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Given (o, v!), (0% v?). Let
1 2 111 2.2 . 17,1
0:=0 +0°, c:=—, V:ZE(QV +0°v7), ji=o(vi—v).

There arises:

0 = —odivv,
o¢ = —divj,
ov =divT + gb, (1)

1
o(e+ §|v|2) =div(Tv —qg) + gb - v,

where
z:=0iz+v-Vyz



Modelling—compatible constitutive theory

The modelling approach is inspired by [4] Rajagopal and Srinivasa in
2004.

Constitutive assumption:
e=e(n,0,¢c), nisthe entropy.
Quasi-incompressibility assumption:
0= o(c).

If the volume additivity holds, i.e. 1 = @ + ? and p*p%, = 0 (0%,
are the true densities), then

o(c) = Omlm
(1—c)ok, + co?,




Modelling—quasi-incompressible fluids

For quasi-incompressible fluids:

d(c).
0%(c)

divv = R(c)divj, R(c):=

With volume additivity:

1 2

Qm_gm
R(c)=r, .= "7,
()=r 0T 0%,

If o1 = 02,, divv = 0, the fluids become incompressible.



Modelling—quasi-incompressible fluids

Now
e = e(n, o(c), c) = &, c).
Define
0 := %, W= %.
an Jdc
Then

(Td D — - Vil + mR(c)) — ﬂ) ,

01 + div (%) - % 7
(2)

where m :=trT/3,q, = qg — (,u + mR(c))j and

D:= (Vv + (Vv)t), T =T - ltrT, DY =D - %trD.

3
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Modelling—Boundary conditions

We assume

v.n=0 on 0Qx(0,T).
If b =0, the energy £(t) defined as

E(t) = /QQ(G-l-%lvF)dX

is conserved if
qe-n=Tv-n.

Cauchy tensor T is symmetric,

Tv.n=(Tn)-v=(Tn)_-v,.



Modelling-entropy

Let

ﬂﬂ—/mw
Then

(o), (i), (),

- (é(Tn)ﬂVT) o0 i (% (1 mR(e)).J- n) o0

Requiring that dS/dt > 0 and that the terms forcing the duality are
linearly related leads finally to



Modelling-conclusion

T = 20D7, v>0, in€Q,
i=—BVx(u+ mR(c)), B3>0, inC,
qe = —H%e — gvx(,u + mR(c))2, k>0, inQ, (3)
V‘I' g —’y(Tn)T7 'y 2 0, on 89,
j-n=68(u+ mR(c)) §>0, onodQ.

We obtain

divv = —R(c)div (B8V« (1 + mR(c))),
o(c)e = div (BVx (1 + mR(c))),
o(c)v = V,em + div(2vDY),

1
o(c)e = mdivw +2|D?P? + div(k V< In0) + Sdiv (wx (1 + mR(c))2>.



A special case

For the case where

Om — 0
R(C):r)k:%7 ﬂ:/{:yzl, 7:5:07 9:]_,
OmOm

we have
Oro + div(pv) = 0,

1 1
Oe(ov) + div(ev ® v) + =Viq(o) = 2divD? — r—ZVXA;ldivw

v=0 ondQ2x(0,T).
(4)

It is suggested to consider strictly increasing g such that

Iinl1 q(0) = —oo, lim g(0) = +oo.

ot 0—1-




1, Existence of weak solution?

2, Asymptotic behavior as r, — 0?7 From quasi-incompressible
to incompressible?



Existence of weak solution

Suppose for some [y > 5/2:

liminf —
Jminf, lale)le—

)% >0, liminf|g(e)(1—0)%| > 0.
o—1—

Initial data:

vo € L2(R3),

< o<1, Q dx < oo.
oy < /Q ()

Pressure potential Q:

o) [ %z

*

where g, is the only zero point of g(-).



Existence of weak solution

Then there exists a global weak solution satisfying:

1
1+r

<o<1, q(o)e LY, ve CW(L2) N L2(W01’2)

Q( olv2+ 2 Q(g)) (7, dx+/ /2|Dd 2 + 2|VA Livw|?

S/( QO|V0|2+ZQ(QO)) dx.



Proof—Approximate solutions

We employ idea by Feireisl and Zhang [2].

Regularized pressure for o > 0 small and v > 3/2 large:

+a), o<

q( T

1+r* 1+r*

qa(Q) =

q(0). +a<p<1l—aq,

1+ r,
q(l_a)+(g_2)17 0>1—a.

By replacing the pressure term g by g, in (4), we obtain an
approximate system.

By the theory developed by Lions [3] and Feireisl, Novotny and
Petzeltova [1], we have global existence of finite energy weak
solution [gn, Vo] to the approximate system:



Proof—Passing the limit

Ot0a + div(gava) = 0,

1
8t(QaVo¢) + div(@ava ® Va) + r_vxqa(ga)

1
= 2divD9(v,) — r—2vXA;1diwa.

Weak convergence

00 — 0 weakly(*) in L0, T; L7(; R3)),
Vo — v weakly in L2(0, T; Wol’z(Q;R3)).

For the nonlinear terms in the approximate system (at least
in the sense of distribution):

QO!VCM — QV7 Qava ® Va — ,QV ® V.



Proof-Uniform L! estimate of the pressure

The difficulty is to show
da(0a) = q(0) weakly in L?

Introduce

o= (1)B(0n — (0):  (0a) = ﬁ /Q 0o dx.

with ¢ € C2°(0, T) and B a bounded linear operator from
{g € LP(Q), (g)=0}to Wg’p(Q;R3) for 1 < p < oo such that

divB(g) =g, B(g)lsa =0.

Taking ¢ as a test function implies

{9a(0a)}o<a<a, bounded in Ll((O, T) x Q).



Proof—Equi-integrability of the pressure

Introduce

© = Y(t)B(1a(0a) — (Mal0a))),
where ¢ € C2°(0, T) and

1
- ) — — <s<1-—
log(s o r*) log(1 — s), T +a<s< a,

Na(s) =3¢ —log(a), s>1-q,

I <
ogla). s<

Taking ¢ as a test function implies

{9a(0a)1a(0a)}ocaca, boundedin  L1((0, T) x Q).

This gives the equi-integrability of the pressure. Then

da(00) — @ weakly in Ll((O, T) x Q)).



Proof-Strong convergence of density

By employing the arguments of Lions, we can obtain

/ olog(o) — elog() < 0.
Q

This imples
olog(e) = elog(o),

and furthermore
00 — 0 a.ein (0,7) x Q.

Then L
q(e) = q(0).



Convergence for r, — 0

Let [o,, V.| be the weak solution. It can be shown
sup lor(t,) = lee(q) <€
te(0, T

and
v, = win [2((0, T) x Q; R%),

where w is a weak solution to the incompressible Navier-Stokes

system
divw = 0,

Ow + Vw - w + VP = Aw, wlgg = 0.
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