}}\overline{v}_{p}^{1})w^{n}\mathbf{e}_{1} = \mathbf{f},$$

$$w|_{\partial\Omega_{l}} = 0,$$

$$(\phi, w)|_{t=0} = (\phi_{0}, w_{0}).$$

Dimensionless variables

$$V = \frac{\rho_* \ell^2}{\mu} \left\{ |\partial_t V^1|_{C^0(\mathbb{R})} + |g^1|_{C^0(\mathbb{R} \times [0,\ell])} \right\} + |V^1|_{C^0(\mathbb{R})}.$$

$$x = \ell \widetilde{x}, \quad t = \frac{\ell}{V} \widetilde{t}, \quad w = V \widetilde{w}, \quad \phi = \rho_* \gamma^{-2} \widetilde{\phi}, \quad P = \rho_* V^2 \widetilde{P},$$

$$\overline{v}_p^1 = V v_p^1, \quad \overline{\rho}_p = \rho_* \rho_p, \quad V^1 = V \widetilde{V}^1, \quad \mathbf{g} = \frac{\mu V}{\rho_* \ell^2} \widetilde{\mathbf{g}},$$

Here,

$$u = \frac{\mu}{\rho_* \ell V}, \quad \nu' = \frac{\mu'}{\rho_* \ell V}, \quad \gamma = \frac{\sqrt{P'(\rho_*)}}{V}, \quad T = \frac{V}{\ell} \overline{T}.$$

Reynolds number $Re = \nu^{-1}$, Mach number $Ma = \gamma^{-1}$ and time period T.

Dimensionless variables

$$V = \frac{\rho_* \ell^2}{\mu} \left\{ |\partial_t V^1|_{C^0(\mathbb{R})} + |g^1|_{C^0(\mathbb{R} \times [0,\ell])} \right\} + |V^1|_{C^0(\mathbb{R})}.$$

$$x = \ell \widetilde{x}, \quad t = \frac{\ell}{V} \widetilde{t}, \quad w = V \widetilde{w}, \quad \phi = \rho_* \gamma^{-2} \widetilde{\phi}, \quad P = \rho_* V^2 \widetilde{P},$$

$$\overline{v}_p^1 = V v_p^1, \quad \overline{\rho}_p = \rho_* \rho_p, \quad V^1 = V \widetilde{V}^1, \quad \mathbf{g} = \frac{\mu V}{\rho_* \ell^2} \widetilde{\mathbf{g}},$$

Here,

$$u = \frac{\mu}{\rho_* \ell V}, \quad \nu' = \frac{\mu'}{\rho_* \ell V}, \quad \gamma = \frac{\sqrt{P'(\rho_*)}}{V}, \quad T = \frac{V}{\ell} \overline{T}.$$

Let us write x, t, w and ϕ instead of $\widetilde{x}, \widetilde{t}, \widetilde{w}$ and $\widetilde{\phi}$.

Nondimensional form

On the layer $\Omega = \mathbb{R}^{n-1} \times (0,1)$:

$$\partial_t \phi + v_p^1 \partial_{x_1} \phi + \gamma^2 \operatorname{div}(\rho_p w) = -\operatorname{div}(\phi w),$$
 (2.1)

$$\partial_{t}w - \frac{\nu}{\rho_{p}}\Delta w - \frac{\widetilde{\nu}}{\rho_{p}}\nabla \operatorname{div}w + \nabla\left(\frac{P'(\rho_{p})}{\gamma^{2}\rho_{p}}\phi\right) + v_{p}^{1}\partial_{x_{1}}w + \frac{\nu}{\gamma^{2}\rho_{p}^{2}}(\partial_{x_{n}}^{2}v_{p}^{1})\phi\mathbf{e}_{1} + (\partial_{x_{n}}v_{p}^{1})w^{n}\mathbf{e}_{1} = \mathbf{f},$$
(2.2)

$$w|_{\partial\Omega}=0, (2.3)$$

$$(\phi, w)|_{t=0} = (\phi_0, w_0).$$
 (2.4)

Here, $\widetilde{\nu} = \nu + \nu'$.

