Efficient Solution of Parameterized Partial Differential Equations using Reduced-Order Models

Howard C. ElmanUniversity of Maryland at College Park

Collaborators: **Qifeng Liao**, MIT **Virginia Forstall**, Maryland

- Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
 - Problem Definition
 - Solution Methods
- 2 Reduced Basis Methods
 - Offline Computations
 - Reduced Problem
 - Reduced Problem: Costs
 - Reduced Problem: Capturing Features of Model
- 3 Reduced Basis + Sparse Grid Collocation
 - Introduction
 - Performance for Diffusion Equation
 - Application to the Navier-Stokes Equations
- Iterative Solution of Reduced Problem
 - Introduction
 - Implementation
 - Performance
 - Trends and Analysis
- Concluding Remarks

Partial Differential Equations with Uncertain Coefficients

Examples:

Diffusion equation: $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$

Concluding Remarks

Navier-Stokes equations:
$$-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla \vec{u}) + (\vec{u} \cdot \nabla)\vec{u} + \nabla p = \vec{f}$$

 $\nabla \cdot \vec{u} = 0$

Posed on $\mathcal{D} \subset \mathbb{R}^d$ with suitable boundary conditions

Sources: models of diffusion in media with uncertain permeabilities multiphase flows

Uncertainty / randomness:

 $a = a(\mathbf{x}, \boldsymbol{\xi})$ is a random field: for each fixed $\mathbf{x} \in \mathcal{D}$, $a(\mathbf{x}, \boldsymbol{\xi})$ is a random variable depending on m random parameters ξ_1, \ldots, ξ_m In this study: $a(\mathbf{x}, \boldsymbol{\xi}) = a_0(\mathbf{x}) + \sum_{r=1}^m a_r(\mathbf{x}) \boldsymbol{\xi}_r$

Possible sources:

Karhunen-Loève expansion

or

Piecewise constant coefficients on \mathcal{D}

The Stochastic Galerkin Method

Standard weak diffusion problem: find $u \in H^1_E(\mathcal{D})$ s.t.

Concluding Remarks

$$a(u,v) = \int_{\mathcal{D}} a \nabla u \cdot \nabla v dx = \int_{\mathcal{D}} f v dx \quad \forall v \in H_0^1(\mathcal{D})$$

Extended (stochastic) weak formulation: find $u \in H^1_E(\mathcal{D}) \otimes L_2(\Omega)$ s.t.

$$\underbrace{\int_{\Omega} \int_{\mathcal{D}} a \nabla u \cdot \nabla v \, dx \, dP(\Omega)}_{\int_{\Gamma} \int_{\mathcal{D}} f \, v \, dx \, dP(\Omega)} = \underbrace{\int_{\Omega} \int_{\mathcal{D}} f \, v \, dx \, dP(\Omega)}_{\int_{\Gamma} \int_{\mathcal{D}} a(\mathbf{x}, \boldsymbol{\xi}) \, \nabla u \cdot \nabla v \, d\mathbf{x} \, \rho(\boldsymbol{\xi}) \, d\boldsymbol{\xi}}_{\rho(\boldsymbol{\xi}) \, d\boldsymbol{\xi}} \quad \int_{\Gamma} \int_{\mathcal{D}} f \, v \, dx \, \rho(\boldsymbol{\xi}) \, d\boldsymbol{\xi} \quad (\Gamma = \boldsymbol{\xi}(\Omega))$$

- **Discretization** in physical space: $\mathcal{S}_{E}^{(h)} \subset H_{E}^{1}(\mathcal{D})$, basis $\{\phi_{j}\}_{j=1}^{N}$ Example: piecewise linear "hat functions"
- **Discretization** in space of random variables: $\mathcal{T}^{(p)} \subset L^2(\Gamma)$, basis $\{\psi_\ell\}_{\ell=1}^M$ Example: m-variate polynomials in $\boldsymbol{\xi}$ of total degree p

Discrete solution:

$$u_{hp}(\mathbf{x}, \boldsymbol{\xi}) = \sum_{i=1}^{N} \sum_{\ell=1}^{M} u_{j\ell} \phi_j(\mathbf{x}) \psi_{\ell}(\boldsymbol{\xi})$$

Requires solution of large coupled system

Concluding Remarks

Matrix (right):
$$G_0 \otimes A_0 + \sum_{r=1}^m G_r \otimes A_r$$

Stochastic dimension: $M = \binom{m+p}{p}$

(Ghanem, Spanos, Babuška, Deb, Oden, Matthies, Keese, Karniadakis, Xue, Schwab, Todor)

The Stochastic Collocation Method

Monte-Carlo (sampling) method: find $u \in H^1_E(\mathcal{D})$ s.t.

Concluding Remarks

$$\int_{\mathcal{D}} a(\mathbf{x}, \boldsymbol{\xi}^{(k)}) \nabla u \cdot \nabla v dx \quad \text{for all } v \in H^1_{E_0}(\mathcal{D})$$

for a collection of samples $\{\boldsymbol{\xi}^{(k)}\}\in L^2(\Gamma)$

Collocation (Xiu, Hesthaven, Babuška, Nobile, Tempone, Webster) Choose $\{\boldsymbol{\xi}^{(k)}\}\$ in a special way (sparse grids), then construct discrete solution $u_{hp}(\mathbf{x}, \boldsymbol{\xi})$ to interpolate $\{u_k(\mathbf{x}, \boldsymbol{\mathcal{E}}^{(k)})\}$

Structure of collocation solution:

$$u_{hp}(\mathbf{x}, \boldsymbol{\xi}^{(k)}) := \sum_{\boldsymbol{\xi}^{(k)} \in \Theta_n} u_c(\mathbf{x}, \boldsymbol{\xi}^{(k)}) L_{\boldsymbol{\xi}^{(k)}}(\boldsymbol{\xi})$$

