
Uncertainty Quantification:
Does it need efficient linear

algebra?

David Silvester
University of Manchester, UK

Catherine Powell
University of Manchester,UK

Liblice | September 2014 – p. 1/57

http://www.maths.manchester.ac.uk/~djs
http://www.manchester.ac.uk
http://www.maths.manchester.ac.uk/~cp
http://www.manchester.ac.uk

Yes.

Liblice | September 2014 – p. 2/57

A framework for the
development of implicit solvers

for incompressible flow
problems

David Silvester
University of Manchester, UK

David Griffiths
University of Dundee, Scotland

Liblice | September 2014 – p. 3/57

http://www.maths.manchester.ac.uk/~djs
http://www.manchester.ac.uk
http://www.maths.dundee.ac.uk/~dfg/
http://www.dundee.ac.uk

part I | 1991

• Incompressible flow: Navier–Stokes equations

• fully implicit schemes and adaptive time stepping

Liblice | September 2014 – p. 4/57

part II | 2011

• PDEs with random data

• stochastic Galerkin and h-p adaptivity

Liblice | September 2014 – p. 5/57

Outline of the talk . . .

• Incompressible flow: Navier–Stokes equations

• fully implicit schemes and adaptive time stepping

• PDEs with random data

• stochastic Galerkin and h-p adaptivity

• A proof-of-concept implementation:

• efficient linear algebra

• the (S)IFISS MATLAB Toolbox

Liblice | September 2014 – p. 6/57

http://www.manchester.ac.uk/ifiss/

 IFISS
HOME DOWNLOAD DOCUMENTATION PUBLICATIONS

Incompressible Flow & Iterative Solver Software

An open-source software package

Summary
IFISS is a graphical package for the interactive numerical study of incompressible flow problems
which can be run under Matlab or Octave. It includes algorithms for discretization by mixed finite
element methods and a posteriori error estimation of the computed solutions. The package can
also be used as a computational laboratory for experimenting with state-of-the-art preconditioned
iterative solvers for the discrete linear equation systems that arise in incompressible flow
modelling.

Key Features
Key features include

implementation of a variety of mixed finite element approximation methods;

automatic calculation of stabilization parameters where appropriate;

a posteriori error estimation for steady problems;

a range of state-of-the-art preconditioned Krylov subspace solvers ;

built-in geometric and algebraic multigrid solvers and preconditioners;

fully implicit self-adaptive time stepping algorithms;

useful visualization tools.

The developers of the IFISS package are David Silvester (School of Mathematics, University of
Manchester), Howard Elman (Computer Science Department, University of Maryland), and Alison
Ramage (Department of Mathematics and Statistics, University of Strathclyde).

Links

Download

Documentation

Publications

Overview

Sample output

Contact

The IFISS logo represents the
solution of the double glazing

convection-diffusion problem. It can
be reproduced in IFISS via the
function ifisslogo.

This webpage is based on a CSS template from Free CSS Templates. Liblice | September 2014 – p. 7/57

PART I

Liblice | September 2014 – p. 8/57

References I

Philip Gresho & David Griffiths & David Silvester
Adaptive time-stepping for incompressible flow; part I:
scalar advection-diffusion
SIAM J. Scientific Computing, 30: 2018–2054, 2008.

David Kay & Philip Gresho & David Griffiths & David
Silvester Adaptive time-stepping for incompressible
flow; part II: Navier-Stokes equations
SIAM J. Scientific Computing, 32: 111–128, 2010.

Howard Elman, Milan Mihajlović and David Silvester.
Fast iterative solvers for buoyancy driven flow problems
J. Computational Physics, 230: 3900–3914, 2011.

Liblice | September 2014 – p. 9/57

http://eprints.ma.man.ac.uk/1099/
http://eprints.ma.man.ac.uk/1110/
http://eprints.ma.man.ac.uk/1511/

Buoyancy driven flow

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+∇p = ~jT in W ≡ Ω× (0, T)

∇ · ~u = 0 in W
∂T

∂t
+ ~u · ∇T − ν∇2T = 0 in W

Boundary and initial conditions

~u = ~0 on Γ× [0, T]; ~u(~x, 0) = ~0 in Ω.