Nondimensional form

On the layer $\Omega = \mathbb{R}^{n-1} \times (0,1)$:

$$\partial_t \phi + v_p^1(x_n, t) \partial_{x_1} \phi + \gamma^2 \operatorname{div} \left(\rho_p(x_n) w \right) = -\operatorname{div} \left(\phi w \right), \tag{2.1}$$

$$\partial_{t}w - \frac{\nu}{\rho_{p}(x_{n})}\Delta w - \frac{\widetilde{\nu}}{\rho_{p}(x_{n})}\nabla \operatorname{div}w + \nabla\left(\frac{\widetilde{P}'(\rho_{p}(x_{n}))}{\gamma^{2}\rho_{p}(x_{n})}\phi\right) + v_{p}^{1}(x_{n}, t)\partial_{x_{1}}w + \frac{\nu}{\gamma^{2}\rho_{p}(x_{n})^{2}}(\partial_{x_{n}}^{2}v_{p}^{1}(x_{n}, t))\phi\mathbf{e}_{1} + (\partial_{x_{n}}v_{p}^{1}(x_{n}, t))w^{n}\mathbf{e}_{1} = \mathbf{f},$$
(2.2)

$$w|_{\partial\Omega}=0, (2.3)$$

$$(\phi, w)|_{t=0} = (\phi_0, w_0).$$
 (2.4)

Here, $\widetilde{\nu} = \nu + \nu'$.

Regularity assumptions

Let $m \ge \lfloor n/2 \rfloor + 1$. We assume that:

$$g^1 \in \bigcap_{j=0}^{\left[rac{m+1}{2}
ight]} C^j_{per}([0,T];H^{m+1-2j}(0,1)),$$
 $g^n \in C^{m+1}[0,1],$ $V^1 \in C^{\left[rac{m+2}{2}
ight]}_{per}([0,T]).$ $\widetilde{P}(\cdot) \in C^{m+2}(\mathbb{R}).$

Properties of $u_p = {}^T(\rho_p(x_n), v_p(x_n, t))$

$$0<\rho_1\leq \rho_p(x_n)\leq \rho_2,\ \int_0^1\rho_p(x_n)dx_n=1,\ v_p(x_n,t)={}^T(v_p^1(x_n,t),0),$$

with

$$\widetilde{P}'(\rho) > 0 \text{ for } \rho_1 \leq \rho \leq \rho_2,$$

for some constants $0 < \rho_1 < 1 < \rho_2$.

Properties of $u_p = {}^T(\rho_p(x_n), v_p(x_n, t))$

$$0 < \rho_1 \le \rho_p(x_n) \le \rho_2, \ \int_0^1 \rho_p(x_n) dx_n = 1, \ v_p(x_n, t) = {}^T(v_p^1(x_n, t), 0),$$

$$\widetilde{P}'(\rho) > 0 \text{ for } \rho_1 \leq \rho \leq \rho_2,$$

for some constants $0 < \rho_1 < 1 < \rho_2$.

Moreover,

with

$$\begin{aligned} |1 - \rho_p|_{C^{m+1}([0,1])} &\leq \frac{C}{\gamma^2} \nu(|\widetilde{P}''|_{C^{m-1}(\rho_1,\rho_2)} + |g^n|_{C^m([0,1])}), \\ |\widetilde{P}'(\rho_p) - \gamma^2|_{C([0,1])} &\leq \frac{C}{\gamma^2} \nu |g^n|_{C([0,1])}. \end{aligned}$$

Main results ([3])

Global existence and decay estimate

Suppose that $n \geq 2$. Let m be an integer satisfying $m \geq [n/2] + 1$. There are positive numbers ν_0 and γ_0 such that if $\nu \geq \nu_0$ and $\gamma^2/(\nu+\widetilde{\nu}) \geq \gamma_0^2$ then the following assertions hold true.

There is a positive number ε_0 such that if $u_0 = {}^T(\phi_0, w_0) \in (H^m \cap L^1)(\Omega)$ satisfies suitable compatibility condition and $\|u_0\|_{H^m \cap L^1} \leq \varepsilon_0$, then there exists a unique global solution $u(t) = {}^T(\phi(t), w(t))$ of (2.1)–(2.4) in $\bigcap_{i=0}^{\left[\frac{m}{2}\right]} C^j([0,\infty); H^{m-2j}(\Omega))$ which satisfies

$$\|\partial_{x'}^k u(t)\|_2 = O(t^{-\frac{n-1}{4} - \frac{k}{2}}), \ k = 0, 1.$$

Main results ([3])

Asymptotic behavior n = 2

Moreover, there holds

$$||u(t) - (\sigma u^{(0)})(t)||_2 = O(t^{-\frac{3}{4}+\delta}), \ \forall \delta > 0,$$

as $t \to \infty$. Here, $u^{(0)} = u^{(0)}(x_2, t)$ is a given function and $\sigma = \sigma(x_1, t)$ is a function satisfying

$$\partial_t \sigma - \kappa_1 \partial_{x_1}^2 \sigma + \kappa_0 \partial_{x_1} \sigma + a_0 \partial_{x_1} (\sigma^2) = 0, \ \sigma|_{t=0} = \int_0^1 \phi_0(x_1, x_2) \ dx_2,$$

with given constants κ_0 , $a_0 \in \mathbb{R}$, $\kappa_1 > 0$.