Advantages (vs. stochastic Galerkin):

- decouples algebraic system (like MC)
- applies in a straightforward way to nonlinear random terms

Properties of These Methods

For both Galerkin and collocation

- Each computes a discrete function u_{hp}
- Moments of u estimated using moments of u_{hp} (cheap)

Concluding Remarks

- Convergence: $||E(u) E(u_{hp})||_{H_1(\mathcal{D})} \le c_1 h + c_2 r^p$, r < 1 Exponential in polynomial degree
- Contrast with Monte Carlo: Perform N_{MC} (discrete) PDE solves to obtain samples $\{u_h^{(s)}\}_{s=1}^{N_{MC}}$ Moments from averaging, e.g., $\hat{E}(u_h) = \frac{1}{N_{MC}} \sum_{s=1}^{N_{MC}} u_h^{(s)}$ Error $\sim 1/\sqrt{N_{MC}}$

One other thing: "p" has different meaning for Galerkin and collocation

• **Disadvantage of collocation:** For comparable accuracy # stochastic dof (collocation) $\approx 2^p$ (# stochastic dof (Galerkin))

Representative Comparison for Diffusion Equation

Representative comparative performance (E., Miller, Phipps, Tuminaro)

Using mean-based preconditioner for Galerkin system Kruger, Pellisetti, Ghanem Le Maître, et al., E. & Powell

Question: Can we reduce costs of collocation?

- Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
- Reduced Basis Methods
 - Offline Computations
 - Reduced Problem
 - Reduced Problem: Costs
 - Reduced Problem: Capturing Features of Model
- 3 Reduced Basis + Sparse Grid Collocation
- 4 Iterative Solution of Reduced Problem
- **5** Concluding Remarks

Reduced Basis Methods

Starting point: Parameter-dependent PDE $\mathcal{L}_{\xi}u = f$

In examples given: $\mathcal{L}_{\xi} = -\nabla \cdot (a_0 + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(\mathbf{x}) \xi_r) \nabla$

Discretize: Discrete system $\mathcal{L}_{h,\xi}(u_h) = f$

Algebraic system $\mathcal{F}_{\xi}(\mathbf{u}_h) = 0 \ (A_{\xi}\mathbf{u}_h = \mathbf{f})$ of order N

Complication:

Expensive if many realizations (samples of ξ) are required

Idea (Patera, Boyaval, Bris, Lelièvre, Maday, Nguyen, ...):

Solve the problem on a reduced space

That is: by some means, choose $\boldsymbol{\xi}^{(1)}, \boldsymbol{\xi}^{(2)}, \dots, \boldsymbol{\xi}^{(n)}, \ n \ll N$

Solve
$$\mathcal{F}_{\boldsymbol{\xi}^{(i)}}(u_h^{(i)}) = 0$$
, $u_h^{(i)} = u_h(\cdot, \boldsymbol{\xi}^{(i)})$, $i = 1, \dots, n$

For other ξ , approximate $u_h(\cdot,\xi)$ by $\tilde{u}_h(\cdot,\xi) \in span\{u_h^{(1)},\ldots,u_h^{(n)}\}$

Terminology: $\{u_h^{(1)}, \dots, u_h^{(n)}\}\$ called **snapshots**

Offline Computations

```
Strategy for generating a basis / choosing snapshots (Patera, et al.):
          For \tilde{u}_h(\cdot, \xi) \approx u_h(\cdot, \xi) (equivalently, \tilde{\mathbf{u}}_{\xi} \approx \mathbf{u}_{\xi}), use an
          error indicator \eta(\tilde{u}_h) \approx ||e_h||, e_h = u_h - \tilde{u}_h
          Given: a set of candidate parameters \mathcal{X} = \{\xi\},
                         an initial choice \boldsymbol{\xi}^{(1)} \in \mathcal{X}, and \boldsymbol{u}^{(1)} = \boldsymbol{u}(\cdot, \boldsymbol{\xi}^{(1)})
          Set Q = \mathbf{u}^{(1)}
          while \max_{\boldsymbol{\xi} \in \mathcal{X}} (\eta(\tilde{u}_h(\cdot, \boldsymbol{\xi}))) > \tau
                 compute \tilde{u}_h(\cdot, \boldsymbol{\xi}), \eta(\tilde{u}_h(\cdot, \boldsymbol{\xi})), \forall \boldsymbol{\xi} \in \mathcal{X}
                                                                                                     % use current reduced
                 let \boldsymbol{\xi}^* = \operatorname{argmax}_{\boldsymbol{\xi} \in \mathcal{X}} \left( \eta(\tilde{u}_h(\cdot, \boldsymbol{\xi})) \right)
                                                                                                      % basis
                 if \eta(\tilde{u}_h(\cdot, \boldsymbol{\xi}^*)) > \tau then
                        augment basis with u_h(\cdot, \xi^*), update Q with \mathbf{u}_{\xi^*}
                 endif
          end
```

Potentially expensive, but viewed as "offline" preprocessing "Online" simulation done using reduced basis

For set of candidate parameters $\mathcal{X} = \{\xi\}$:

- Greedy search (Patera, et al.):
 Search over large set of parameters {\$\xi\$}
 May be randomly or systematically chosen
- Optimization methods (Bui-thanh, Willcox, Ghattas):
 Find \(\xi\$ that minimizes error estimator
 May need derivative information
- Not a concern in today's setting we will use sparse grids

Reduced Problem

For linear problems, matrix form:

Coefficient matrix A_{ξ} , nodal coefficients \mathbf{u}_h , $\tilde{\mathbf{u}}_h$, $\mathbf{u}^{(1)}$, ... $\mathbf{u}^{(n)}$ $Q = \text{orthogonal matrix whose columns span space spanned by } {<math>\mathbf{u}^{(i)}$ }

Galerkin condition: make residual orthogonal to spanning space

$$r = f - A_{\xi} \tilde{\mathbf{u}}_{\xi} = f - A_{\xi} Q \mathbf{y}_{\xi}$$
 orthogonal to Q

Result is **reduced problem**: Galerkin system of order $n \ll N$:

$$[Q^T A Q] \mathbf{y}_{\boldsymbol{\xi}} = Q^T f, \quad \tilde{\mathbf{u}}_{\boldsymbol{\xi}} = Q \mathbf{y}_{\boldsymbol{\xi}}$$

Goals: Reduced solution should

- be available at significantly lower cost
- capture features of the model

How are costs reduced?