T = Tg on ΓD × [0, T]; ν∇T · ~n = 0 on ΓN × [0, T];

T (~x, 0) = 0 in Ω.

Liblice | September 2014 – p. 10/57

Buoyancy driven flow

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+∇p = ~jT in W ≡ Ω× (0, T)

∇ · ~u = 0 in W
∂T

∂t
+ ~u · ∇T − ν∇2T = 0 in W

Boundary and initial conditions

~u = ~0 on Γ× [0, T]; ~u(~x, 0) = ~0 in Ω.

T = Tg on ΓD × [0, T]; ν∇T · ~n = 0 on ΓN × [0, T];

T (~x, 0) = 0 in Ω.

ν =
√

Pr/Ra , ν = 1/
√
Pr · Ra, Tg = (1− e−10t)T∞ .

Liblice | September 2014 – p. 10/57

Rayleigh–Bénard | Pr = 7.1, Ra = 15000 .

Stationary streamlines: time = 300.00

Liblice | September 2014 – p. 11/57

Rayleigh–Bénard | Pr = 7.1, Ra = 15000 .

Stationary streamlines: time = 300.00

Liblice | September 2014 – p. 11/57

“Smart Integrator” (SI)

• Optimal time-stepping

• Black-box implementation

• Algorithm efficiency

• Solver efficiency: the linear solver convergence rate is
robust with respect to the mesh size h and the flow
problem parameters.

Liblice | September 2014 – p. 12/57

Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

0 100 200 300
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time
120 130 140 150 160 170

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

time

av
er

ag
e

vo
rt

ic
ity

ω = ∇× ~u, ωΩ =

√

1

2A

∫

Ω
ω2

Liblice | September 2014 – p. 13/57

Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

0 100 200 300
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

time
0 100 200 300

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

time
tim

e
st

ep

stabilized TR | εt = 10−6 (left) and εt = 10−5 (right).

Liblice | September 2014 – p. 14/57

Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

Isotherms: time = 100.72

Isotherms: time = 119.28

Isotherms: time = 300.00

Liblice | September 2014 – p. 15/57

MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

~g TcTh

Liblice | September 2014 – p. 16/57

MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

time
660 670 680 690 700

3.01

3.011

3.012

3.013

3.014

3.015

3.016

3.017

3.018

time

av
er

ag
e

vo
rt

ic
ity

ω = ∇× ~u, ωΩ =

√

1

2A

∫

Ω
ω2

Liblice | September 2014 – p. 17/57

MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

time = 826.53 time = 828.23 time = 829.96

Liblice | September 2014 – p. 18/57

MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

0 200 400 600
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time
660 670 680 690 700

0.082

0.084

0.086

0.088

0.09

0.092

time

tim
e

st
ep

Liblice | September 2014 – p. 19/57

LINEAR ALGEBRA

Liblice | September 2014 – p. 20/57

Trapezoidal Rule (TR) time discretization

Subdivide [0, T] into time levels {ti}Ni=1. Given (un, pn, Tn) at

time tn, kn+1 := tn+1 − tn, compute (un+1, pn+1, Tn+1) via

2
kn+1

un+1 −ν∇2un+1 + un+1 · ∇un+1 +∇pn+1 − ~jTn+1 =

2
kn+1

un + ∂u
∂t

n
in Ω

−∇ · un+1 = 0 in Ω

un+1 = ~0 on Γ

2
kn+1

Tn+1 −ν∇2Tn+1 + un+1 · ∇Tn+1 = 2
kn+1

Tn + ∂T
∂t

n
in Ω

Tn+1 = Tn+1
g on ΓD

ν∇Tn+1 · ~n = 0 on ΓN .

Liblice | September 2014 – p. 21/57

Linearization

Subdivide [0, T] into time levels {ti}Ni=1. Given (un, pn, Tn) at

time tn, kn+1 := tn+1 − tn, compute (un+1, pn+1, Tn+1) via

2
kn+1

un+1 −ν∇2un+1 + ~wn+1 · ∇un+1 +∇pn+1 − ~jTn+1 =

2
kn+1

un + ∂u
∂t

n
in Ω

−∇ · un+1 = 0 in Ω

un+1 = ~0 on Γ.