Main results ([3])

Asymptotic behavior $n \ge 3$

Furthermore, there holds

$$||u(t) - (\sigma u^{(0)})(t)||_2 = O(t^{-\frac{n-1}{4} - \frac{1}{2}} \eta_n(t)),$$

as $t \to \infty$. Here, $\sigma = \sigma(x', t)$ is a function satisfying

$$\partial_t \sigma - \kappa_1 \partial_{x_1}^2 \sigma - \kappa'' \Delta'' \sigma + \kappa_0 \partial_{x_1} \sigma = 0, \ \sigma|_{t=0} = \int_0^1 \phi_0(x', x_n) \ dx_n,$$

with given constants $\kappa_0 \in \mathbb{R}$, $\kappa_1, \kappa'' > 0$; where $\Delta'' = \partial_{x_2}^2 + \cdots + \partial_{x_{n-1}}^2$; and $\eta_n(t) = \log(1+t)$ when n = 3 and $\eta_n(t) = 1$ when $n \geq 4$.

Sketch of the proof

Approach

(i) Spectral analysis of linearized problem (B.-Kagei [1,2]), i.e.,

$$\begin{split} \partial_t \phi + v_p^1 \partial_{x_1} \phi + \operatorname{div} \left(\rho_p w \right) &= 0, \\ \partial_t w - \frac{\nu}{\rho_p} \Delta w - \frac{\tilde{\nu}}{\rho_p} \nabla \operatorname{div} w + \nabla \left(\frac{\tilde{P}'(\rho_p)}{\rho_p} \phi \right) \\ + v_p^1 \partial_{x_1} w + \frac{\mu}{\rho_p^2} (\partial_{x_n}^2 v_p^1) \phi \mathbf{e}_1 + (\partial_{x_n} v_p^1) w^n \mathbf{e}_1 &= \mathbf{0}, \\ w|_{\partial\Omega} &= 0, \\ (\phi, w)|_{t=0} &= (\phi_0, w_0). \end{split}$$

Sketch of the proof

Approach

(i) Spectral analysis of linearized problem (B.-Kagei [1,2]), i.e.,

$$\begin{split} \partial_t \phi + v_p^1 \partial_{x_1} \phi + \operatorname{div} \left(\rho_p w \right) &= 0, \\ \partial_t w - \frac{\nu}{\rho_p} \Delta w - \frac{\tilde{\nu}}{\rho_p} \nabla \operatorname{div} w + \nabla \left(\frac{\tilde{P}'(\rho_p)}{\rho_p} \phi \right) \\ + v_p^1 \partial_{x_1} w + \frac{\mu}{\rho_p^2} (\partial_{x_n}^2 v_p^1) \phi \mathbf{e}_1 + (\partial_{x_n} v_p^1) w^n \mathbf{e}_1 &= \mathbf{0}, \\ w|_{\partial\Omega} &= 0, \\ (\phi, w)|_{t=0} &= (\phi_0, w_0). \end{split}$$

(ii) Decomposition of solution and decay estimates based on the spectral analysis, energy method (B. [3]).

Fourier transform of linearized problem $x' \to \xi'$

$$\frac{d}{dt}\widehat{u}+\widehat{L}_{\xi'}(t)\widehat{u}=0,\ t>s,\ \widehat{u}|_{t=s}=\widehat{u}_0,$$

on $X_0=(H^1 imes L^2)(0,1)$. Here, $\widehat{L}_{\xi'}(t)$ is an operator on X_0 with domain

$$D(\widehat{L}_{\xi'}(t)) = H^1 \times (H^2 \cap H_0^1).$$

$$\widehat{L}_{\xi'}(t) =$$

$$\begin{pmatrix}
i\xi_{1}v_{p}^{1}(t) & i\gamma^{2}\rho_{p}^{T}\xi' & \gamma^{2}\partial_{x_{n}}(\rho_{p}\cdot) \\
i\xi'\frac{\tilde{P}'(\rho_{p})}{\gamma^{2}\rho_{p}} & \frac{\nu}{\rho_{p}}(|\xi'|^{2}-\partial_{x_{n}}^{2})I_{n-1}+\frac{\tilde{\nu}}{\rho_{p}}\xi'^{T}\xi' & -i\frac{\tilde{\nu}}{\rho_{p}}\xi'\partial_{x_{n}} \\
\partial_{x_{n}}\left(\frac{\tilde{P}'(\rho_{p})}{\gamma^{2}\rho_{p}}\cdot\right) & -i\frac{\tilde{\nu}}{\rho_{p}}^{T}\xi'\partial_{x_{n}} & \frac{\nu}{\rho_{p}}(|\xi'|^{2}-\partial_{x_{n}}^{2})-\frac{\tilde{\nu}}{\rho_{p}}\partial_{x_{n}}^{2}
\end{pmatrix}$$