- Matrix A of order N
- Reduced matrix Q^TAQ of order $n \ll N$
- Solving reduced problem is cheap for small n
- Note: making assumption that \mathcal{L}_{ξ} is affinely dependent on ξ

$$\mathcal{L}_{\xi} = \mathcal{L}_{0} + \sum_{i=1}^{k} \phi_{i}(\xi) \mathcal{L}_{i}$$

$$\Rightarrow A_{\xi} = A_{0} + \sum_{i=1}^{k} \phi_{i}(\xi) A_{i}$$

$$\Rightarrow Q^{T} A_{\xi} Q = \underbrace{Q^{T} A_{0} Q}_{\text{part of offline computation}}^{k} Q^{T} A_{i} Q$$

True for example seen so far, $\phi_i(\xi) = \xi_i$

- Means: constructing reduced matrix for new ξ is cheap
- Analogue for nonlinear problems is more complex

N.B. One other important issue:

Error indicator must be inexpensive to compute

In present study: use residual indicator

$$\eta_{\mathcal{Q}}(\boldsymbol{\xi}) \equiv \frac{\|A_{\boldsymbol{\xi}}\tilde{\mathbf{u}}_{\boldsymbol{\xi}} - \mathbf{f}\|_2}{\|\mathbf{f}\|_2} = \frac{\|A_{\boldsymbol{\xi}}Q\mathbf{y}_{\boldsymbol{\xi}} - \mathbf{f}\|_2}{\|\mathbf{f}\|_2}$$

Using affine structure $A_{\xi} = \sum_{i=1}^{k} \phi_i(\xi) A_i$, efficiency derives from

$$\|A_{\xi}Q\mathbf{y}_{\xi} - \mathbf{f}\|_{2}^{2} = \mathbf{y}_{\xi}^{T} \left(\sum_{i=1}^{K} \sum_{j=1}^{K} \phi_{i}\phi_{j} \underbrace{Q^{T}A_{i}^{T}A_{j}Q}_{\mathsf{Offline}} \right) \mathbf{y}_{\xi}$$

$$-2\mathbf{y}_{\boldsymbol{\xi}}^{T}\sum_{i=1}^{K}\left(\phi_{i}\underbrace{Q^{T}A_{i}^{T}\mathbf{f}}_{\text{Offline}}\right)+\underbrace{\mathbf{f}^{T}\mathbf{f}}_{\text{Offline}}$$

Reduced Problem: Capturing Features of Model

Consider benchmark problems:

Diffusion equation $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$ in \mathbb{R}^2

Piecewise constant diffusion coefficient parameterized as a random variable $\boldsymbol{\xi} = [\xi_1, \cdots, \xi_{N_D}]^T$ independently and uniformly distributed in $\Gamma = [0.01, 1]^{N_D}$

(a) Case 1: N_D subdomains (b) Case 2: $N_D = \tilde{N} \times \tilde{N}$ subdomains

Does reduced basis capture features of model?

To assess this: consider

Full snapshot set, set of snapshots for all possible parameter values:

$$S_{\Gamma} := \{u_h(\cdot, \boldsymbol{\xi}), \, \boldsymbol{\xi} \in \Gamma\}$$

Finite snapshot set, for finite $\Theta \subset \Gamma$:

$$S_{\Theta} := \{u_h(\cdot, \boldsymbol{\xi}), \, \boldsymbol{\xi} \in \Theta\}$$

Question:

How many samples $\{\xi\}$ / $\{u_h(\cdot,\xi)\}$ are needed to accurately represent the features of S_{Γ} ?

Experiment: to gain insight into this, estimate "rank" of \mathcal{S}_{Γ} Generate a large set Θ of samples of $\boldsymbol{\xi}$ Generate the finite snapshot set S_{Θ} associated with Θ Construct the matrix S_{Θ} of coefficient vectors $\mathbf{u}_{\boldsymbol{\xi}}$ from \mathcal{S}_{Θ} Compute the rank of S_{Θ}

Results follow. Used 3000 samples

Experiment was repeated ten times with similar results

Offline Computations Reduced Problem Reduced Problem: Costs Reduced Problem: Capturing Features of Model

Estimated sizes of reduced basis for two benchmark problems

	N_D Grid	2	3	4	5	6	7	8	9 10
Case 1	$33^2 = 1089$ $65^2 = 4225$ $129^2 = 16641$	3 3 3	12 12 12	18 18 18	30 30 28	40 40 39	53 48 48	55	76 84 70 87 72 81
Case 2	N_D Grid	4	9		16	25	36	49	64
	$33^2 = 1089$ $65^2 = 4225$ $129^2 = 16641$	27 28 28	121 148 153	2	93 90 11	257 465 497	321 621 746	385 769 1016	449 897 1298

From: E & Liao, SIAM/ASA J. on Uncertainty Quantification 1, 2013

- 1 Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
- Reduced Basis Methods
- 3 Reduced Basis + Sparse Grid Collocation
 - Introduction
 - Performance for Diffusion Equation
 - Application to the Navier-Stokes Equations
- 4 Iterative Solution of Reduced Problem
- Concluding Remarks

