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part I | 1991

• Incompressible flow: Navier–Stokes equations

• fully implicit schemes and adaptive time stepping
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part II | 2011

• PDEs with random data

• stochastic Galerkin and h-p adaptivity
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Outline of the talk . . .

• Incompressible flow: Navier–Stokes equations

• fully implicit schemes and adaptive time stepping

• PDEs with random data

• stochastic Galerkin and h-p adaptivity

• A proof-of-concept implementation:

• efficient linear algebra

• the (S)IFISS MATLAB Toolbox
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 IFISS
HOME DOWNLOAD DOCUMENTATION PUBLICATIONS

Incompressible Flow & Iterative Solver Software

An open-source software package

Summary
IFISS is a graphical package for the interactive numerical study of incompressible flow problems
which can be run under Matlab or Octave. It includes algorithms for discretization by mixed finite
element methods and a posteriori error estimation of the computed solutions. The package can
also be used as a computational laboratory for experimenting with state-of-the-art preconditioned
iterative solvers for the discrete linear equation systems that arise in incompressible flow
modelling. 

Key Features
Key features include 

implementation of a variety of mixed finite element approximation methods;

automatic calculation of stabilization parameters where appropriate;

a posteriori error estimation for steady problems;

a range of state-of-the-art preconditioned Krylov subspace solvers ;

built-in geometric and algebraic multigrid solvers and preconditioners;

fully implicit self-adaptive time stepping algorithms;

useful visualization tools.

The developers of the IFISS package are David Silvester (School of Mathematics, University of
Manchester), Howard Elman (Computer Science Department, University of Maryland), and Alison
Ramage (Department of Mathematics and Statistics, University of Strathclyde).

Links

Download

Documentation

Publications

Overview

Sample output

Contact

The IFISS logo represents the
solution of the double glazing

convection-diffusion problem. It can
be reproduced in IFISS via the
function ifisslogo.

This webpage is based on a CSS template from Free CSS Templates. Liblice | September 2014 – p. 7/57
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Buoyancy driven flow

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+∇p = ~jT in W ≡ Ω× (0, T )

∇ · ~u = 0 in W
∂T

∂t
+ ~u · ∇T − ν∇2T = 0 in W

Boundary and initial conditions

~u = ~0 on Γ× [0, T ]; ~u(~x, 0) = ~0 in Ω.

T = Tg on ΓD × [0, T ]; ν∇T · ~n = 0 on ΓN × [0, T ];

T (~x, 0) = 0 in Ω.
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Buoyancy driven flow

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+∇p = ~jT in W ≡ Ω× (0, T )

∇ · ~u = 0 in W
∂T

∂t
+ ~u · ∇T − ν∇2T = 0 in W

Boundary and initial conditions

~u = ~0 on Γ× [0, T ]; ~u(~x, 0) = ~0 in Ω.

T = Tg on ΓD × [0, T ]; ν∇T · ~n = 0 on ΓN × [0, T ];

T (~x, 0) = 0 in Ω.

ν =
√

Pr/Ra , ν = 1/
√
Pr · Ra, Tg = (1− e−10t)T∞ .
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Rayleigh–Bénard | Pr = 7.1, Ra = 15000 .

Stationary streamlines: time = 300.00
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Rayleigh–Bénard | Pr = 7.1, Ra = 15000 .

Stationary streamlines: time = 300.00
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“Smart Integrator” (SI)

• Optimal time-stepping

• Black-box implementation

• Algorithm efficiency

• Solver efficiency: the linear solver convergence rate is
robust with respect to the mesh size h and the flow
problem parameters.
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Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .
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Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .
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Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

Isotherms: time = 100.72

Isotherms: time = 119.28

Isotherms: time = 300.00
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

~g TcTh
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

time
660 670 680 690 700

3.01

3.011

3.012

3.013

3.014

3.015

3.016

3.017

3.018

time

av
er

ag
e 

vo
rt

ic
ity

ω = ∇× ~u, ωΩ =

√

1

2A

∫

Ω
ω2

Liblice | September 2014 – p. 17/57



MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

time = 826.53 time = 828.23 time = 829.96
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .
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LINEAR ALGEBRA
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Trapezoidal Rule (TR) time discretization