$$+ \begin{pmatrix} \frac{\nu}{\gamma^{2}\rho_{p}^{2}}(\partial_{x_{n}}^{2}v_{p}^{1}(t))\mathbf{e}_{1}^{\prime} & i\xi_{1}v_{p}^{1}(t)I_{n-1} & \partial_{x_{n}}(v_{p}^{1}(t))\mathbf{e}_{1}^{\prime} \\ 0 & 0 & i\xi_{1}v_{p}^{1}(t) \end{pmatrix}.$$

spectral properties of linearized problem

By energy method the case $|\xi'| \ge r > 0$ has an exponential decay ([1]).

We treat the case $|\xi'| \ll 1$.

Floquet theory

We define operator $B_{\xi'}$ on space $Y_{per}^1 = L_{per}^2([0, T]; X_0)$ with domain

$$D(B_{\xi'}) = H^1_{per}([0, T]; X_0) \cap L^2_{per}([0, T]; H^1 \times (H^2 \cap H^1_0)),$$

in the following way

$$B_{\xi'}v = \partial_t v + \widehat{L}_{\xi'}(\cdot)v,$$

for $v \in D(B_{\xi'})$. Moreover, we define formal adjoint operator $B_{\xi'}^*$ with respect to inner product $\frac{1}{T} \int_0^T \langle \cdot, \cdot \rangle dt$ as

$$B_{\xi'}^* v = -\partial_t v + \widehat{L}_{\xi'}^*(\cdot) v,$$

for $v \in D(B_{\xi'}^*) = D(B_{\xi'})$.

Spectral properties of $B_{\xi'}$

(i) Let $1 \le l \le m+1$. There exists $q_1 > 0$ such that spectrum of operator $B_{\xi'}$ on Y_{per}^l satisfies

$$\sigma(\mathcal{B}_{\xi'}) \subset \bigcup_{k \in \mathbb{Z}} \{-\lambda_{\xi'} + i \frac{2k\pi}{T}\} \cup \{\lambda : \operatorname{Re} \lambda \geq q_1\},$$

with $0 \le -\text{Re } \lambda_{\xi'} \le \frac{1}{2}q_1$ uniform for all I. Here, $-\lambda_{\xi'} + i\frac{2k\pi}{T}$ are simple eigenvalues of $B_{\xi'}$.

 $-\lambda_{\xi'}$ has an expansion

$$-\lambda_{\xi'} = i\kappa_0 \xi_1 + \kappa_1 \xi_1^2 + \kappa'' |\xi''|^2 + O(|\xi'|^3),$$

where $\kappa_0 \in \mathbb{R}$ and $\kappa_1 > 0$, $\kappa'' > 0$.

Spectral properties of $B_{\xi'}$

(i) Let $1 \le l \le m+1$. There exists $q_1 > 0$ such that spectrum of operator $B_{\xi'}$ on Y_{per}^l satisfies

$$\sigma(\mathcal{B}_{\xi'}) \subset \bigcup_{k \in \mathbb{Z}} \{-\lambda_{\xi'} + i \frac{2k\pi}{T}\} \cup \{\lambda : \operatorname{Re} \lambda \geq q_1\},$$

with $0 \le -\text{Re } \lambda_{\xi'} \le \frac{1}{2} q_1$ uniform for all I. Here, $-\lambda_{\xi'} + i \frac{2k\pi}{T}$ are simple eigenvalues of $B_{\xi'}$.

Spectral properties of $B_{\xi'}$

for $t \in J_T$.

(ii) There exist $u_{\xi'}$ and $u_{\xi'}^*$ eigenfunctions associated with $-\lambda_{\xi'}$ and $-\overline{\lambda}_{\xi'}$, respectively, with the following properties:

$$\langle u_{\xi'}(t), u_{\xi'}^*(t) \rangle = 1,$$

$$u_{\xi'}(t) = u^{(0)}(t) + i\xi' \cdot u^{(1)}(t) + |\xi'|^2 u^{(2)}(\xi', t),$$

$$u_{\xi'}^*(t) = u^{*(0)} + i\xi' \cdot u^{*(1)}(t) + |\xi'|^2 u^{*(2)}(\xi', t),$$
.