Combine Reduced Basis with Sparse Grid Collocation

Concluding Remarks

Recall collocation solution

$$u_{hp}(x, \boldsymbol{\xi}^{(k)}) = \sum_{\boldsymbol{\xi}^{(k)} \in \Theta_g} u_c(x, \boldsymbol{\xi}^{(k)}) L_{\boldsymbol{\xi}^{(k)}}(\boldsymbol{\xi})$$
 (1)

Goal: Reduce cost of collocation via

- 1. Use sparse grid collocation points as candidate set \mathcal{X}
- 2. Use reduced solution as coefficient $u_c(\cdot, \boldsymbol{\xi}^{(k)})$ whenever possible

```
for each sparse grid level p
                                                                Algorithm
     for each point \mathcal{E}^{(k)} at level p
           compute reduced solution u_R(\cdot, \boldsymbol{\xi}^{(k)})
           if \eta(u_R(\cdot,\boldsymbol{\xi}^{(k)})) < \tau, then
                 use u_R(\cdot, \boldsymbol{\xi}^{(k)}) as coefficient u_C(\cdot, \boldsymbol{\xi}^{(k)}) in (1)
           else
                 compute snapshot u_h(\cdot, \boldsymbol{\xi}^{(k)}), use it as u_c(\cdot, \boldsymbol{\xi}^{(k)}) in (1)
                 augment reduced basis with u_h(\cdot, \boldsymbol{\xi}^{(k)}), update Q with \mathbf{u}_{\boldsymbol{\xi}^{(k)}}
           endif
     end
end
```

Number of Full System Solves, Diffusion Equation

Does this work? Look at diffusion problem Various sparse grid levels p (q = p + M)

Case 1, 5×1 subdomains, 65×65 grid, rank=30

q	6	7	8	9	10	11	12	13	16
$ \Theta_q $	11	61	241	801	2433	7K	19K	52K	870K
10^{-3}	10	9	0	0	0	0	0	0	0
10-4	10_	_11_	_ 1	_ 0 _	0	_ 0	_ 0 _	_ 0_	0
10^{-5}	10	13	0	0	0	0	0	0	0

Case 1, 9×1 subdomains, 65×65 grid, rank=70, $tol = 10^{-4}$

case I, s	· + 5u	Daoma	1113, 00 /	· 00 Bii	a, ranne i	0, 10,	. •	
q	10	11	12	13	14	15	16	17
$ \Theta_{ ho} $	19	181	1177	6001	26017	100897	361249	1218049
N _{full solve}	18	34	2	1	1	0	0	0

Number of Full System Solves, Diffusion Equation

Concluding Remarks

Case 2, 2×2 subdomains, 65×65 grid, rank=28

q	5	6	7	8	9	10	11	12	15
$ \Theta_q $	9	41	137	401	1105	2.9K	7.5K	18.9K	272K
10^{-3}	7	11	3	0	0	0	0	0	0
10^{-4}	7	12	3	0	0	0	0	0	0
10^{-5}	7	13	2	3	0	0	0	0	0

Case 2, 4×4 subdomains, 65×65 grid, rank=290, $tol = 10^{-4}$

q	17	18	19	20	21
$ \Theta_q $	33	545	6049	51137	353729
$N_{full\ solve}$	32	168	27	3	4

Refined Assessment of Accuracy

Examine error (vs. reference solution) in estimates of

Concluding Remarks

Expected values:

Full collocation
$$\epsilon_h \equiv \left\| \tilde{\mathbb{E}} \left(u_q^{hsc} \right) - \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0$$

Reduced collocation
$$\epsilon_R \equiv \left\| \tilde{\mathbb{E}} \left(u_q^{\textit{rsc}} \right) - \tilde{\mathbb{E}} \left(u_r^{\textit{hsc}} \right) \right\|_0 / \left\| \tilde{\mathbb{E}} \left(u_r^{\textit{hsc}} \right) \right\|_0$$

Variances:

Full collocation
$$\zeta_h \equiv \left\| \tilde{\mathbb{V}} \left(u_q^{hsc} \right) - \tilde{\mathbb{V}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{V}} \left(u_r^{hsc} \right) \right\|_0$$

Reduced collocation
$$\zeta_R \equiv \left\| \tilde{\mathbb{V}} \left(u_q^{rsc} \right) - \tilde{\mathbb{V}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{V}} \left(u_r^{hsc} \right) \right\|_0$$

Concluding Remarks

Errors in Expected Value

Case 1: 5×1 vertical subdomains

Case 2: 2×2 square subdomains

Comments:

Results for reduced/full systems are identical Results also compare favorably with Monte Carlo

Errors in Variance

Case 1: 5×1 vertical subdomains

Case 2: 2×2 square subdomains

Comments:

Trends for reduced/full systems are similar

Noteworthy because error indicator is not effective as a fem error estimator

Diffusion problem with truncated Karhunen-Loève expansion

Diffusion coefficient
$$a_0 + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(\mathbf{x}) \xi_r$$

From covariance function
$$c(\mathbf{x}, \mathbf{y}) = \sigma \exp\left(-\frac{|x_1 - y_1|}{c} - \frac{|x_2 - y_2|}{c}\right)$$

Smaller correlation length $c \sim$ more terms mExamine c = 4, m = 4 and c = 2.5, m = 8.

