Renormalization Defects for Continuity Equations

Emil Wiedemann

(joint work with G. Crippa, N. Gusev, and S. Spirito)

MORE Workshop, Liblice September 22, 2014

Incompressible Transport

Consider the Cauchy problem for the transport/continuity equations

$$egin{aligned} \partial_t
ho + \operatorname{div}(
ho v) &= 0 \ \operatorname{div}(v) &= 0 \ v \cdot
u &= 0 \ \operatorname{on} \ \partial \Omega \
ho(\cdot, 0) &=
ho_0. \end{aligned}$$

Here, Ω is \mathbb{R}^d , \mathbb{T}^d , or a bounded (smooth) domain. Usually the velocity $v: \Omega \times [0, T] \to \mathbb{R}^d$ is considered given and the scalar density $\rho: \Omega \times [0, T] \to \mathbb{R}$ is sought for.

Associated ODE

If v and ρ_0 are smooth, we can solve the ODE

$$\partial_t X(x,t) = v(X(x,t),t)$$
$$X(x,0) = x$$

and thus obtain a unique bounded solution of the continuity equation given by

$$\rho(x,t) = \rho_0(X^{-1}(x,t)).$$

Uniqueness

To show uniqueness another way, multiply the equation by 2ρ and observe that by the chain rule and the divergence-free condition on ν ,

$$0 = 2\rho \partial_t \rho + 2\rho \operatorname{div}(\rho v) = \partial_t (\rho^2) + \operatorname{div}(\rho^2 v).$$

Integration in x then yields

$$\frac{d}{dt} \int_{\Omega} \rho^2 dx = 0,$$

so if $\rho_0 \equiv 0$ then $\rho \equiv 0$ for all times. Uniqueness for general ρ_0 follows by linearity.

Question: What about well-posedness if v is less regular?

Uniqueness

To show uniqueness another way, multiply the equation by 2ρ and observe that by the chain rule and the divergence-free condition on ν ,

$$0 = 2\rho \partial_t \rho + 2\rho \operatorname{div}(\rho v) = \partial_t (\rho^2) + \operatorname{div}(\rho^2 v).$$

Integration in x then yields

$$\frac{d}{dt}\int_{\Omega}\rho^2dx=0,$$

so if $\rho_0 \equiv 0$ then $\rho \equiv 0$ for all times. Uniqueness for general ρ_0 follows by linearity.

Question: What about well-posedness if v is less regular?

Weak Solutions

For $1 \le p \le \infty$ let q be the conjugate exponent and let $v \in L^1(0, T; L^q(\Omega))$ be weakly divergence-free.

Definition

The density $\rho \in L^{\infty}(0, T; L^{p}(\Omega))$ is a weak solution to the Cauchy problem for the continuity equation $\partial_{t}\rho + \operatorname{div}(\rho v) = 0$ if

$$\int_0^T \int_\Omega (\partial_t \phi + v \cdot \nabla \phi) \rho dx dt + \int_\Omega \rho_0(x) \phi(x,0) dx = 0$$

for every $\phi \in C^1_c(\Omega \times [0, T))$.

Renormalized Solutions

For a weak solution, we can't apply the chain rule to obtain uniqueness. Instead one *postulates* the chain rule:

Definition (DiPerna-Lions '88)

A bounded weak solution ρ with initial data ρ_0 is called renormalized if

$$\partial_t \beta(\rho) + \operatorname{div}(\beta(\rho)v) = 0$$

 $\beta(\rho(\cdot, 0)) = \beta \circ \rho_0$

in the sense of distributions for every $\beta \in C^1(\mathbb{R}; \mathbb{R})$.

DiPerna-Lions Theory

Theorem (DiPerna–Lions '89)

Suppose $v \in L^1(0, T; W^{1,1}(\Omega))$, $\operatorname{div}(v) = 0$, and $\rho_0 \in L^{\infty}(\Omega)$.

- There exists a unique renormalized solution.
- Every bounded weak solution is renormalized.
- If v is time-independent, then there exists a flow X(x,t) such that for a.e. $x \in \Omega$, $X(x,\cdot) \in C^1$ and

$$\partial_t X(x,t) = v(X(x,t))$$
$$X(x,0) = x.$$

Moreover, $\rho(x,t) = \rho_0(X^{-1}(x,t))$ gives the unique renormalized solution

DiPerna-Lions Theory

Theorem (DiPerna–Lions '89)

Suppose $v \in L^1(0, T; W^{1,1}(\Omega))$, $\operatorname{div}(v) = 0$, and $\rho_0 \in L^{\infty}(\Omega)$.

- There exists a unique renormalized solution.
- Every bounded weak solution is renormalized.
- If v is time-independent, then there exists a flow X(x,t) such that for a.e. $x \in \Omega$, $X(x,\cdot) \in C^1$ and

$$\partial_t X(x,t) = v(X(x,t))$$
$$X(x,0) = x.$$

Moreover, $\rho(x,t) = \rho_0(X^{-1}(x,t))$ gives the unique renormalized solution

DiPerna-Lions Theory

Theorem (DiPerna–Lions '89)

Suppose $v \in L^1(0, T; W^{1,1}(\Omega))$, $\operatorname{div}(v) = 0$, and $\rho_0 \in L^{\infty}(\Omega)$.