Floquet transform based on $u_{\xi'}$ and $u_{\xi'}^*$

We define operators $\mathscr{P}(t):L^2(\Omega)\to L^2(\mathbb{R}^{n-1})$ by

$$\mathscr{P}(t)u = \mathscr{F}^{-1}\{\widehat{\mathscr{P}}_{\xi'}(t)\widehat{u}\},$$

$$\widehat{\mathscr{P}}_{\xi'}(t)\widehat{u} = \widehat{\chi}_1 \langle \widehat{u}, u_{\xi'}^*(t) \rangle,$$

for $u \in L^2(\Omega)$ and $t \in [0, \infty)$.

Floquet transform based on $u_{\xi'}$ and $u_{\xi'}^*$

We define operators $\mathscr{P}(t):L^2(\Omega)\to L^2(\mathbb{R}^{n-1})$ by

$$\mathscr{P}(t)u = \mathscr{F}^{-1}\{\widehat{\mathscr{P}}_{\xi'}(t)\widehat{u}\},$$
$$\widehat{\mathscr{P}}_{\xi'}(t)\widehat{u} = \widehat{\chi}_1\langle\widehat{u}, u_{\xi'}^*(t)\rangle,$$

for $u \in L^2(\Omega)$ and $t \in [0, \infty)$.

 $\mathcal{P}(t)$ satisfies:

$$\mathscr{P}(t)(\partial_t + \underline{L(t)})u(t) = (\partial_t - \underline{\Lambda})\mathscr{P}(t)u(t),$$

where multiplier $\Lambda: L^2(\mathbb{R}^{n-1}) \to L^2(\mathbb{R}^{n-1})$ is defined by

$$\Lambda \sigma = \mathscr{F}^{-1}\{\widehat{\chi}_1 \lambda_{\xi'} \widehat{\sigma}\},\,$$

for $\sigma \in L^2(\mathbb{R}^{n-1})$.

Floquet transform based on $u_{\xi'}$ and $u_{\xi'}^*$

We define operators $\mathscr{Q}(t):L^2(\mathbb{R}^{n-1})\to L^2(\Omega)$ by

$$\mathscr{Q}(t)\sigma = \mathscr{F}^{-1}\{\widehat{\mathscr{Q}}_{\xi'}(t)\widehat{\sigma}\},\,$$

$$\widehat{\mathscr{Q}}_{\xi'}(t)\widehat{\sigma}=\widehat{\chi}_1u_{\xi'}(\cdot,t)\widehat{\sigma},$$

for $\sigma \in L^2(\mathbb{R}^{n-1})$ and $t \in [0, \infty)$.

Projections $\mathbb{P}(t)$

We define projections $\mathbb{P}(t)$ on $L^2(\Omega)$ as

$$\mathbb{P}(t)u = \mathscr{F}^{-1}\{\widehat{\chi}_1\langle \widehat{u}, u_{\xi'}^*(t)\rangle u_{\xi'}(\cdot, t)\},\,$$

for $t \in [0, \infty)$ and $u \in L^2(\Omega)$.

Projections $\mathbb{P}(t)$

We define projections $\mathbb{P}(t)$ on $L^2(\Omega)$ as

$$\mathbb{P}(t)u=\mathcal{Q}(t)\mathcal{P}(t)u,$$

for $t \in [0, \infty)$ and $u \in L^2(\Omega)$.

Projections $\mathbb{P}(t)$

We define projections $\mathbb{P}(t)$ on $L^2(\Omega)$ as

$$\mathbb{P}(t)u = \mathcal{Q}(t)\mathcal{P}(t)u,$$

for $t \in [0, \infty)$ and $u \in L^2(\Omega)$.

There holds

$$\mathbb{P}(t)(\partial_t + L(t))u(t) = (\partial_t + L(t))\mathbb{P}(t)u(t) = \mathcal{Q}(t)(\partial_t - \Lambda)\mathcal{P}(t)u(t).$$

Properties of $\mathcal{Q}(t)$ and $\mathcal{P}(t)$

(i)
$$\|\partial_t^j \partial_{x'}^k \partial_{x_n}^l (\mathscr{Q}(t)\sigma)\|_{L^2(\Omega)} \le C \|\sigma\|_{L^2(\mathbb{R}^{n-1})},$$
 for $0 \le 2j + l \le m+1, \ k=0,1,\ldots, \ \text{and} \ \sigma \in L^2(\mathbb{R}^{n-1}).$

(ii)
$$\|\partial_t^j \partial_{x'}^k (\mathscr{P}(t)u)\|_{L^2(\mathbb{R}^{n-1})} \le C \|u\|_{L^2(\Omega)},$$
 for $0 \le 2j \le m+1$, $k=0,1,\ldots,$ and $u \in L^2(\Omega).$

(iii) $\mathcal{Q}(t)$ is decomposed as

$$\mathscr{Q}(t) = \mathscr{Q}^{(0)}(t) + \operatorname{div}' \mathscr{Q}^{(1)}(t) + \Delta' \mathscr{Q}^{(2)}(t).$$

