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Setting

Given (%1, v1), (%2, v2). Let

% := %1 + %2, c :=
%1

%
, v :=

1
%

(%1v1 + %2v2), j := %1(v1 − v).

There arises:

%̇ = −%divv,
%ċ = −divj,
%v̇ = divT + %b,

%(e +
1
2
|v|2). = div(Tv − qE ) + %b · v,

(1)

where
ż := ∂tz + v · ∇xz .



Modelling–compatible constitutive theory

The modelling approach is inspired by [4] Rajagopal and Srinivasa in
2004.

Constitutive assumption:

e = e(η, %, c), η is the entropy.

Quasi-incompressibility assumption:

% = %(c).

If the volume additivity holds, i.e. 1 = ϕ1 + ϕ2 and ϕαραm = %α (%αm
are the true densities), then

%(c) =
%1
m%

2
m

(1− c)%1
m + c%2

m
.



Modelling–quasi-incompressible fluids

For quasi-incompressible fluids:

div v = R(c) div j, R(c) :=
%′(c)

%2(c)
.

With volume additivity:

R(c) = r∗ :=
%1
m − %2

m
%1
m%

2
m

.

If %1
m = %2

m, divv = 0, the fluids become incompressible.



Modelling–quasi-incompressible fluids

Now

e = e(η, %(c), c) = ẽ(η, c).

Define
θ :=

∂ẽ
∂η
, µ :=

∂ẽ
∂c
.

Then

%η̇ + div
(qη
θ

)
=

1
θ

(
Td : Dd − j · ∇x(µ+ mR(c))− qη · ∇xθ

θ

)
,

(2)
where m := trT/3,qη := qE −

(
µ+ mR(c)

)
j and

D :=
1
2
(
∇v + (∇v)t), Td := T− 1

3
trT, Dd := D− 1

3
trD.



Modelling–Boundary conditions

We assume

v · n = 0 on ∂Ω× (0,T ).

If b = 0, the energy E(t) defined as

E(t) :=

∫
Ω
%
(
e +

1
2
|v|2
)
dx

is conserved if
qE · n = Tv · n.

Cauchy tensor T is symmetric,

Tv · n =
(
Tn
)
· v =

(
Tn
)
τ
· vτ .



Modelling-entropy

Let

S(t) :=

∫
Ω
%ηdx .

Then

dS(t)

dt
=

(
1
θ
Td ,Dd

)
Ω

−
(
1
θ
j,∇x(µ+ mR(c))

)
Ω

−
(
1
θ
qη,
∇xθ

θ

)
Ω

−
(
1
θ

(Tn)τ , vτ

)
∂Ω

+

(
1
θ

(
µ+ mR(c)

)
, j · n

)
∂Ω

Requiring that dS/dt ≥ 0 and that the terms forcing the duality are
linearly related leads finally to



Modelling-conclusion

Td = 2νDd , ν ≥ 0, in Ω,

j = −β∇x
(
µ+ mR(c)

)
, β ≥ 0, in Ω,

qE = −κ∇θ
θ
− β

2
∇x
(
µ+ mR(c)

)2
, κ ≥ 0, in Ω,

vτ = −γ(Tn)τ , γ ≥ 0, on ∂Ω,

j · n = δ
(
µ+ mR(c)

)
δ ≥ 0, on ∂Ω.

(3)

We obtain

divv = −R(c)div
(
β∇x

(
µ+ mR(c)

))
,

%(c)ċ = div
(
β∇x

(
µ+ mR(c)

))
,

%(c)v̇ = ∇xm + div(2νDd ),

%(c)ė = mdivv + 2ν|Dd |2 + div(κ∇x ln θ) +
1
2
div
(
β∇x

(
µ+ mR(c)

)2)
.



A special case

For the case where

R(c) = r∗ =
%1
m − %2

m
%1
m%

2
m

, β = κ = ν = 1, γ = δ = 0, θ = 1,

we have

∂t%+ div(%v) = 0,

∂t(%v) + div(%v ⊗ v) +
1
r∗
∇xq(%) = 2divDd − 1

r2∗
∇x∆−1

x divv,

v = 0 on ∂Ω× (0,T ).
(4)

It is suggested to consider strictly increasing q such that

lim
%→ 1

1+r∗
+
q(%) = −∞, lim

%→1−
q(%) = +∞.



Question

1, Existence of weak solution?

2, Asymptotic behavior as r∗ → 0? From quasi-incompressible
to incompressible?