Comments on Costs

One difference from "pure" reduced basis method:

"Offline" and "Online" steps are not as clearly separated

Statement of costs of collocation:

```
Full: (# of collocation points) × (cost of full system solve)

Reduced: (# of collocation points where error tolerance is met)

× (cost of reduced system solve) +

(# of collocation points where error tolerance is not met)

× (cost of augmenting reduced basis and updating offline quantities).
```

For Reduced Collocation:

Red costs depend on N, large-scale parameter Favors reduced if many collocation points use reduced model

Application to the Navier-Stokes Equations

$$\begin{aligned} -\nu\left(\cdot,\boldsymbol{\xi}\right) \nabla^{2} \vec{u}\left(\cdot,\boldsymbol{\xi}\right) + \vec{u}\left(\cdot,\boldsymbol{\xi}\right) \cdot \nabla \vec{u}\left(\cdot,\boldsymbol{\xi}\right) + \nabla p\left(\cdot,\boldsymbol{\xi}\right) &= 0 & \text{in} \quad D \times \Gamma \\ \nabla \cdot \vec{u}\left(\cdot,\boldsymbol{\xi}\right) &= 0 & \text{in} \quad D \times \Gamma \\ \vec{u}\left(\cdot,\boldsymbol{\xi}\right) &= \vec{g}\left(\cdot,\boldsymbol{\xi}\right) & \text{on} \quad \partial D \times \Gamma \end{aligned}$$

Possible sources of uncertainty:

- viscosity $\nu(x, \xi)$ (in multiphase flow)
- boundary conditions $g(x, \xi)$

Picard iteration (in weak form), for any realization of parameter ξ :

$$\begin{array}{lll} (\nu\nabla\delta\vec{u},\nabla\vec{v}) & + & (\vec{u}^{\ell}\cdot\nabla\delta\vec{u},\vec{v}) - (\delta p,\nabla\vec{v}) \\ & = & -(\nu\nabla\vec{u}^{\ell},\nabla\vec{v}) - (\vec{u}^{\ell}\cdot\nabla\vec{u}^{\ell},\vec{v}) + (p^{\ell},\nabla\vec{v}) & \forall \vec{v}\in X_0^h \\ (\nabla\cdot\delta\vec{u},q) & = & -(\nabla\cdot\vec{u}^{\ell},q) & \forall q\in M^h \\ & \vec{u}^{\ell+1} = \vec{u}^{\ell} + \delta\vec{u}, & p^{\ell+1} = p^{\ell} + \delta p. \end{array}$$

Result: Matrix equation

$$\left(\begin{array}{cc} A_{\boldsymbol{\xi}} + N_{\mathbf{u}^{\ell},\,\boldsymbol{\xi}} & B^{T} \\ B & 0 \end{array}\right) \left(\begin{array}{c} \delta \mathbf{u} \\ \delta \mathbf{p} \end{array}\right) = \left(\begin{array}{c} \mathbf{f}_{\mathbf{u}^{\ell},\mathbf{p}^{\ell},\,\boldsymbol{\xi}}^{r} \\ \mathbf{g}_{\mathbf{u}^{\ell},\,\mathbf{p}^{\ell},\,\boldsymbol{\xi}}^{r} \end{array}\right)$$

Using div-stable Q_2 - P_{-1} element

Concluding Remarks

Reduced Problem: Given (matrix) representations Q_u , Q_p of velocity/pressure bases:

$$\begin{pmatrix} Q_{u}^{T}(A_{\xi} + N_{\mathbf{u}^{\ell}, \xi})Q_{u} & Q_{u}^{T}B^{T}Q_{p} \\ Q_{p}^{T}BQ_{u} & 0 \end{pmatrix} \begin{pmatrix} \delta \mathbf{w} \\ \delta \mathbf{y} \end{pmatrix} = \begin{pmatrix} Q_{u}^{T}\mathbf{f}_{\mathbf{u}^{\ell}, \mathbf{p}^{\ell}, \xi}^{r} \\ Q_{p}^{T}\mathbf{g}_{\mathbf{u}^{\ell}, \mathbf{p}^{\ell}, \xi}^{r} \end{pmatrix}$$
$$\delta \mathbf{u} \approx Q_{u}\delta \mathbf{w}, \quad \delta \mathbf{p} \approx Q_{p}\delta \mathbf{y}$$

Additional Requirements

Stability requirements As above, generate snapshots

Concluding Remarks

$$\left\{ \left(\begin{array}{c} \vec{u} \left(\cdot, \boldsymbol{\xi}^{(1)} \right) \\ p \left(\cdot, \boldsymbol{\xi}^{(1)} \right) \end{array} \right), \dots, \left(\begin{array}{c} \vec{u} \left(\cdot, \boldsymbol{\xi}^{(n)} \right) \\ p \left(\cdot, \boldsymbol{\xi}^{(n)} \right) \end{array} \right) \right\}$$

Complication: reduced solution does not automatically satisfy inf-sup condition

Fix: (Quarteroni & Rozza): Supplement velocity basis with supremizers $\vec{r}\left(\cdot, \boldsymbol{\xi}^{(k)}\right) \text{ that satisfy}$ $\vec{r}\left(\cdot, \boldsymbol{\xi}^{(k)}\right) = \arg\sup_{\vec{v} \in \mathcal{X}_n^h} \frac{\left(p\left(\cdot, \boldsymbol{\xi}^{(k)}\right), \nabla \cdot \vec{v}\right)}{|\vec{v}|_1}.$

Result: Dim(reduced velocity space) = $2 \times dim(reduced pressure space)$

Treatment of nonlinearities

• Recall: affine structure of linear operators $A_{\xi} = \sum_{i=1}^{k} \phi_i(\xi) A_i$ \rightarrow offline construction $Q^T A_{\xi} Q = \sum_{i=1}^{k} \phi_i(\xi) [Q^T A_i Q]$

Concluding Remarks

• At step ℓ of reduced Picard iteration, reduced velocity iterate is $\mathbf{u}^\ell = Q_{\ell} \mathbf{w}^\ell$

Convection operator has the form

$$ec{u}^{\ell}\cdot
abla=\sum_{i=1}^{n}w_{i}^{\ell}\left(ec{q}^{(i)}\cdot
abla
ight)$$

Equivalently, convection matrix is $N = \sum_{i=1}^{n} N_i y_i$

$$\Rightarrow Q_u^T N Q_u = \sum_{i=1}^n \underbrace{[Q_u^T N_i Q_u]}_{w_i^\ell} w_i^\ell$$