Here,
$$\mathcal{Q}^{(0)}(t)\sigma = (\mathscr{F}^{-1}\{\widehat{\chi}_1\widehat{\sigma}\})u^{(0)}(\cdot,t).$$

Properties of $\mathcal{Q}(t)$ and $\mathcal{P}(t)$

(iv) $\mathcal{P}(t)$ is decomposed as

$$\mathscr{P}(t) = \mathscr{P}^{(0)} + \operatorname{div}' \mathscr{P}^{(1)}(t) + \Delta' \mathscr{P}^{(2)}(t).$$
 For $u = {}^T(\phi, w)$,

$$\mathscr{P}^{(0)}u=\mathscr{F}^{-1}\{\widehat{\chi}_1\langle\widehat{u},u^{*(0)}\rangle\}=\mathscr{F}^{-1}\{\widehat{\chi}_1\int_0^1\widehat{\phi}(\cdot,x_n)dx_n\}=[\phi]_1,$$

$$\mathscr{P}^{(1)}(t)u = \mathscr{F}^{-1}\{\widehat{\chi}_1\langle\widehat{u},u^{*(1)}(t)\rangle\},\,$$

$$\mathscr{P}^{(2)}(t)u = \mathscr{F}^{-1}\{-\widehat{\chi}_1\langle \widehat{u}, u^{*(2)}(\xi', t)\rangle\}.$$

 $\mathscr{P}^{(p)}(t)$, p=0,1,2, share the boundedness properties of $\mathscr{P}(t)$.

Nonlinear problem

Problem (2.1)–(2.4) is written in the form

$$\partial_t u + L(t)u = \mathbf{F},$$

$$|w|_{\delta\Omega} = 0, \ u|_{t=0} = u_0.$$

Here, $u = {}^T(\phi, w)$; $\mathbf{F} = {}^T(-\text{div}(\phi w), \mathbf{f})$ with $\mathbf{f} = {}^T(f^1, \dots, f^n)$ is the nonlinearity.

We decompose the solution u(t) into

$$u(t) = \mathbb{P}(t)u(t) + (I - \mathbb{P}(t))u(t).$$

We decompose the solution u(t) into

$$u(t) = \mathbb{P}(t)u(t) + (I - \mathbb{P}(t))u(t).$$

$$\mathbb{P}(t)(\partial_t + L(t))u(t) = \mathbb{P}(t)\mathbf{F}(t).$$

We decompose the solution u(t) into

$$u(t) = \mathbb{P}(t)u(t) + (I - \mathbb{P}(t))u(t).$$

$$\mathscr{Q}(t)(\partial_t - \Lambda)\mathscr{P}(t)u(t) = \mathbb{P}(t)\mathsf{F}(t).$$

We decompose the solution u(t) into

$$u(t) = \mathbb{P}(t)u(t) + (I - \mathbb{P}(t))u(t).$$

$$\mathcal{Q}(t)(\partial_t - \Lambda)\mathscr{P}(t)u(t) = \mathcal{Q}(t)\mathscr{P}(t)\mathbf{F}(t).$$

We decompose the solution u(t) into

$$u(t) = \mathbb{P}(t)u(t) + (I - \mathbb{P}(t))u(t).$$

$$\mathscr{Q}(t)(\partial_t - \Lambda)\mathscr{P}(t)u(t) = \mathscr{Q}(t)\mathscr{P}(t)\mathsf{F}(t).$$

(ii)
$$(I - \mathbb{P}(t))u(t) = u_{\infty}(t)$$
 - Energy method

$$\partial_t u_{\infty} + L(t)u_{\infty} = (I - \mathbb{P}(t))\mathbf{F},$$

$$w_{\infty}|_{\partial\Omega}=0, \quad u_{\infty}|_{t=0}=(I-\mathbb{P}(0))u_{0}.$$

A priori and decay estimates

For $||u_0||_{H^m \cap L^1} \ll 1$ we obtain a priori estimate

$$\sum_{j=0}^{\left[\frac{m}{2}\right]} \|\partial_t^j u(t)\|_{H^{m-2j}}^2 \le C \|u_0\|_{H^m \cap L^1}^2,$$

decay estimates

$$\|\partial_{x'}^k u(t)\|_2 \le C(1+t)^{-\frac{n-1}{4}-\frac{k}{2}} \|u_0\|_{H^m \cap L^1}, \ k=0,1,$$

$$||u(t) - \sigma_1(t)u^{(0)}(t)||_2 \le C(1+t)^{-\frac{n-1}{4}-\frac{1}{2}}||u_0||_{H^m \cap L^1},$$