2
kn+1

Tn+1 −ν∇2Tn+1 + ~wn+1 · ∇Tn+1 = 2
kn+1

Tn + ∂T
∂t

n
in Ω

Tn+1 = Tn+1
g on ΓD

ν∇Tn+1 · ~n = 0 on ΓN ,

with ~wn+1 = (1 + kn+1

kn
)~un − kn+1

kn
~un−1.

Liblice | September 2014 – p. 22/57

Adaptive time stepping components

The adaptive time step selection is based on coupled
physics.

Given L2 error estimates ‖~en+1
h ‖ and ‖en+1

h ‖ for the velocity

and temperature respectively, the subsequent TR–AB2 time
step kn+2 is computed using

kn+2 = kn+1

(
εt

√
∥
∥~en+1

h

∥
∥2 +

∥
∥en+1

h

∥
∥2

)1/3

.

The following parameters must be specified:

time accuracy tolerance εt (10−5)

GMRES tolerance itol (10−6)

GMRES iteration limit maxit (50)

Liblice | September 2014 – p. 23/57

Finite element matrix formulation

Introducing the basis sets

Xh = span{~φi}nu

i=1, Velocity basis functions;

Mh = span{ψj}np

j=1, Pressure basis functions.

Th = span{φk}nT

k=1, Temperature basis functions;

gives the method-of-lines discretized system:

M 0 0

0 0 0

0 0 M

∂u
∂t
∂p
∂t
∂T
∂t

+

F BT − ◦

M

B 0 0

0 0 F

u

p

T

 =

~0

0

g

with a (vertical–) mass matrix:

(
◦
M

)ij = ([0, φi], φj)

Liblice | September 2014 – p. 24/57

Preconditioning strategy

F BT − ◦

M

B 0 0

0 0 F

P−1 P

αu

αp

αT

 =

fu

fp

fT

Given S = BF−1BT , a perfect preconditioner is given by

F BT − ◦

M

B 0 0

0 0 F

F−1 F−1BTS−1 F−1 ◦

MF−1

0 −S−1 0

0 0 F−1

︸ ︷︷ ︸

P−1

=

I 0 0

BF−1 I BF−1 ◦

MF−1

0 0 I

Liblice | September 2014 – p. 25/57

For an efficient preconditioner we need to construct a
sparse approximation to the “exact” Schur complement

S−1 = (BF−1BT)−1

See Chapter 11 of

Howard Elman & David Silvester & Andrew Wathen
Finite Elements and Fast Iterative Solvers: with
applications in incompressible fluid dynamics
Oxford University Press, second edition, 2014.

For an efficient implementation we must also have an
efficient AMG (convection-diffusion) solver ...

Liblice | September 2014 – p. 26/57

http://ukcatalogue.oup.com/product/9780199678808.do

HSL HSL MI20

PACKAGE SPECIFICATION HSL 2007

1 SUMMARY

Given an n×n sparse matrix A and an n−vector z, HSL MI20 computes the vector x=Mz, whereM is an algebraic

multigrid (AMG) v-cycle preconditioner for A. A classical AMG method is used, as described in [1] (see also Section

5 below for a brief description of the algorithm). The matrix A must have positive diagonal entries and (most of) the

off-diagonal entries must be negative (the diagonal should be large compared to the sum of the off-diagonals). During

the multigrid coarsening process, positive off-diagonal entries are ignored and, when calculating the interpolation

weights, positive off-diagonal entries are added to the diagonal.

Reference

[1] K. Stüben. An Introduction to Algebraic Multigrid. In U. Trottenberg, C. Oosterlee, A. Schüller, eds, ‘Multigrid’,

Academic Press, 2001, pp 413-532.

ATTRIBUTES — Version: 1.1.0 Types: Real (single, double). Uses: HSL MA48, HSL MC65, HSL ZD11, and the

LAPACK routines GETRF and GETRS. Date: September 2006. Origin: J. W. Boyle, University of Manchester and J.