Offline computation cost $O(n^2N) \times n$

Navier-Stokes with Uncertain Viscosity

Concluding Remarks

$$\begin{split} -\nu \left(\cdot, \boldsymbol{\xi} \right) \nabla^2 \vec{u} \left(\cdot, \boldsymbol{\xi} \right) + \vec{u} \left(\cdot, \boldsymbol{\xi} \right) \cdot \nabla \vec{u} \left(\cdot, \boldsymbol{\xi} \right) + \nabla p \left(\cdot, \boldsymbol{\xi} \right) &= 0 \quad \text{in} \quad D \times \Gamma \\ \nabla \cdot \vec{u} \left(\cdot, \boldsymbol{\xi} \right) &= 0 \quad \text{in} \quad D \times \Gamma \\ \vec{u} \left(\cdot, \boldsymbol{\xi} \right) &= \vec{g} \left(\cdot, \boldsymbol{\xi} \right) \quad \text{on} \quad \partial D \times \Gamma \end{split}$$

Driven cavity problem with

variable random viscosity $\nu = [\nu_1, \nu_2, \nu_3]^T$ piecewise constant on subdomains independently and uniformly distributed in $[0.01, 1]^3$

Number of full system solves

	q	3	4	5	6	7	8	9	
tol	Θ_q Grids		7	25	69	177	441	1073	Total
10^{-4}	33 × 33	1	6	17	23	26	26	25	124
10^{-4}	65×65	1	6	16	20	21	21	18	103
10^{-5}	33×33	1	6	18	29	40	44	41	179
10^{-5}	65×65	1	6	18	27	32	40	32	156

Inf-sup constants γ_R^2 for reduced problem ($\gamma_h^2 = .2137$)

N _{II}	2	4	20	50	100	200
γ_R^2	0.2431	0.2430	0.2374	0.2359	0.2327	0.2292

Assessment of errors

- 1 Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
- Reduced Basis Methods
- 3 Reduced Basis + Sparse Grid Collocation
- 4 Iterative Solution of Reduced Problem
 - Introduction
 - Implementation
 - Performance
 - Trends and Analysis
- Concluding Remarks

Reduced Problem: Look Closely at Costs

Key requirement: Solution of reduced problem is cheap

Reduced problem and solution:

$$[Q^T A_{\xi} Q] \mathbf{y}_{\xi} = Q^T \mathbf{f}, \quad \tilde{\mathbf{u}}_{\xi} = Q \mathbf{y}_{\xi}$$

Dense system of order $k \ll N$
Cost of solution: $O(k^3)$

• Full problem:

$$A_{\xi}\mathbf{u}_{\xi} = \mathbf{f}$$

Sparse discrete PDE of order N
Cost of solution by multigrid: $O(N)$

Conventional wisdom:

Not so clear when:

$$k \ll N$$
 but $k^3 \ll N$

Iterative Solution of Reduced Problem

- Reduced problem: $[Q^T A_{\xi} Q] \mathbf{y}_{\xi} = Q^T \mathbf{f}$ Solve by iterative method (e.g., conjugate gradient) Seek **preconditioner** $P \approx Q^T A_{\xi} Q$
- Reformulate reduced problem as a saddle-point problem:

$$\left[\begin{array}{cc} A_{\boldsymbol{\xi}}^{-1} & Q \\ Q^{T} & 0 \end{array}\right] \left[\begin{array}{c} \mathbf{v} \\ \mathbf{y}_{\boldsymbol{\xi}} \end{array}\right] = \left[\begin{array}{c} \mathbf{0} \\ Q^{T} \mathbf{f} \end{array}\right]$$

Reduced matrix = **Schur complement operator** *S*

• Approximate Schur complement:

$$\hat{P}_S := (Q^T Q)(Q^T A_{\xi}^{-1} Q)^{-1} (Q^T Q) = (Q^T A_{\xi}^{-1} Q)^{-1}$$

- Approximate A_{ξ}^{-1} using multigrid: $P_{A_{\xi}}^{-1} \longrightarrow P_{S} = (Q^{T} P_{A_{\xi}}^{-1} Q)^{-1}$
- ullet For preconditioning: require action of $P_{\mathcal{S}}^{-1} = Q^T P_{A_{\mathcal{E}}}^{-1} Q$

Implementation

For parameter ξ :

• Construct reduced matrix of order $k \ll N$

$$Q^{\mathsf{T}} A_{\boldsymbol{\xi}} Q = Q^{\mathsf{T}} A_0 Q + \sum_{i=1}^m \phi_i(\boldsymbol{\xi}) [Q^{\mathsf{T}} A_i Q]$$

- Explicitly construct preconditioning operator $P_S^{-1} = Q^T P_{A_{\xi}}^{-1} Q$ N.B. not practical, "online," costs O(N)
- Alternative: use a single ξ_0 , $P_{A_{\xi_0}}$ for all A_{ξ} Done once: Apply MG to each column of $Q \longrightarrow P_{A_{\xi_0}}^{-1} Q$ Premultiply result by Q^T Produces (dense) preconditioning operator of order k
- Variant: use a finite fixed set $\{\xi_j\}$ to construct $\{P_{S,j}^{-1}\}$ For A_{ξ} , use $P_{S,j}$ for ξ_j closest to ξ
- Cost per step of matrix operations $O(k^2)$, $k \ll N$

Experimental Performance

For all experiments:

- PDE posed on a square domain
- Spatial discretization: Bilinear fem
- Error indicator: Matrix residual norm

$$\frac{\|\mathbf{f} - A_{\boldsymbol{\xi}}\tilde{\mathbf{u}}\|_2}{\|\mathbf{f}\|_2} \le \tau, \quad \tau = 10^{-8}$$