for $t \in [0, \infty)$ with constant C > 0 independent of t. Here,

$$\sigma_1(t) = \mathscr{P}(t)u(t).$$

Since

$$\mathscr{Q}(t)(\partial_t - \Lambda)\mathscr{P}(t)u(t) = \mathscr{Q}(t)\mathscr{P}(t)\mathbf{F}(t),$$

then

$$\sigma_1(t) = \mathscr{P}(t)u(t),$$

satisfies

Since

$$\mathcal{Q}(t)(\partial_t - \Lambda)\mathcal{P}(t)u(t) = \mathcal{Q}(t)\mathcal{P}(t)\mathbf{F}(t),$$

then

$$\sigma_1(t) = \mathscr{P}(t)u(t),$$

satisfies

$$(\partial_t - \Lambda)\sigma_1(t) = \mathscr{P}(t)\mathbf{F}(t),$$

and

$$\sigma_1(t) = e^{(t-s)\Lambda} \mathscr{P}(s) u_0 + \int_s^t e^{(t-z)\Lambda} \mathscr{P}(z) \mathbf{F}(z) dz.$$

Since

$$\mathscr{Q}(t)(\partial_t - \Lambda)\mathscr{P}(t)u(t) = \mathscr{Q}(t)\mathscr{P}(t)\mathbf{F}(t),$$

then

$$\sigma_1(t) = \mathscr{P}(t)u(t),$$

satisfies

$$(\partial_t - \Lambda)\sigma_1(t) = \mathscr{P}(t)\mathbf{F}(t),$$

and

$$\sigma_1(t) = e^{(t-s)\Lambda} \mathscr{P}(s) u_0 + \int_s^t e^{(t-z)\Lambda} \mathscr{P}(z) F(z) dz.$$

Since there holds

$$e^{(t-s)\lambda}\sigma=\mathscr{F}^{-1}\{\widehat{\chi}_1e^{-(i\kappa_0\xi_1+\kappa_1\xi_1^2+O(\xi_1^3))t}\widehat{\sigma}\},$$

and

$$\mathscr{P}(s)u_0 = [\phi_0]_1 + \partial_{x_1}\mathscr{P}^{(1)}(s)u_0 + \partial_{x_1}^2\mathscr{P}^{(0)}(s)u_0,$$

we obtain

$$e^{(t-s)\Lambda} \mathscr{P}(s) u_0 \ \asymp \ \mathscr{F}^{-1} \{ e^{-(i\kappa_0 \xi_1 + \kappa_1 \xi_1^2)t} [\widehat{\phi}_0] \}.$$

$$\sigma_1(t) = e^{(t-s)\Lambda} \mathscr{P}(s) u_0 + \int_s^t e^{(t-z)\Lambda} \mathscr{P}(z) \mathsf{F}(z) dz.$$

$$\sigma_1(t) = e^{(t-s)\Lambda} \mathscr{P}(s) u_0 + \int_s^t e^{(t-z)\Lambda} \mathscr{P}(z) \mathsf{F}(z) dz.$$

We have

$$\|\int_{s}^{t} e^{(t-z)\Lambda} \mathscr{P}(z) \mathbf{F}(z) dz\|_{2} \leq C(1+t)^{-\frac{1}{4}} \|u_{0}\|_{H^{m} \cap L^{1}},$$

only. Further investigation necessary!

$$\sigma_1(t) = e^{(t-s)\Lambda} \mathscr{P}(s) u_0 + \int_s^t e^{(t-z)\Lambda} \mathscr{P}(z) \mathsf{F}(z) dz.$$

We have

$$\|\int_{s}^{t} e^{(t-z)\Lambda} \mathscr{P}(z) \mathbf{F}(z) dz\|_{2} \leq C (1+t)^{-\frac{1}{4}} \|u_{0}\|_{H^{m} \cap L^{1}},$$

only. Further investigation necessary!

Since $\sigma_1^2(t)$ is the slowest decaying term in **F**, we write

$$\mathbf{F} = \sigma_1^2 \mathbf{F}_1 + \mathbf{F}_2,$$

where $\mathbf{F}_2 = \mathbf{F} - \sigma_1^2 \mathbf{F}_1$ contains terms involving u_{∞} , its derivatives and terms of order $O(\sigma_1 \partial_{x'} \sigma_1)$ like $\sigma_1 u_1$, and $O(\sigma_1^3)$, but not just $O(\sigma_1^3)$.