A. Scott, Rutherford Appleton Laboratory. Language: Fortran 95, plus allocatable dummy arguments and allocatable

components of derived types. Remark: The development of HSL MI20 was funded by EPSRC grants EP/C000528/1

and GR/S42170.

Liblice | September 2014 – p. 27/57

Schur complement approximation – I

Introducing the diagonal of the velocity mass matrix

M∗ ∼Mij = (~φi, ~φj),

gives the “least-squares commutator preconditioner”:

(BF−1BT)−1 ≈ (BM−1
∗ BT

︸ ︷︷ ︸

amg

)−1(BM−1
∗ FM−1

∗ BT)(BM−1
∗ BT

︸ ︷︷ ︸

amg

)−1

Liblice | September 2014 – p. 28/57

http://www.maths.manchester.ac.uk/~djs/hsl_mi20.pdf
http://www.maths.manchester.ac.uk/~djs/hsl_mi20.pdf

Schur complement approximation – II

Introducing associated pressure matrices

Mp ∼ (∇ψi,∇ψj), mass

Ap ∼ (∇ψi,∇ψj), diffusion

Np ∼ (~wh · ∇ψi, ψj), convection

Fp =
2

kn+1
Mp + νAp +Np, convection-diffusion

gives the “pressure convection-diffusion preconditioner”:

(BF−1BT)−1 ≈M−1
p Fp A

−1
p
︸︷︷︸

amg

Liblice | September 2014 – p. 29/57

http://www.maths.manchester.ac.uk/~djs/hsl_mi20.pdf

Rayleigh–Bénard | Pr = 7.1, Ra = 1.5× 104 .

0 5 10 15 20

10
-8

10
-6

10
-4

10
-2

10
0

iteration number

re
si

du
al

 r
ed

uc
tio

n

Exact PCD preconditioning

t=100
t=120
t=300

0 5 10 15 20

10
-8

10
-6

10
-4

10
-2

10
0

iteration number

re
si

du
al

 r
ed

uc
tio

n

Exact LSC preconditioning

t=100
t=120
t=300

0 5 10 15 20

10
-8

10
-6

10
-4

10
-2

10
0

iteration number

re
si

du
al

 r
ed

uc
tio

n

AMG-ILU PCD preconditioning

0 5 10 15 20

10
-8

10
-6

10
-4

10
-2

10
0

iteration number

re
si

du
al

 r
ed

uc
tio

n

AMG-ILU LSC preconditioning

t=100
t=120
t=300

t=100
t=120
t=300

Liblice | September 2014 – p. 30/57

MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

x=1/2

y=4

31× 248 stretched grid

Liblice | September 2014 – p. 31/57

MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

700 705 710 715 720
0.22

0.24

0.26

0.28

0.3

0.32
tol = 3e-5

840 845 850 855 860
0.22

0.24

0.26

0.28

0.3

0.32
tol = 1e-6

Temperature evolution at the MIT reference point.

Liblice | September 2014 – p. 32/57

MIT test problem | Pr = 0.71, Ra = 3.4× 105 .

700 705 710 715 720
0

5

10

15

20

25

30

35
tol = 3e-5

amg-ILU
amg-PDJ

840 845 850 855 860
0

5

10

15

20

25

30

35
tol = 1e-6

amg-ILU
amg-PDJ

Iteration counts using inexact PCD preconditioning.

Liblice | September 2014 – p. 33/57

What have we achieved?

• Black-box implementation: few parameters that have to
be estimated a priori.

• Optimal complexity: essentially O(n) flops per iteration,
where n is dimension of the discrete system.

• Efficient linear algebra: convergence rate is
(essentially) independent of h. Given an appropriate
time accuracy tolerance convergence is also robust with
respect to diffusion parameters ν and ν.

Liblice | September 2014 – p. 34/57

PART II

Liblice | September 2014 – p. 35/57

References II

Catherine Powell & David Silvester
Preconditioning steady-state Navier–Stokes equations
with random data. SIAM J. Scientific Computing, vol.
34, A2482–A2506, 2012.

