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Equation

Navier-Stokes-“Fourier”-“quantity”-like equations

div v = 0, (1)

v,t + div(v ⊗ v)− divSSS = −∇p, (2)

k,t + div(kv)− div (µ(k)∇k) + ε(k) = SSS ·DDD(v), (3)

other balance laws = 0. (4)

where

v . . . velocity field

p . . . pressure

DDD(v) . . . symmetric part of velocity gradient

SSS constitutively determined part of the Cauchy stress

ν . . . viscosity

k . . . a QUANTITY
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Equation

Regularity for systems with critical growth

critical growth due to SSS ·DDD(v)

regularity for general elliptic/parabolic systems with terms having
critical growth does not hold

single equation OK

system requires

very special structure of SSS - here it can be coupled with k, . . ., typically
depends only on DDD(v) and not on ∇v, incompressibility constrain &
pressure
very special form of the right hand sides - here nice in momentum
equation, horrible in the other ones

the presence of the convective term
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Buĺıček (Charles University in Prague) Regularity issues September 19, 2012 3 / 17



Equation

Regularity for systems with critical growth

critical growth due to SSS ·DDD(v)

regularity for general elliptic/parabolic systems with terms having
critical growth does not hold

single equation OK

system requires

very special structure of SSS - here it can be coupled with k, . . ., typically
depends only on DDD(v) and not on ∇v, incompressibility constrain &
pressure
very special form of the right hand sides - here nice in momentum
equation, horrible in the other ones

the presence of the convective term
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Buĺıček (Charles University in Prague) Regularity issues September 19, 2012 3 / 17



Equation

Regularity for systems with critical growth

critical growth due to SSS ·DDD(v)

regularity for general elliptic/parabolic systems with terms having
critical growth does not hold

single equation OK

system requires

very special structure of SSS - here it can be coupled with k, . . ., typically
depends only on DDD(v) and not on ∇v, incompressibility constrain &
pressure
very special form of the right hand sides - here nice in momentum
equation, horrible in the other ones

the presence of the convective term
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Non-coupled systems

Regularity for non-coupled problem

Consider
SSS ∼ (1 + |DDD(v)|2)

r−2
2 DDD(v).

Results in 3D:

spatially periodic problem

existence of weak solution for r > 6
5

existence of strong solution for r > 11
5

uniqueness for r > 5
2 , in case of better data for r > 11

5
classical solution only in 2D

general boundary conditions (slip, no-slip, no-stick,....)

existence of weak solution for r > 6
5

existence of strong solution for mysterious r > 11
5 + ε

uniqueness for r > 5
2 , in case of better data r > 12

5
classical solution only in 2D
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Non-coupled systems

Time regularity - uniqueness for r > 11
5

Theorem (B, Etwein, Kaplický, Pražák)

Let r > 11
5 and assume any arbitrary relevant boundary conditions. Then

any weak solution satisfies

vt ∈ L∞loc(0,T ; L2) ∩ L2
loc(0,T ; W 1,2). (5)

In particular the solution is unique in the sense of trajectories. Moreover, if
the initial data are “smooth” then (5) holds without “loc” and the weak
solution is unique.
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Coupling with other equations

Coupling and “equivalent” reformulation of the problem

Introduce a “new” quantity

E :=
1

2
|v|2 + k .

Multiply (2) by v and add the result to (3) to get

E,t + div (v(E + p))− div (µ(k)∇k)− div (SSSv) + ε(k) = 0. (6)

the bad term SSS ·DDD(v) is not in (6)

the pressure p is needed! in weak formulation

the presence of ∼ |v|3 in the equation
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Internal energy coupling

Navier-Stokes-Fourier

Replace k by e and call it internal energy. Consider SSS of the form

SSS ∼ ν(e)(1 + γ(e) + |DDD(v)|2)
r−2

2 DDD(v), ε(e) ≡ 0.

Theorem (B, Málek, Rajagopal)

Let r > 9
5
and ν and γ be not so bad (bounded from above and below and continuous).

Then there exists a suitable weak solution for slip bc. Suitable means

et + div(ev)− div(µ(e)∇e) ≥ SSS ·DDD(v).

Theorem

Let r > 6
5
. Then there exists Eduard’s weak solution, i.e., solution solving balance of

linear momentum,
d

dt

ˆ
Ω

E = 0,

and for any smooth nondecreasing nonnegative (on R+) concave bounded function f

f (e)t + div(f (e)v)− div(µ(e)f ′(e)∇e) ≥ f ′(e)SSS ·DDD(v)− µ(e)f ′′(e)|∇e|2
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Internal energy coupling

N-S-F reduction and regularity I

spatially periodic setting, constant heat conductivity

linear model, i.e., r = 2, i.e., SSS = ν(e)DDD(v)

neglect inertia

The system is still with critical growth + dependence only on symmetric
gradient + presence of the pressure

Theorem (B, Kaplický, Málek)

Let ν be smooth function bounded from above and below. Assume that
e(0, x) ≥ emin > 0. Assume in addition that

|ν ′(e)|
ν(e)

≤ 1

16(e − emin)

Then there exists a strong solution.