- There exists a unique renormalized solution.
- Every bounded weak solution is renormalized.
- If v is time-independent, then there exists a flow X(x,t) such that for a.e. $x \in \Omega$, $X(x,\cdot) \in C^1$ and

$$\partial_t X(x,t) = v(X(x,t))$$

 $X(x,0) = x.$

Moreover, $\rho(x,t) = \rho_0(X^{-1}(x,t))$ gives the unique renormalized solution.

Remarks

• The argument for the renormalization of any bounded weak solution relies on a regularization of ρ using a mollifier η_{ϵ} and a commutator estimate for

$$(\operatorname{div}(\rho v)) * \eta_{\epsilon} - \operatorname{div}((\rho * \eta_{\epsilon})v).$$

• The requirement $v \in L^1(0, T; W^{1,1}(\Omega))$ was weakened to $v \in L^1(0, T; BV(\Omega))$ by Ambrosio '04.

Remarks

• The argument for the renormalization of any bounded weak solution relies on a regularization of ρ using a mollifier η_{ϵ} and a commutator estimate for

$$(\operatorname{div}(\rho v)) * \eta_{\epsilon} - \operatorname{div}((\rho * \eta_{\epsilon})v).$$

• The requirement $v \in L^1(0, T; W^{1,1}(\Omega))$ was weakened to $v \in L^1(0, T; BV(\Omega))$ by Ambrosio '04.

Counterexamples

- DiPerna–Lions '89: There exists $v \in W^{s,1}_{loc}(\mathbb{R}^2)$ for all s < 1 such that for every $\rho_0 \not\equiv 0$, there are two renormalized solutions. (If $\rho_0 \equiv 0$, then zero is the only renormalized solution).
- Aizenman '78, Depauw '03, Colombini–Luo–Rauch '03: There exists $v \in L^1_{loc}\left(0,\,T;BV_{loc}(\mathbb{R}^2)\right)$ and a (non-renormalized) nontrivial solution $\rho \in L^\infty$ with $\rho_0 \equiv 0$.
- Alberti-Bianchini-Crippa '14: There exists $v \in C^{0,\alpha}(\mathbb{R}^2)$ for all $\alpha < 1$ and a nontrivial solution $\rho \in L^{\infty}$ with $\rho_0 \equiv 0$.

Counterexamples

- DiPerna–Lions '89: There exists $v \in W^{s,1}_{loc}(\mathbb{R}^2)$ for all s < 1 such that for every $\rho_0 \not\equiv 0$, there are two renormalized solutions. (If $\rho_0 \equiv 0$, then zero is the only renormalized solution).
- Aizenman '78, Depauw '03, Colombini–Luo–Rauch '03: There exists $v \in L^1_{loc}\left(0,T;BV_{loc}(\mathbb{R}^2)\right)$ and a (non-renormalized) nontrivial solution $\rho \in L^\infty$ with $\rho_0 \equiv 0$.
- Alberti-Bianchini-Crippa '14: There exists $v \in C^{0,\alpha}(\mathbb{R}^2)$ for all $\alpha < 1$ and a nontrivial solution $\rho \in L^{\infty}$ with $\rho_0 \equiv 0$.

Counterexamples

- DiPerna–Lions '89: There exists $v \in W^{s,1}_{loc}(\mathbb{R}^2)$ for all s < 1 such that for every $\rho_0 \not\equiv 0$, there are two renormalized solutions. (If $\rho_0 \equiv 0$, then zero is the only renormalized solution).
- Aizenman '78, Depauw '03, Colombini–Luo–Rauch '03: There exists $v \in L^1_{loc}\left(0,T;BV_{loc}(\mathbb{R}^2)\right)$ and a (non-renormalized) nontrivial solution $\rho \in L^\infty$ with $\rho_0 \equiv 0$.
- Alberti-Bianchini-Crippa '14: There exists $v \in C^{0,\alpha}(\mathbb{R}^2)$ for all $\alpha < 1$ and a nontrivial solution $\rho \in L^{\infty}$ with $\rho_0 \equiv 0$.