Subdivide [0, T ] into time levels {ti}Ni=1. Given (un, pn, Tn) at

time tn, kn+1 := tn+1 − tn, compute (un+1, pn+1, Tn+1) via

2
kn+1

un+1 −ν∇2un+1 + un+1 · ∇un+1 +∇pn+1 − ~jTn+1 =

2
kn+1

un + ∂u
∂t

n
in Ω

−∇ · un+1 = 0 in Ω

un+1 = ~0 on Γ

2
kn+1

Tn+1 −ν∇2Tn+1 + un+1 · ∇Tn+1 = 2
kn+1

Tn + ∂T
∂t

n
in Ω

Tn+1 = Tn+1
g on ΓD

ν∇Tn+1 · ~n = 0 on ΓN .
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Linearization

Subdivide [0, T ] into time levels {ti}Ni=1. Given (un, pn, Tn) at

time tn, kn+1 := tn+1 − tn, compute (un+1, pn+1, Tn+1) via

2
kn+1

un+1 −ν∇2un+1 + ~wn+1 · ∇un+1 +∇pn+1 − ~jTn+1 =

2
kn+1

un + ∂u
∂t

n
in Ω

−∇ · un+1 = 0 in Ω

un+1 = ~0 on Γ.

2
kn+1

Tn+1 −ν∇2Tn+1 + ~wn+1 · ∇Tn+1 = 2
kn+1

Tn + ∂T
∂t

n
in Ω

Tn+1 = Tn+1
g on ΓD

ν∇Tn+1 · ~n = 0 on ΓN ,

with ~wn+1 = (1 + kn+1

kn
)~un − kn+1

kn
~un−1.
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Adaptive time stepping components

The adaptive time step selection is based on coupled
physics.

Given L2 error estimates ‖~en+1
h ‖ and ‖en+1

h ‖ for the velocity

and temperature respectively, the subsequent TR–AB2 time
step kn+2 is computed using

kn+2 = kn+1

(
εt

√
∥
∥~en+1

h

∥
∥2 +

∥
∥en+1

h

∥
∥2

)1/3

.

The following parameters must be specified:

time accuracy tolerance εt (10−5)

GMRES tolerance itol (10−6)

GMRES iteration limit maxit (50)
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Finite element matrix formulation

Introducing the basis sets

Xh = span{~φi}nu

i=1, Velocity basis functions;

Mh = span{ψj}np

j=1, Pressure basis functions.

Th = span{φk}nT

k=1, Temperature basis functions;

gives the method-of-lines discretized system:






M 0 0

0 0 0

0 0 M











∂u
∂t
∂p
∂t
∂T
∂t




+






F BT − ◦

M

B 0 0

0 0 F











u

p

T




 =






~0

0

g






with a (vertical–) mass matrix:

(
◦
M

)ij = ([0, φi], φj)
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Preconditioning strategy






F BT − ◦

M

B 0 0

0 0 F




P−1 P






αu

αp

αT




 =






fu

fp

fT






Given S = BF−1BT , a perfect preconditioner is given by






F BT − ◦

M

B 0 0

0 0 F











F−1 F−1BTS−1 F−1 ◦

MF−1

0 −S−1 0

0 0 F−1






︸ ︷︷ ︸

P−1

=






I 0 0

BF−1 I BF−1 ◦

MF−1

0 0 I
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For an efficient preconditioner we need to construct a
sparse approximation to the “exact” Schur complement

S−1 = (BF−1BT )−1

See Chapter 11 of

Howard Elman & David Silvester & Andrew Wathen
Finite Elements and Fast Iterative Solvers: with
applications in incompressible fluid dynamics
Oxford University Press, second edition, 2014.