Even in 2D we are not able to handle the convective term.
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Internal energy coupling

N-S-F reduction and regularity II

spatially periodic setting, constant heat conductivity

nonlinear model, but ν(e) = 1, i.e., SSS = (1 + γ(e) + |DDD(v)|2)
r−2

2 DDD(v)

keep inertia

The system is still with critical growth but of much better structure

Theorem (B, Málek, Shilkin)

Let γ be smooth nonnegative bounded function. Assume in addition that
r ∈ [ 11

5 , 4] and

|γ′(e)| ≤ Ce−α with α >
1

2
.

Then there exists a strong solution.
In 2D it is enough to assume r ∈ (1, 4]. Moreover for r > 4

3 we have a
classical solution.
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Turbulence model

Turbulent kinetic energy models

introduce the equation for E

assume the following growth conditions

C1(1 + k)α ≤ ν(k) ≤ C2(1 + k)α,

C1(1 + k)β ≤ µ(k) ≤ C2(1 + k)β,

C1k1+γ ≤ ε(k) ≤ C2k1+γ ,

with some
α, β, γ ∈ [0,∞)

People usually use α = β = 1
2
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Turbulence model

Existence of weak solution

Theorem (B, Lewandowski, Málek)

Let α, β, γ satisfy

γ < β +
2

3
, α <

2β

5
+

2

3
.

Then there exists a weak solution for slip bc.
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Turbulence model

Relevance to regularity of Navier-Stokes equation

Criterium for regularity of 3D Navier-Sokes:

Theorem

There exists ε > 0 such that if v is a suitable weak solution to N-S in
(−1, 0)× B1(0) satisfying

ˆ 0

−1

ˆ
B1(0)

ν0|DDD(v)|2 ≤ ε

then

|v| ≤ C in (−1

2
, 0]× B 1

2
(0)
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Turbulence model

Conjecture for Turbulent kinetic energy model

Conjecture (B, Lewandowski, Málek)

There exists ε > 0 such that if v is a solution to N-S-F like system in
(−1, 0)× B1(0) satisfying

ˆ 0

−1

ˆ
B1(0)

ν(k)|DDD(v)|2 ≤ ε

then

|v|2 + 2k ≤ C in (−1

2
, 0)× B 1

2
(0)
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Turbulence model

Conjecture implies regularity for turbulent kinetic energy
models

Assume that
ν(k) = ν0kα, µ(k) = µ0kα

with α ∈ R+.
Then we can introduce a scaling similar BUT different to Navier-Stokes,
i.e., if (v, k) solves the problem in

(−λ2(1−α), 0)× Bλ1−2α(0)

for some λ > 0. Then

vλ(t, x) := λv(λ2(1−α)t, λ1−2αx), kλ(t, x) := λ2k(λ2(1−α)t, λ1−2αx)

solves the same problem in (−1, 0)× B1(0).
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Turbulence model

Conjecture implies regularity for some turbulent kinetic
energy models

Theorem (B, Málek, Lewandowski)

Let Conjecture be true. Then for α ∈ [ 1
6 ,

1
2 ] the solution is bounded.

Apply the Conjecture to (vλ, kλ):

ˆ 0

−1

ˆ
B1(0)

ν(kλ)|DDD(vλ)|2 dx dt

= λ6α−1

ˆ 0

−λ2(1−α)

ˆ
Bλ1−2α (0)

kα|DDD(v)|2 dx dt
λ→0→ 0.

Moreover, some estimate on the dimension of possible singularities.
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Kolmogorov model of turbulence

Kolmogorov model of turbulence

div v = 0,

v,t + div(v ⊗ v)− ν0 div

(
k

ω
DDD(v)

)
= −∇p,

ω,t + div(ωv)− κ1 div

(
k

ω
∇ω

)
= −κ2ω

2,

k,t + div(kv)− κ3 div

(
k

ω
∇k

)
= −kω + κ4

k

ω
|DDD(v)|2.

v is the statistical mean velocity of the fluid

k denotes the turbulent kinetic energy

ω is related to the length scale ` by the relation ω := C
√

k/`

ν0, κ1, . . . , κ4 are assumed to be given positive constants
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Kolmogorov model of turbulence

Existence of solution

Theorem (B, Málek)

There exists a weak solution.
Moreover, for any a, b > 0 and any weak solution (v, k , ω) in
(−b, 0)× Ba(0), the scaled quantities

va,b(x , t) :=
b

a
v(ax , bt),

ka,b(x , t) :=
b2

a2
b(ax , bt),

ωa,b(x , t) := bω(ax , bt)

solves the same problem in (−1, 0)× B1(0)
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