David Silvester & Alex Bespalov & Catherine Powell
A framework for the development of implicit solvers for
incompressible flow problems. Discrete and Continuous
Dynamical Systems — Series S, vol. 5, 1195–1221,
2012.

Liblice | September 2014 – p. 36/57

http://eprints.ma.man.ac.uk/1792/
http://eprints.ma.man.ac.uk/1724/

Steady-state flow with random data

Problem statement

~u · ∇~u− ν∇2~u+∇p = 0 in Ω

∇ · ~u = 0 in Ω

~u = ~g on ΓD

ν∇~u · ~n− p~n = ~0 on ΓN .

We model uncertainty in the viscosity as

ν(ω) = µ+ σξ(ω).

If ξ ∼ U(−
√
3,
√
3), then ν is a uniform random variable with

E[ν(ω)] = µ, Var[ν(ω)] = σ2.

Liblice | September 2014 – p. 37/57

N–S example I: flow over a step

Streamlines of the mean flow field (top) and plot of the
mean pressure field (bottom):

µ = 1/50, σ = µ/10

-1 0 1 2 3 4 5 -1

0

1

-0.3

-0.2

-0.1

0

0.1

Liblice | September 2014 – p. 38/57

Variance of the magnitude of flow field (top) and variance of
the pressure (bottom)

-1 0 1 2 3 4 5 -1

0

12

4

6

8

x 10
-4

Liblice | September 2014 – p. 39/57

N–S example II: flow around an obstacle

Streamlines of the mean flow field (top) and plot of the
mean pressure field (bottom):

µ = 1/100, σ = 3µ/10

0 1 2 3 4 5 6 7 8
-1

0

1
-0.5

0

0.5

1

Liblice | September 2014 – p. 40/57

Variance of the magnitude of flow field (top) and variance of
the pressure (bottom)

0 1 2 3 4 5 6 7 8
-1

0

10.01

0.02

0.03

0.04

Liblice | September 2014 – p. 41/57

Stochastic discretisation methods

• Monte Carlo Methods

• Perturbation Methods

• Stochastic Galerkin Methods

• Stochastic Collocation Methods

• Stochastic Reduced Basis Methods

• ...

Liblice | September 2014 – p. 42/57

Stochastic discretisation methods

• Monte Carlo Methods

• Perturbation Methods

• Stochastic Galerkin Methods

• Stochastic Collocation Methods

• Stochastic Reduced Basis Methods

• ...

Key points

If the number of random variables describing the input
data is small then Stochastic Galerkin and Stochastic
Collocation methods can outperform Monte Carlo.

If software for the deterministic problem is to be useful
for Stochastic Galerkin approximation then specialised
solvers need to be developed.

Liblice | September 2014 – p. 42/57

LINEAR ALGEBRA

Liblice | September 2014 – p. 43/57

Stochastic Galerkin discretisation I

Ingredients

• Picard iteration;

• standard finite element spaces Xh
E and Mh;

• a suitable finite-dimensional subspace Sk ⊂L2
ρ(Λ),

where Λ := ξ(Ξ), Λ∋ y.

Liblice | September 2014 – p. 44/57

Stochastic Galerkin discretisation I

Ingredients

• Picard iteration;

• standard finite element spaces Xh
E and Mh;

• a suitable finite-dimensional subspace Sk ⊂L2
ρ(Λ),

where Λ := ξ(Ξ), Λ∋ y.
Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.

Liblice | September 2014 – p. 44/57

Stochastic Galerkin discretisation II

Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.

Liblice | September 2014 – p. 45/57

Stochastic Galerkin discretisation II

Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.

Sets of basis functions

Xh
0 = span

{
(φi(~x), 0), (0, φi(~x))

}nu

i=1
;Mh = span {ψj(~x)}np

j=1;

Sk = span {ϕℓ(y)}kℓ=0.