• Iteration stopping test:

$$\frac{\|Q^T\mathbf{f} - Q^TA_{\boldsymbol{\xi}}Q\mathbf{y}_i\|_2}{\|Q^T\mathbf{f}\|_2} \leq \frac{\tau}{10},$$

- MG preconditioner: PyAMG (Bell, Olson, Schroder)
- Test: Solve 100 randomly generated systems

Estimated sizes of reduced basis for two benchmark problems

N_D Grid	2	3	4	5	6	7	8	9 10
$33^2 = 1089$	3	12	18	30	40	53	55	76 84
$65^2 = 4225$	3	12	18	30	40	48	55	70 87
$129^2 = 16641$	3	12	18	28	39	48	55	72 81
N_D Grid	4	9		16	25	36	49	64
$33^2 = 1089$	27	121		193	257	321	385	449
$65^2 = 4225$	28	148	1	290	465	621	769	897
$129^2 = 16641$	28	153		311	497	746	1016	1298
	Grid $33^{2} = 1089$ $65^{2} = 4225$ $129^{2} = 16641$ N_{D} Grid $33^{2} = 1089$ $65^{2} = 4225$	Grid $33^{2} = 1089 3$ $65^{2} = 4225 3$ $129^{2} = 16641 3$ Grid $N_{D} 4$ $33^{2} = 1089 27$ $65^{2} = 4225 28$	Grid $33^2 = 1089$ $65^2 = 4225$ $129^2 = 16641$ $3 = 1089$ $3 = 1089$ $33^2 = 1089$ $34^2 = 1089$	Grid $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Benchmark problem 1:

Diffusion equation
$$-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$$
 on $[0, 1] \times [0, 1]$ $a(x, \boldsymbol{\xi}) = \mu(x) + \sum_{i=1}^{m} \sqrt{\lambda_i} a_i(x)\xi_i$

Concluding Remarks

a derived from covariance function

$$C(x,y) = \sigma^2 exp\left(-\frac{|x_1 - y_1|}{c} - \frac{|x_2 - y_2|}{c}\right)$$

$$\{\xi_r\}$$
 uniform on [-1,1], $\sigma=$.5, $\mu\equiv 1$

Benchmark problem 1

(P)CG terations m = # parameters k =size of reduced basis

N	С	3	1.5	0.75	0.375
'*	m	7	17	65	325
	k	97	254	607	982
	None	60.1	90.7	101.7	103.9
33 ²	Single	10.0	9.3	9.5	8.9
	Online	10.0	9.0	9.0	8.0
	k	100	269	699	1679
	None	68.8	129.3	175.5	200.3
65 ²	Single	10.0	10.0	8.5	8.7
	Online	10.0	9.8	8.0	8.0
	k	102	269	729	1808
	None	70.1	149.5	252.5	339.1
129 ²	Single	11.2	14.6	12.9	11.0
	Online	11.0	14.8	13.0	11.0
	k	102	275	740	1846
	None	70.4	154.0	293.6	473.7
257 ²	Single	11.0	13.7	15.4	13.5
	Online	11.0	13.0	15.0	13.0

Concluding Remarks

Benchmark Problem 1: CPU Times

N	С		3	1.5	0.75	0.375
7.0	m (# parameters)		7	17	65	325
	k (bas	is size)	97	254	607	982
33 ²	Full	AMG	0.0202	0.0205	0.0214	0.0228
33	Reduced	Direct	0.0003	0.0016	0.0181	0.0699
	Reduced	Iterative	0.0004	0.0008	0.0036	0.0103
	k		100	269	699	1679
65 ²	Full	AMG	0.1768	0.1961	0.1947	0.1974
05	Reduced	Direct	0.0003	0.0021	0.0262	0.3207
	Reduced	Iterative	0.0004	0.0010	0.0044	0.0252
	ŀ	(102	269	729	1808
129 ²	Full	AMG	0.1195	0.1286	0.1347	0.1443
129	Reduced	Direct	0.0003	0.0020	0.0287	0.4452
	Reduced	Iterative	0.0005	0.0013	0.0070	0.0449
	ŀ	(102	275	740	1846
257 ²	Full	AMG	0.3163	0.2988	0.3030	0.3778
231	Reduced	Direct	0.0004	0.0024	0.0302	0.4498
	Reduced	Iterative	0.0005	0.0012	0.0088	0.0619

• Benchmark problem 2:

Diffusion equation
$$-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$$
 on $[-1, 1] \times [-1, 1]$

Concluding Remarks

$$\begin{aligned} &a(x,\pmb{\xi}) = \textstyle\sum_{r=1}^m a_r(x)\xi_r\,, \ m = \tilde{n}^2\\ &\{\xi_r\} \ \text{uniform on } [0.1,1] \end{aligned}$$

Benchmark Problem 2: CG Iterations

	m	4	16	36	64	100
	k	27	193	321	449	577
	None	31.9	113.9	126.4	127.9	128
33 ²	Single	17.2	32.3	44.0	52.0	59.5
	Online	11.4	13.0	13.6	12.7	12.0
	k	29	309	625	897	1153
	None	42.3	234.1	254.9	258.3	256.4
65 ²	Single	20.1	38.2	47.0	54.8	64.2
	Online	14.3	17.0	18.2	18.9	18.9
	k	33	359	862	1519	2219
	None	60.3	432.9	493.6	519.2	518.9
129 ²	Single	24.2	37.5	47.6	58.1	64.9
	Online	19.1	19.0	22.0	24.1	25.2
	k	36	394	979	1789	2801
	None	82.0	808.9	976.8	1035.6	1037.3
257 ²	Single	30.4	44.0	50.9	62.2	71.1
	Online	25.1	25.8	25.7	27.8	29.7