For an efficient implementation we must also have an
efficient AMG (convection-diffusion) solver ...
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HSL HSL MI20

PACKAGE SPECIFICATION HSL 2007

1 SUMMARY

Given an n×n sparse matrix A and an n−vector z, HSL MI20 computes the vector x=Mz, whereM is an algebraic

multigrid (AMG) v-cycle preconditioner for A. A classical AMG method is used, as described in [1] (see also Section

5 below for a brief description of the algorithm). The matrix A must have positive diagonal entries and (most of) the

off-diagonal entries must be negative (the diagonal should be large compared to the sum of the off-diagonals). During

the multigrid coarsening process, positive off-diagonal entries are ignored and, when calculating the interpolation

weights, positive off-diagonal entries are added to the diagonal.

Reference

[1] K. Stüben. An Introduction to Algebraic Multigrid. In U. Trottenberg, C. Oosterlee, A. Schüller, eds, ‘Multigrid’,

Academic Press, 2001, pp 413-532.

ATTRIBUTES — Version: 1.1.0 Types: Real (single, double). Uses: HSL MA48, HSL MC65, HSL ZD11, and the

LAPACK routines GETRF and GETRS. Date: September 2006. Origin: J. W. Boyle, University of Manchester and J.

A. Scott, Rutherford Appleton Laboratory. Language: Fortran 95, plus allocatable dummy arguments and allocatable

components of derived types. Remark: The development of HSL MI20 was funded by EPSRC grants EP/C000528/1

and GR/S42170.
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Schur complement approximation – I

Introducing the diagonal of the velocity mass matrix

M∗ ∼Mij = (~φi, ~φj),

gives the “least-squares commutator preconditioner”:

(BF−1BT )−1 ≈ (BM−1
∗ BT

︸ ︷︷ ︸

amg

)−1(BM−1
∗ FM−1

∗ BT )(BM−1
∗ BT

︸ ︷︷ ︸

amg

)−1
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Schur complement approximation – II

Introducing associated pressure matrices

Mp ∼ (∇ψi,∇ψj), mass

Ap ∼ (∇ψi,∇ψj), diffusion

Np ∼ (~wh · ∇ψi, ψj), convection

Fp =
2

kn+1
Mp + νAp +Np, convection-diffusion

gives the “pressure convection-diffusion preconditioner”:

(BF−1BT )−1 ≈M−1
p Fp A

−1
p
︸︷︷︸

amg
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Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

0 5 10 15 20

10
-8

10
-6

10
-4

10
-2

10
0

iteration number

re
si

du
al

 r
ed

uc
tio

n

Exact PCD preconditioning

 

 
t=100
t=120
t=300

0 5 10 15 20

10
-8

10
-6

10
-4

10
-2

10
0

iteration number

re
si

du
al

 r
ed

uc
tio

n

Exact LSC preconditioning

 

 
t=100
t=120
t=300

0 5 10 15 20

10
-8

10
-6

10
-4

10
-2

10
0

iteration number

re
si

du
al

 r
ed

uc
tio

n

AMG-ILU PCD preconditioning

 

 

0 5 10 15 20

10
-8

10
-6

10
-4

10
-2

10
0

iteration number

re
si

du
al

 r
ed

uc
tio

n

AMG-ILU LSC preconditioning

 

 
t=100
t=120
t=300

t=100
t=120
t=300

Liblice | September 2014 – p. 30/57



MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

x=1/2

y=4

31× 248 stretched grid
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .
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Temperature evolution at the MIT reference point.
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MIT test problem | Pr = 0.71, Ra = 3.4× 105 .
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What have we achieved?

• Black-box implementation: few parameters that have to
be estimated a priori.

• Optimal complexity: essentially O(n) flops per iteration,
where n is dimension of the discrete system.

• Efficient linear algebra: convergence rate is
(essentially) independent of h. Given an appropriate
time accuracy tolerance convergence is also robust with
respect to diffusion parameters ν and ν.
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PART II
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Steady-state flow with random data

Problem statement

~u · ∇~u− ν∇2~u+∇p = 0 in Ω

∇ · ~u = 0 in Ω

~u = ~g on ΓD

ν∇~u · ~n− p~n = ~0 on ΓN .

We model uncertainty in the viscosity as

ν(ω) = µ+ σξ(ω).