Liblice | September 2014 – p. 45/57

Stochastic Galerkin discretisation III

The linear system at the (n+ 1)st Picard iteration is

(

Fn
ν BT

B 0

)(

αn

βn

)

=

(

fn

gn

)

with

F
n
ν =

(

Fn
ν 0

0 Fn
ν

)

, B =
(

G0 ⊗ Bx1
G0 ⊗ Bx2

)

and

Fn
ν := (µG0 + σG1)⊗A+

k∑

ℓ=0

Hℓ ⊗Nℓ,

Bx1
, Bx2

are discrete representations of the first derivatives.

The system dimension is: (nu + np)(k+ 1)× (nu + np)(k+ 1).

Liblice | September 2014 – p. 46/57

(1-1) block: Fn
ν := (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

where ~unhℓ are the ‘spatial coefficients’ in the expansion
of the lagged velocity field,

~unhk(~x, y) =
k∑

ℓ=0

∑nu

i=1 ~u
n
iℓ φi(~x)

︸ ︷︷ ︸

~un
hℓ(~x)

ϕℓ(y).

Liblice | September 2014 – p. 47/57

(1-1) block: Fn
ν := (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

• G0, G1 and Hℓ are all (k + 1)× (k + 1) matrices:

G0 := [G0]ℓs = E [ϕs(y)ϕℓ(y)] ,

G1 := [G1]ℓs = E [y ϕs(y)ϕℓ(y)] ,

Hℓ := [Hℓ]ms = E [ϕℓ(y)ϕs(y)ϕm(y)] .

Liblice | September 2014 – p. 48/57

(1-1) block: Fn
ν := (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

• G0, G1 and Hℓ are all (k + 1)× (k + 1) matrices:

G0 := [G0]ℓs = E [ϕs(y)ϕℓ(y)] ,

G1 := [G1]ℓs = E [y ϕs(y)ϕℓ(y)] ,

Hℓ := [Hℓ]ms = E [ϕℓ(y)ϕs(y)ϕm(y)] .

If {ϕℓ(y)}kℓ=0 are scaled Legendre polynomials on Λ, then

• G0 = H0 = I, G1 = H1 is sparse (2 non-zeros per row);

• Hℓ is dense for ℓ ≥ 2.

Liblice | September 2014 – p. 48/57

Ideal preconditioning

(

F BT

B 0

)

P−1 P
(

αu

αp

)

=

(

fu

fp

)

An ideal preconditioner is given by

(

F BT

B 0

)(

F−1 F−1BTS−1

0 −S−1

)

︸ ︷︷ ︸

P−1

=

(

I 0

BF−1 I

)

.

For an efficient preconditioner we need to construct a
sparse approximation to the “exact” Schur complement

S−1 = (BF−1BT)−1

Liblice | September 2014 – p. 49/57

Preconditioning I

Rearrange the (1-1) block:

Fn
ν = (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ

= I ⊗ (µA0 +N0) + σG1 ⊗A+
∑k

ℓ=1Hℓ ⊗Nℓ

and define

F0 := (µA0 +N0).

Liblice | September 2014 – p. 50/57

Preconditioning I

Rearrange the (1-1) block:

Fn
ν = (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ

= I ⊗ (µA0 +N0) + σG1 ⊗A+
∑k

ℓ=1Hℓ ⊗Nℓ

and define

F0 := (µA0 +N0).

A natural candidate for PF is the block-diagonal
mean-based approximation:

PF = F0 :=

(

I ⊗ F0 0

0 I ⊗ F0

)

.

This is a good approximation when σ
µ is not too large.

Liblice | September 2014 – p. 50/57

Preconditioning II

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗ Bx1
)(I ⊗ F−1

0)(I ⊗ BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0)(I ⊗BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

Liblice | September 2014 – p. 51/57

Preconditioning II

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗ Bx1
)(I ⊗ F−1

0)(I ⊗ BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0)(I ⊗BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

S0 is the Schur-complement corresponding to the
deterministic problem with

• viscosity µ

• convection coefficient ~u0hk (the mean component of
velocity at the previous Picard step)

Liblice | September 2014 – p. 51/57

Preconditioning III

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗Bx1
)(I ⊗ F−1

0)(I ⊗ BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0)(I ⊗ BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

To apply P
−1
S in each GMRES iteration requires (k + 1)

solves with S0. This can be done

• exactly (ideal preconditioner); or

• inexactly with the deterministic approaches:
– pressure convection–diffusion approximation (PCD)
– least–squares commutator approximation (LSC).