Benchmark Problem 2: CPU Times

N	n	n	4	16	36	64	100
	A	k		193	321	449	577
33 ²	Full	AMG	0.0218	0.0203	0.0215	0.0210	0.0208
33	Reduced	Direct	0.0001	0.0010	0.0032	0.0073	0.0152
	Reduced	Iterative	0.0006	0.0019	0.0045	0.0090	0.0181
	A	(29	309	625	897	1153
65 ²	Full	AMG	0.1679	0.1601	0.1669	0.1811	0.1760
05	Reduced	Direct	0.0002	0.0026	0.0187	0.0543	0.1088
	Reduced	Iterative	0.0007	0.0034	0.0176	0.0458	0.0832
	A	(33	359	862	1519	2219
129 ²	Full	AMG	0.1134	0.1202	0.1357	0.1184	0.1194
129	Reduced	Direct	0.0002	0.0038	0.0461	0.2319	0.6659
	Reduced	Iterative	0.0009	0.0041	0.0364	0.1340	0.3060
	A	(36	394	979	1789	2801
257 ²	Full	AMG	0.3376	0.3519	0.3291	0.3365	0.3568
231	Reduced	Direct	0.0002	0.0051	0.0670	0.3555	1.2972
	Reduced	Iterative	0.0010	0.0060	0.0485	0.1928	0.5365

Trends and Analysis

- Iteration counts (for solving $Q^T A_{\xi} Q \mathbf{y} = Q^T \mathbf{f}$) are
 - essentially independent of spatial mesh size
 - essentially independent of number of parameters / size of reduced basis
 - hence, iterative solution costs ck^2
 - smaller than direct costs $(O(k^3))$ for all large k
- In comparison to full O(N) AMG solve:
 - for fixed number of parameters, reduced iterative solve cheaper for large N
 - for fixed N, full solve cheaper as number of parameters increases

For analysis: interested in bounds on Rayleigh quotient

$$\frac{(\mathbf{q}, Q^{T} A_{\xi} Q \mathbf{q})}{(\mathbf{q}, (Q^{T} P_{A_{\xi}}^{-1} Q)^{-1} \mathbf{q})} = \frac{(\mathbf{q}, Q^{T} A_{\xi} Q \mathbf{q})}{(\mathbf{q}, (Q^{T} A_{\xi}^{-1} Q)^{-1} \mathbf{q})} \frac{(\mathbf{q}, (Q^{T} A_{\xi}^{-1} Q)^{-1} \mathbf{q})}{(\mathbf{q}, (Q^{T} P_{A_{\xi}}^{-1} Q)^{-1} \mathbf{q})}$$
(1)

to establish bounds on iteration counts

(2): Bounded using spectral equivalence of A_{ξ} and MG approximation

$$eta_1 \leq rac{\left(\mathbf{v}, A_{\boldsymbol{\xi}} \mathbf{v}
ight)}{\left(\mathbf{v}, P_{A_{\boldsymbol{\xi}}} \mathbf{v}
ight)} \leq eta_2$$

(1): Work in progress

Eigenvalue distributions of $(Q^T A_{\xi}^{-1} Q)(Q^T A_{\xi} Q)$

• Benchmark problem 3:

Convection-diffusion-reaction equation:

$$-\nu \nabla^2 u + (\vec{w} \cdot \nabla) u + r(\mathbf{x}, \boldsymbol{\xi}) u = f$$

$$r(\mathbf{x}, \boldsymbol{\xi}) = \mu(\mathbf{x}) + \sum_{i=1}^{m} \sqrt{\lambda_i} r_i(\mathbf{x}) \xi_i$$

Concluding Remarks

r derived from covariance function

$$C(x,y) = \sigma^2 exp\left(-\frac{|x_1 - y_1|}{c} - \frac{|x_2 - y_2|}{c}\right)$$

$$\{\xi_r\}$$
 uniform on [-1,1], $\sigma=$.5, $\mu\equiv 1$

Benchmark Problem 3: BiCGStab Iterations

N	С	2	1	0.5
/ V	m	36	145	785
	k	210	421	798
33 ²	None	49.5	45.9	41.7
33	Single	8.2	7.0	6.1
	Online	8.3	45.9 7.0 7.0 372 87.4 10.0 10.0 265	6.0
	k	178	372	952
65 ²	None	84.5	87.4	86.5
05	Single	12.0	10.0	9.0
	Online	12.0	10.0	9.0
	k	138	265	749
129 ²	None	122.8	153.0	176.2
129	Single	12.9	13.1	13.0
	Online	12.7	13.5	13.0
	k	99	197	686
257 ²	None	126.8	234.0	293.8
251	Single	14.2	14.4	15.1
	Online	13.9	14.5	15.0

Benchmark Problem 3: CPU Time

N	C	2	2	1	0.5
/ V	n	n	36	145	785
	ļ	(210	421	798
33 ²	Full	AMG	0.0419	0.0428	0.0440
33	Reduced	Direct	0.0011	0.0067	0.0400
	Reduced	Iterative	0.0009	0.0019	0.0066
	ļ	(178	372	952
65 ²	Full	AMG	0.2188	0.2258	0.2311
05	Reduced	Direct	0.0009	0.0046	0.0679
	Reduced	Iterative	0.0013	0.0022	0.0148
	ŀ	(138	265	749
129 ²	Full	AMG	0.3228	0.3284	0.3271
129	Reduced	Direct	0.0007	0.0020	0.0323
	Reduced	Iterative	0.0012	0.0020	0.0132
	ļ	(99	197	686
257 ²	Full	AMG	1.5330	1.5468	1.5396
251	Reduced	Direct	0.0003	0.0010	0.0234
	Reduced	Iterative	0.0010	0.0016	0.0140

Concluding Remarks

- Reduced basis methods offer significant promise for reducing the cost of collocation methods for uncertainty quantification
- Addresses issue of cost associated with collocation
- Amenable to mildly nonlinear problems
- General nonlinear problems: active area of research