Renormalization Defects

Let $\rho \in L^{\infty}$ be a weak solution to a continuity equation with velocity $v \in L^1(\Omega \times \mathbb{R})$, where $\operatorname{div}(v) = 0$. Let also $\beta \in C^1(\mathbb{R}; \mathbb{R})$. A distribution $f \in \mathcal{D}'(\Omega \times \mathbb{R}; \mathbb{R})$ is called renormalization defect of ρ (with respect to v and β) if

$$\partial_t \beta(\rho) + \operatorname{div}(\beta(\rho)v) = f.$$

For example, in Depauw's counterexample we have (for $eta=|\cdot|^2)$

$$f = dx \otimes \delta_0(dt)$$

Renormalization Defects

Let $\rho \in L^{\infty}$ be a weak solution to a continuity equation with velocity $v \in L^1(\Omega \times \mathbb{R})$, where $\operatorname{div}(v) = 0$. Let also $\beta \in C^1(\mathbb{R}; \mathbb{R})$. A distribution $f \in \mathcal{D}'(\Omega \times \mathbb{R}; \mathbb{R})$ is called renormalization defect of ρ (with respect to v and β) if

$$\partial_t \beta(\rho) + \operatorname{div}(\beta(\rho)v) = f.$$

For example, in Depauw's counterexample we have (for $\beta = |\cdot|^2$)

$$f=dx\otimes\delta_0(dt)$$

Generalization of Depauw

Let $\beta \in C^1(\mathbb{R}; \mathbb{R})$ be even and bijective from \mathbb{R}^+ onto \mathbb{R}^+ .

Theorem 1 (Crippa-Gusev-Spirito-W. '14)

Let $f \in L^1(\mathbb{R})$ and $d \geq 2$. Then there exist $v \in L^{\infty}(\Omega \times \mathbb{R}; \mathbb{R}^d)$, $\rho \in L^{\infty}(\Omega \times \mathbb{R})$ such that

$$egin{aligned} \partial_t
ho + \operatorname{div}(
ho v) &= 0 \ \operatorname{div}(v) &= 0 \ v \cdot
u &= 0 \ on \ \partial \Omega \ \partial_t eta(
ho) + \operatorname{div}\left(eta(
ho) v
ight) &= f(t). \end{aligned}$$

- For $f = \delta_0$ this yields the same defect as Depauw's example.
- This gives (to our knowledge) the first example of a renormalization defect that is absolutely continuous in t ("diffuse renormalization defect").
- The drawback is that the defect is only allowed to depend on t.

- For $f = \delta_0$ this yields the same defect as Depauw's example.
- This gives (to our knowledge) the first example of a renormalization defect that is absolutely continuous in t ("diffuse renormalization defect").
- The drawback is that the defect is only allowed to depend on t.

- For $f = \delta_0$ this yields the same defect as Depauw's example.
- This gives (to our knowledge) the first example of a renormalization defect that is absolutely continuous in t ("diffuse renormalization defect").
- The drawback is that the defect is only allowed to depend on t.

Stationary Continuity Equation

Let now $\beta : \mathbb{R} \to \mathbb{R}$ be strongly convex.

Theorem 2 (Crippa–Gusev–Spirito–W. '14)

Let d=3 and $f\in L^p(\Omega)$ for some p>3. Then there exist $v\in L^\infty(\Omega)$, $\rho\in L^\infty(\Omega)$ such that

$$\operatorname{div}(
ho v) = 0$$
 $\operatorname{div}(v) = 0$
 $v \cdot \nu = 0 \ \textit{on} \ \partial \Omega$
 $\operatorname{div}(eta(
ho)v) = f.$

- This result is impossible for d = 2 (Bianchini–Gusev '14).
- In both theorems, one may take ρ to be strictly positive and bounded away from zero: Simply add a constant if necessary.
- Both results are achieved using convex integration techniques.

- This result is impossible for d = 2 (Bianchini–Gusev '14).
- In both theorems, one may take ρ to be strictly positive and bounded away from zero: Simply add a constant if necessary.
- Both results are achieved using convex integration techniques.

- This result is impossible for d = 2 (Bianchini–Gusev '14).
- In both theorems, one may take ρ to be strictly positive and bounded away from zero: Simply add a constant if necessary.
- Both results are achieved using convex integration techniques.

Open Problems

- Can we do the nonstationary case for renormalization defects which depend on t and x?
- Is it possible to construct solutions with higher regularity in ρ and/or ν (Hölder)?
- Is there a way to restore uniqueness? A candidate is the viscosity limit. Solve

$$\partial_t \rho + \operatorname{div}(\rho v) = \epsilon \Delta \rho$$

and let $\epsilon \to 0$. Does this give rise to a unique limit?

Open Problems

- Can we do the nonstationary case for renormalization defects which depend on t and x?
- Is it possible to construct solutions with higher regularity in ρ and/or ν (Hölder)?
- Is there a way to restore uniqueness? A candidate is the viscosity limit: Solve

$$\partial_t \rho + \operatorname{div}(\rho v) = \epsilon \Delta \rho$$

and let $\epsilon \to 0$. Does this give rise to a unique limit?

Open Problems

- Can we do the nonstationary case for renormalization defects which depend on t and x?
- Is it possible to construct solutions with higher regularity in ρ and/or ν (Hölder)?
- Is there a way to restore uniqueness? A candidate is the viscosity limit: Solve

$$\partial_t \rho + \operatorname{div}(\rho v) = \epsilon \Delta \rho$$

and let $\epsilon \to 0$. Does this give rise to a unique limit?