Existence of weak solution

Suppose for some β0 > 5/2:

lim inf
%→ 1

1+r∗
+
|q(%)(%− 1

1 + r∗
)β0 | > 0, lim inf

%→1−
|q(%)(1− %)β0 | > 0.

Initial data:

v0 ∈ L2(Ω;R3),
1

1 + r∗
< %0 < 1,

∫
Ω
Q(%0)dx <∞.

Pressure potential Q:

Q(%) := %

∫ %

%∗

q(z)

z2 dz ,

where %∗ is the only zero point of q(·).



Existence of weak solution

Then there exists a global weak solution satisfying:

1
1 + r∗

≤ % ≤ 1, q(%) ∈ L1, v ∈ Cw (L2) ∩ L2(W 1,2
0 )

and∫
Ω

(
1
2
%|v|2 +

1
r∗
Q(%)

)
(τ, ·) dx +

∫ τ

0

∫
Ω
2|Dd (v)|2 +

1
r2∗
|∇x∆−1

x divv|2 dx dt

≤
∫

Ω

(
1
2
%0|v0|2 +

1
r∗
Q(%0)

)
dx .



Proof–Approximate solutions

We employ idea by Feireisl and Zhang [2].

Regularized pressure for α > 0 small and γ > 3/2 large:

qα(%) :=


q(

1
1 + r∗

+ α), % ≤ 1
1 + r∗

+ α,

q(%),
1

1 + r∗
+ α ≤ % ≤ 1− α,

q(1− α) + (%− 2)γ+, % ≥ 1− α.

By replacing the pressure term q by qα in (4), we obtain an
approximate system.
By the theory developed by Lions [3] and Feireisl, Novotný and
Petzeltová [1], we have global existence of finite energy weak
solution [%α, vα] to the approximate system:



Proof–Passing the limit

∂t%α + div(%αvα) = 0,

∂t(%αvα) + div(%αvα ⊗ vα) +
1
r∗
∇xqα(%α)

= 2divDd (vα)− 1
r2∗
∇x∆−1

x divvα.

Weak convergence

%α → % weakly(*) in L∞(0,T ; Lγ(Ω;R3)),

vα → v weakly in L2(0,T ;W 1,2
0 (Ω;R3)).

For the nonlinear terms in the approximate system (at least
in the sense of distribution):

%αvα → %v, %αvα ⊗ vα → %v ⊗ v.



Proof–Uniform L1 estimate of the pressure

The difficulty is to show

qα(%α)→ q(%) weakly in L1?

Introduce

ϕ = ψ(t)B(%α − 〈%α〉), 〈%α〉 :=
1
|Ω|

∫
Ω
%α dx ,

with ψ ∈ C∞c (0,T ) and B a bounded linear operator from
{g ∈ Lp(Ω), 〈g〉 = 0} to W 1,p

0 (Ω;R3) for 1 < p <∞ such that

divB(g) = g , B(g)|∂Ω = 0.

Taking ϕ as a test function implies

{qα(%α)}0<α<α0 bounded in L1((0,T )× Ω).



Proof–Equi-integrability of the pressure
Introduce

ϕ = ψ(t)B(ηα(%α)− 〈ηα(%α)〉),

where ψ ∈ C∞c (0,T ) and

ηα(s) =


log(s − 1

1 + r∗
)− log(1− s),

1
1 + r∗

+ α ≤ s ≤ 1− α,

− log(α), s ≥ 1− α,

log(α), s ≤ 1
1 + r∗

− α.

Taking ϕ as a test function implies

{qα(%α)ηα(%α)}0<α<α0 bounded in L1((0,T )× Ω).

This gives the equi-integrability of the pressure. Then

qα(%α)→ q(%) weakly in L1((0,T )× Ω)).



Proof–Strong convergence of density

By employing the arguments of Lions, we can obtain∫
Ω
% log(%)− % log(%) ≤ 0.

This imples
% log(%) = % log(%),

and furthermore

%α → % a.e in (0,T )× Ω.

Then
q(%) = q(%).



Convergence for r∗ → 0

Let [%r∗ , vr∗ ] be the weak solution. It can be shown

sup
t∈(0,T )

‖%r∗(t, ·)− 1‖L∞(Ω) ≤ ε

and
vr∗ → w in L2((0,T )× Ω;R3),

where w is a weak solution to the incompressible Navier-Stokes
system

divw = 0,

∂tw +∇w ·w +∇P = ∆w, w|∂Ω = 0.
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Thank you for your attention!


