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Incompressible Transport

Consider the Cauchy problem for the transport/continuity equations

∂tρ+ div(ρv) = 0

div(v) = 0

v · ν = 0 on ∂Ω

ρ(·, 0) = ρ0.

Here, Ω is Rd , Td , or a bounded (smooth) domain. Usually the velocity
v : Ω× [0,T ]→ Rd is considered given and the scalar density
ρ : Ω× [0,T ]→ R is sought for.
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Associated ODE

If v and ρ0 are smooth, we can solve the ODE

∂tX (x , t) = v(X (x , t), t)

X (x , 0) = x

and thus obtain a unique bounded solution of the continuity equation
given by

ρ(x , t) = ρ0(X−1(x , t)).
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Uniqueness

To show uniqueness another way, multiply the equation by 2ρ and observe
that by the chain rule and the divergence-free condition on v ,

0 = 2ρ∂tρ+ 2ρ div(ρv) = ∂t
(
ρ2
)

+ div
(
ρ2v
)
.

Integration in x then yields

d

dt

∫
Ω
ρ2dx = 0,

so if ρ0 ≡ 0 then ρ ≡ 0 for all times. Uniqueness for general ρ0 follows by
linearity.
Question: What about well-posedness if v is less regular?
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Weak Solutions

For 1 ≤ p ≤ ∞ let q be the conjugate exponent and let
v ∈ L1(0,T ; Lq(Ω)) be weakly divergence-free.

Definition

The density ρ ∈ L∞(0,T ; Lp(Ω)) is a weak solution to the Cauchy
problem for the continuity equation ∂tρ+ div(ρv) = 0 if∫ T

0

∫
Ω

(∂tφ+ v · ∇φ)ρdxdt +

∫
Ω
ρ0(x)φ(x , 0)dx = 0

for every φ ∈ C 1
c (Ω× [0,T )).
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Renormalized Solutions

For a weak solution, we can’t apply the chain rule to obtain uniqueness.
Instead one postulates the chain rule:

Definition (DiPerna–Lions ’88)

A bounded weak solution ρ with initial data ρ0 is called renormalized if

∂tβ(ρ) + div (β(ρ)v) = 0

β(ρ(·, 0)) = β ◦ ρ0

in the sense of distributions for every β ∈ C 1(R;R).
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DiPerna–Lions Theory

Theorem (DiPerna–Lions ’89)

Suppose v ∈ L1
(
0,T ;W 1,1(Ω)

)
, div(v) = 0, and ρ0 ∈ L∞(Ω).

• There exists a unique renormalized solution.

• Every bounded weak solution is renormalized.

• If v is time-independent, then there exists a flow X (x , t) such that for
a.e. x ∈ Ω, X (x , ·) ∈ C 1 and

∂tX (x , t) = v(X (x , t))

X (x , 0) = x .

Moreover, ρ(x , t) = ρ0(X−1(x , t)) gives the unique renormalized
solution.
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Remarks

• The argument for the renormalization of any bounded weak solution
relies on a regularization of ρ using a mollifier ηε and a commutator
estimate for

(div(ρv)) ∗ ηε − div ((ρ ∗ ηε)v) .

• The requirement v ∈ L1
(
0,T ;W 1,1(Ω)

)
was weakened to

v ∈ L1 (0,T ;BV (Ω)) by Ambrosio ’04.
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Counterexamples

• DiPerna–Lions ’89: There exists v ∈W s,1
loc (R2) for all s < 1 such that

for every ρ0 6≡ 0, there are two renormalized solutions. (If ρ0 ≡ 0,
then zero is the only renormalized solution).

• Aizenman ’78, Depauw ’03, Colombini–Luo–Rauch ’03: There exists
v ∈ L1

loc

(
0,T ;BVloc(R2)

)
and a (non-renormalized) nontrivial

solution ρ ∈ L∞ with ρ0 ≡ 0.

• Alberti–Bianchini–Crippa ’14: There exists v ∈ C 0,α(R2) for all
α < 1 and a nontrivial solution ρ ∈ L∞ with ρ0 ≡ 0.
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Renormalization Defects

Let ρ ∈ L∞ be a weak solution to a continuity equation with velocity
v ∈ L1(Ω×R), where div(v) = 0. Let also β ∈ C 1(R;R). A distribution
f ∈ D′(Ω×R;R) is called renormalization defect of ρ (with respect to v
and β) if

∂tβ(ρ) + div (β(ρ)v) = f .

For example, in Depauw’s counterexample we have (for β = | · |2)

f = dx ⊗ δ0(dt)
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Generalization of Depauw

Let β ∈ C 1(R;R) be even and bijective from R
+ onto R+.

Theorem 1 (Crippa–Gusev–Spirito–W. ’14)

Let f ∈ L1(R) and d ≥ 2. Then there exist v ∈ L∞(Ω×R;Rd),
ρ ∈ L∞(Ω×R) such that

∂tρ+ div(ρv) = 0

div(v) = 0

v · ν = 0 on ∂Ω

∂tβ(ρ) + div (β(ρ)v) = f (t).
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Discussion

• For f = δ0 this yields the same defect as Depauw’s example.

• This gives (to our knowledge) the first example of a renormalization
defect that is absolutely continuous in t (“diffuse renormalization
defect”).

• The drawback is that the defect is only allowed to depend on t.

Emil Wiedemann Hausdorff Center for Mathematics, Bonn



Renormalization Defects for Continuity Equations 12 / 15

Discussion

• For f = δ0 this yields the same defect as Depauw’s example.

• This gives (to our knowledge) the first example of a renormalization
defect that is absolutely continuous in t (“diffuse renormalization
defect”).

• The drawback is that the defect is only allowed to depend on t.

Emil Wiedemann Hausdorff Center for Mathematics, Bonn



Renormalization Defects for Continuity Equations 12 / 15

Discussion

• For f = δ0 this yields the same defect as Depauw’s example.

• This gives (to our knowledge) the first example of a renormalization
defect that is absolutely continuous in t (“diffuse renormalization
defect”).

• The drawback is that the defect is only allowed to depend on t.

Emil Wiedemann Hausdorff Center for Mathematics, Bonn



Renormalization Defects for Continuity Equations 13 / 15

Stationary Continuity Equation

Let now β : R→ R be strongly convex.

Theorem 2 (Crippa–Gusev–Spirito–W. ’14)

Let d = 3 and f ∈ Lp(Ω) for some p > 3. Then there exist v ∈ L∞(Ω),
ρ ∈ L∞(Ω) such that

div(ρv) = 0

div(v) = 0

v · ν = 0 on ∂Ω

div (β(ρ)v) = f .
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Discussion

• This result is impossible for d = 2 (Bianchini–Gusev ’14).

• In both theorems, one may take ρ to be strictly positive and bounded
away from zero: Simply add a constant if necessary.

• Both results are achieved using convex integration techniques.
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Open Problems

• Can we do the nonstationary case for renormalization defects which
depend on t and x?

• Is it possible to construct solutions with higher regularity in ρ and/or
v (Hölder)?

• Is there a way to restore uniqueness? A candidate is the viscosity
limit: Solve

∂tρ+ div(ρv) = ε∆ρ

and let ε→ 0. Does this give rise to a unique limit?

Emil Wiedemann Hausdorff Center for Mathematics, Bonn



Renormalization Defects for Continuity Equations 15 / 15

Open Problems

• Can we do the nonstationary case for renormalization defects which
depend on t and x?

• Is it possible to construct solutions with higher regularity in ρ and/or
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