If ξ ∼ U(−
√
3,
√
3), then ν is a uniform random variable with

E[ν(ω)] = µ, Var[ν(ω)] = σ2.
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N–S example I: flow over a step

Streamlines of the mean flow field (top) and plot of the
mean pressure field (bottom):

µ = 1/50, σ = µ/10
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Variance of the magnitude of flow field (top) and variance of
the pressure (bottom)
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N–S example II: flow around an obstacle

Streamlines of the mean flow field (top) and plot of the
mean pressure field (bottom):

µ = 1/100, σ = 3µ/10
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Variance of the magnitude of flow field (top) and variance of
the pressure (bottom)
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Stochastic discretisation methods

• Monte Carlo Methods

• Perturbation Methods

• Stochastic Galerkin Methods

• Stochastic Collocation Methods

• Stochastic Reduced Basis Methods

• ...
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Stochastic discretisation methods

• Monte Carlo Methods

• Perturbation Methods

• Stochastic Galerkin Methods

• Stochastic Collocation Methods

• Stochastic Reduced Basis Methods

• ...

Key points

If the number of random variables describing the input
data is small then Stochastic Galerkin and Stochastic
Collocation methods can outperform Monte Carlo.

If software for the deterministic problem is to be useful
for Stochastic Galerkin approximation then specialised
solvers need to be developed.
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LINEAR ALGEBRA
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Stochastic Galerkin discretisation I

Ingredients

• Picard iteration;

• standard finite element spaces Xh
E and Mh;

• a suitable finite-dimensional subspace Sk ⊂L2
ρ(Λ),

where Λ := ξ(Ξ), Λ∋ y.
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Stochastic Galerkin discretisation I

Ingredients

• Picard iteration;

• standard finite element spaces Xh
E and Mh;

• a suitable finite-dimensional subspace Sk ⊂L2
ρ(Λ),

where Λ := ξ(Ξ), Λ∋ y.
Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.
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Stochastic Galerkin discretisation II

Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.
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Stochastic Galerkin discretisation II

Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.

Sets of basis functions

Xh
0 = span

{
(φi(~x), 0), (0, φi(~x))

}nu

i=1
;Mh = span {ψj(~x)}np

j=1;

Sk = span {ϕℓ(y)}kℓ=0.
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Stochastic Galerkin discretisation III

The linear system at the (n+ 1)st Picard iteration is

(

Fn
ν BT

B 0

)(

αn

βn

)

=

(

fn

gn

)

with

F
n
ν =

(

Fn
ν 0

0 Fn
ν

)

, B =
(

G0 ⊗ Bx1
G0 ⊗ Bx2

)

and

Fn
ν := (µG0 + σG1)⊗A+

k∑

ℓ=0

Hℓ ⊗Nℓ,

Bx1
, Bx2

are discrete representations of the first derivatives.

The system dimension is: (nu + np)(k+ 1)× (nu + np)(k+ 1).
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(1-1) block: Fn
ν := (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

where ~unhℓ are the ‘spatial coefficients’ in the expansion
of the lagged velocity field,

~unhk(~x, y) =
k∑

ℓ=0






∑nu

i=1 ~u
n
iℓ φi(~x)

︸ ︷︷ ︸

~un
hℓ(~x)




ϕℓ(y).
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(1-1) block: Fn
ν := (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

• G0, G1 and Hℓ are all (k + 1)× (k + 1) matrices:

G0 := [G0]ℓs = E [ϕs(y)ϕℓ(y)] ,

G1 := [G1]ℓs = E [y ϕs(y)ϕℓ(y)] ,

Hℓ := [Hℓ]ms = E [ϕℓ(y)ϕs(y)ϕm(y)] .
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(1-1) block: Fn
ν := (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

• G0, G1 and Hℓ are all (k + 1)× (k + 1) matrices:

G0 := [G0]ℓs = E [ϕs(y)ϕℓ(y)] ,

G1 := [G1]ℓs = E [y ϕs(y)ϕℓ(y)] ,

Hℓ := [Hℓ]ms = E [ϕℓ(y)ϕs(y)ϕm(y)] .