Liblice | September 2014 – p. 52/57

Flow over a step

0 20 40 60

10
-8

10
-6

10
-4

10
-2

10
0

iteration number

re
si

du
al

 r
ed

uc
tio

n

id e al
PC D

L SC

0 20 40 60

10
-8

10
-6

10
-4

10
-2

10
0

iteration number
re

si
du

al
 r

ed
uc

tio
n

id e al
PC D

L SC

GMRES convergence for a coarsened grid (left) and for a
reference grid (right) (µ = 1/50; σ = 2µ/10).

Liblice | September 2014 – p. 53/57

Typical GMRES iteration counts

Coarse grid Fine grid

E[Re] k = 2 4 6 k = 2 4 6

σ = µ/10 67 14 14 14 14 14 15

Ideal σ = 2µ/10 70 18 20 21 14 20 21

σ = 3µ/10 74 25 28 29 25 28 29

σ = µ/10 67 37 38 39 37 39 39

PCD σ = 2µ/10 70 43 44 50 44 48 50

σ = 3µ/10 74 53 56 61 54 58 62

σ = µ/10 67 25 26 27 43 49 52

LSC σ = 2µ/10 70 31 34 36 48 58 63

σ = 3µ/10 74 35 45 48 51 68 77

Liblice | September 2014 – p. 54/57

What have we achieved?

• Black-box implementation: no parameters that have to
be estimated a priori.

• Optimal complexity: essentially O(n) flops per iteration,
where n is dimension of the discrete system.

• Efficient linear algebra: convergence rate is
independent of h. Convergence is also robust with
respect to the spectral approximation parameter k as
long as the variance is not too large relative to the
mean.

Liblice | September 2014 – p. 55/57

Part III

Liblice | September 2014 – p. 56/57

Stochastic Galerkin and h-p adaptivity

What’s new?

Alex Bespalov, Catherine Powell & David Silvester.
A posteriori error estimation for parametric operator
equations with applications to PDEs with random data.
SIAM J. Sci. Comput, 36:A339–A363, 2014.

Liblice | September 2014 – p. 57/57

http://eprints.ma.man.ac.uk/1967/

Stochastic Galerkin and h-p adaptivity

What’s new?

Alex Bespalov, Catherine Powell & David Silvester.
A posteriori error estimation for parametric operator
equations with applications to PDEs with random data.
SIAM J. Sci. Comput, 36:A339–A363, 2014.

What’s next?

• ♥ including local refinement in space

♥♥ designing a practical adaptive strategy

♥♥♥ stopping criteria for the linear solver

Liblice | September 2014 – p. 57/57

http://eprints.ma.man.ac.uk/1967/

	part I $|$ 1991
	part II $|$ 2011
	Outline of the talk ldots
	
	References I
	Buoyancy driven flow
	Buoyancy driven flow

	``Smart Integrator'' (SI)
	
	Trapezoidal Rule (TR)
time discretization
	Linearization
	Adaptive time stepping components
	Finite element matrix formulation
	Preconditioning strategy
	Schur complement approximation -- I
	Schur complement approximation -- II
	
	References II
	Steady-state flow with random data
	N--S example I: flow over a step
	N--S example II: flow around an obstacle
	 Stochastic discretisation methods
	 Stochastic discretisation methods

	
	Stochastic Galerkin discretisation I
	Stochastic Galerkin discretisation I

	Stochastic Galerkin discretisation II
	Stochastic Galerkin discretisation II

	Stochastic Galerkin discretisation III
	Ideal preconditioning
	Preconditioning I
	Preconditioning I

	Preconditioning II
	Preconditioning II

	Preconditioning III
	Flow over a step
	Typical GMRES iteration counts
	
	Stochastic Galerkin and h-p adaptivity
	Stochastic Galerkin and h-p adaptivity