Combining

$$\mathbf{F} = \sigma_1^2 \mathbf{F}_1 + \mathbf{F}_2 \text{ and } u = \sigma_1 u^{(0)} + u_1 + u_{\infty},$$

with decomposition of $\mathscr{P}(z)$ we see that

$$\begin{split} \mathscr{P}(z)\mathbf{F}(z) &= -\partial_{x_1}[\phi w^1]_1 + \partial_{x_1}\mathscr{P}^{(1)}(z)\mathbf{F}(z) + \partial_{x_1}^2\mathscr{P}^{(2)}(z)\mathbf{F}(z) \\ &= -\partial_{x_1}[\sigma_1^2\phi^{(0)}w^{(0),1}]_1 - \partial_{x_1}[\phi w^1 - \sigma_1\phi^{(0)}\sigma_1w^{(0),1}]_1 \\ &+ \partial_{x_1}\mathscr{P}^{(1)}(z)(\sigma_1^2\mathbf{F}_1(z) + \mathbf{F}_2(z)) + \partial_{x_1}^2\mathscr{P}^{(2)}(z)\mathbf{F}(z). \end{split}$$

Therefore

$$\mathscr{P}(z)\mathbf{F}(z) = -a_1(z)\partial_{x_1}\sigma_1^2 + \text{fast terms.}$$

Here,

$$a_1(z) \equiv [\phi^{(0)} w^{(0),1}(z)] - \langle \mathbf{F}_1(z), u^{*(1)}(z) \rangle,$$

depends only on z and it is T-periodic in z.

Therefore

$$\mathscr{P}(z)\mathbf{F}(z) = -a_1(z)\partial_{x_1}\sigma_1^2 + \text{fast terms.}$$

Here,

$$a_1(z) \equiv [\phi^{(0)} w^{(0),1}(z)] - \langle \mathbf{F}_1(z), u^{*(1)}(z) \rangle,$$

depends only on z and it is T-periodic in z.

We compute

$$\int_{s}^{t} e^{(t-z)\Lambda} \mathscr{P}(z) \mathbf{F}(z) dz = -\int_{s}^{t} e^{(t-z)\Lambda} a_{1}(z) \frac{\partial_{x_{1}} \sigma_{1}^{2}}{\partial z} + \text{ fast terms.}$$

$$\begin{split} \int_s^t e^{(t-z)\Lambda} a_1(z) \partial_{x_1} \sigma_1^2 dz &= \int_s^t e^{(t-z)\Lambda} a_0 \partial_{x_1} \sigma_1^2 dz \\ &+ \int_s^t e^{(t-z)\Lambda} (a_1(z) - a_0) \partial_{x_1} \sigma_1^2 dz. \end{split}$$

Define

$$b(t) = \int_0^t a_1(z) - a_0 dz,$$

where

$$a_0 = \frac{1}{T} \int_0^T a_1(z) dz.$$

Then $\partial_t b(t) = a_1(t) - a_0$, b(t+T) = b(t) and b(0) = b(T) = 0.

We calculate

$$\int_0^t (a_1(z) - a_0)e^{(t-z)\Lambda} \partial_{x_1}(\sigma_1^2) dz = \int_0^t \partial_z b(z)e^{(t-z)\Lambda} \partial_{x_1}(\sigma_1^2) dz$$

$$= \left[b(z)e^{(t-z)\Lambda} \partial_{x_1}(\sigma_1^2(z)) \right]_0^t - \int_0^t b(z) \partial_z \left(e^{(t-z)\Lambda} \partial_{x_1}(\sigma_1^2(z)) \right) dz$$

$$= b(t) \partial_{x_1}(\sigma_1^2(t)) + \int_0^t b(z)e^{(t-z)\Lambda} \Lambda \partial_{x_1}(\sigma_1^2(z)) dz$$

$$- \int_0^t b(z) \partial_{x_1} e^{(t-z)\Lambda} \partial_z(\sigma_1^2(z)) dz.$$

Using

$$\|\partial_{x_1}^k e^{t\Lambda} \sigma\|_{L^2(\mathbb{R})} \le C(1+t)^{-\frac{1}{4}-\frac{k}{2}} \|\sigma\|_{L^1(\mathbb{R})},$$

for $\sigma \in L^1(\mathbb{R})$ and $k = 0, 1, \ldots$, we obtain fast decay.

- Brezina, J., Kagei, Y. (2011). Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow. *Mathematical Models and Methods in Applied Sciences* Vol. 22, No. 7.
- Brezina, J., Kagei, Y. Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow. MI Preprint Series, Kyushu University 2012-9.
- Brezina, J. Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow. *MI Preprint Series, Kyushu University* 2012-10.
- Y. Kagei. Asymptotic behavior of solutions of the compressible Navier-Stokes equation around parallel flows. *Arch. Rational Mech. Anal.* Vol. 205, pp.585–650.

Thank you for your attention!

h.brezina@gmail.com