If {ϕℓ(y)}kℓ=0 are scaled Legendre polynomials on Λ, then

• G0 = H0 = I, G1 = H1 is sparse (2 non-zeros per row);

• Hℓ is dense for ℓ ≥ 2.
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Ideal preconditioning

(

F BT

B 0

)

P−1 P
(

αu

αp

)

=

(

fu

fp

)

An ideal preconditioner is given by

(

F BT

B 0

)(

F−1 F−1BTS−1

0 −S−1

)

︸ ︷︷ ︸

P−1

=

(

I 0

BF−1 I

)

.

For an efficient preconditioner we need to construct a
sparse approximation to the “exact” Schur complement

S−1 = (BF−1BT )−1
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Preconditioning I

Rearrange the (1-1) block:

Fn
ν = (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ

= I ⊗ (µA0 +N0) + σG1 ⊗A+
∑k

ℓ=1Hℓ ⊗Nℓ

and define

F0 := (µA0 +N0).
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Preconditioning I

Rearrange the (1-1) block:

Fn
ν = (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ

= I ⊗ (µA0 +N0) + σG1 ⊗A+
∑k

ℓ=1Hℓ ⊗Nℓ

and define

F0 := (µA0 +N0).

A natural candidate for PF is the block-diagonal
mean-based approximation:

PF = F0 :=

(

I ⊗ F0 0

0 I ⊗ F0

)

.

This is a good approximation when σ
µ is not too large.
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Preconditioning II

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗ Bx1
)(I ⊗ F−1

0 )(I ⊗ BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0 )(I ⊗BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .
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Preconditioning II

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗ Bx1
)(I ⊗ F−1

0 )(I ⊗ BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0 )(I ⊗BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

S0 is the Schur-complement corresponding to the
deterministic problem with

• viscosity µ

• convection coefficient ~u0hk (the mean component of
velocity at the previous Picard step)
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Preconditioning III

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗Bx1
)(I ⊗ F−1

0 )(I ⊗ BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0 )(I ⊗ BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

To apply P
−1
S in each GMRES iteration requires (k + 1)

solves with S0. This can be done

• exactly (ideal preconditioner); or

• inexactly with the deterministic approaches:
– pressure convection–diffusion approximation (PCD)
– least–squares commutator approximation (LSC).
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Flow over a step
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GMRES convergence for a coarsened grid (left) and for a
reference grid (right) (µ = 1/50; σ = 2µ/10).
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Typical GMRES iteration counts

Coarse grid Fine grid

E[Re] k = 2 4 6 k = 2 4 6

σ = µ/10 67 14 14 14 14 14 15

Ideal σ = 2µ/10 70 18 20 21 14 20 21

σ = 3µ/10 74 25 28 29 25 28 29

σ = µ/10 67 37 38 39 37 39 39

PCD σ = 2µ/10 70 43 44 50 44 48 50

σ = 3µ/10 74 53 56 61 54 58 62

σ = µ/10 67 25 26 27 43 49 52

LSC σ = 2µ/10 70 31 34 36 48 58 63

σ = 3µ/10 74 35 45 48 51 68 77
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What have we achieved?

• Black-box implementation: no parameters that have to
be estimated a priori.

• Optimal complexity: essentially O(n) flops per iteration,
where n is dimension of the discrete system.

• Efficient linear algebra: convergence rate is
independent of h. Convergence is also robust with
respect to the spectral approximation parameter k as
long as the variance is not too large relative to the
mean.
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Part III
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Stochastic Galerkin and h-p adaptivity

What’s new?

Alex Bespalov, Catherine Powell & David Silvester.
A posteriori error estimation for parametric operator
equations with applications to PDEs with random data.
SIAM J. Sci. Comput, 36:A339–A363, 2014.

Liblice | September 2014 – p. 57/57

http://eprints.ma.man.ac.uk/1967/


Stochastic Galerkin and h-p adaptivity

What’s new?

Alex Bespalov, Catherine Powell & David Silvester.
A posteriori error estimation for parametric operator
equations with applications to PDEs with random data.
SIAM J. Sci. Comput, 36:A339–A363, 2014.

What’s next?

• ♥ including local refinement in space

♥♥ designing a practical adaptive strategy

♥♥♥ stopping criteria for the linear solver
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