Regularity issues in systems describing flows of incompressible fluids

Miroslav Bulíček

Mathematical Institute of the Charles University Sokolovská 83, 186 75 Prague 8, Czech Republic

P. Kaplický, R. Lewandowski, J. Málek and T. Shilkin

September 19, 2012

 QQ

化重新润滑脂

Navier-Stokes-"Fourier"-"quantity"-like equations

$$
\operatorname{div} \mathbf{v} = 0, \qquad (1)
$$
\n
$$
\mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} = -\nabla p, \qquad (2)
$$
\n
$$
k_{,t} + \operatorname{div}(k\mathbf{v}) - \operatorname{div}(\mu(k)\nabla k) + \varepsilon(k) = \mathbf{S} \cdot \mathbf{D}(\mathbf{v}), \qquad (3)
$$
\n
$$
\operatorname{other \: balance \: laws} = 0. \qquad (4)
$$

where

- **v** . . . velocity field
- \bullet $p \dots$ pressure
- \bullet $D(v)$... symmetric part of velocity gradient
- S constitutively determined part of the Cauchy stress
- \bullet ν ... viscosity
- \bullet $k \dots$ a QUANTITY

 $=$ Ω

イロト イ押ト イヨト イヨト

- critical growth due to $S \cdot D(v)$
- \bullet regularity for general elliptic/parabolic systems with terms having critical growth does not hold
- single equation OK
- **•** system requires
	- very special structure of S here it can be coupled with k, \ldots , typically depends only on $D(v)$ and not on ∇v , incompressibility constrain &
	- very special form of the right hand sides here nice in momentum equation, horrible in the other ones
- the presence of the convective term

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

- critical growth due to $S \cdot D(v)$
- \bullet regularity for general elliptic/parabolic systems with terms having critical growth does not hold
- single equation OK
- **o** system requires
	- very special structure of S here it can be coupled with k, \ldots , typically depends only on $D(v)$ and not on ∇v , incompressibility constrain &
	- very special form of the right hand sides here nice in momentum equation, horrible in the other ones
- the presence of the convective term

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

- critical growth due to $S \cdot D(v)$
- \bullet regularity for general elliptic/parabolic systems with terms having critical growth does not hold
- single equation OK
- **o** system requires
	- very special structure of S here it can be coupled with k, \ldots , typically depends only on $D(v)$ and not on ∇v , incompressibility constrain &
	- very special form of the right hand sides here nice in momentum equation, horrible in the other ones
- • the presence of the convective term

- critical growth due to $S \cdot D(v)$
- \bullet regularity for general elliptic/parabolic systems with terms having critical growth does not hold
- single equation OK
- **o** system requires
	- very special structure of S here it can be coupled with k, \ldots , typically depends only on $D(v)$ and not on ∇v , incompressibility constrain & pressure
	- very special form of the right hand sides here nice in momentum equation, horrible in the other ones

• the presence of the convective term

- critical growth due to $S \cdot D(v)$
- \bullet regularity for general elliptic/parabolic systems with terms having critical growth does not hold
- single equation OK
- **o** system requires
	- very special structure of S here it can be coupled with k, \ldots , typically depends only on $D(v)$ and not on ∇v , incompressibility constrain & pressure
	- very special form of the right hand sides here nice in momentum equation, horrible in the other ones

• the presence of the convective term

- critical growth due to $S \cdot D(v)$
- \bullet regularity for general elliptic/parabolic systems with terms having critical growth does not hold
- single equation OK
- **o** system requires
	- very special structure of S here it can be coupled with k, \ldots , typically depends only on $D(v)$ and not on ∇v , incompressibility constrain & pressure
	- very special form of the right hand sides here nice in momentum equation, horrible in the other ones

• the presence of the convective term

- critical growth due to $S \cdot D(v)$
- \bullet regularity for general elliptic/parabolic systems with terms having critical growth does not hold
- single equation OK
- **o** system requires
	- very special structure of S here it can be coupled with k, \ldots , typically depends only on $D(v)$ and not on ∇v , incompressibility constrain & pressure
	- very special form of the right hand sides here nice in momentum equation, horrible in the other ones
- • the presence of the convective term

Regularity for non-coupled problem

Consider

$$
\textbf{S}\sim (1+|\textbf{D}(\textbf{v})|^2)^{\frac{r-2}{2}}\textbf{D}(\textbf{v}).
$$

Results in 3D:

- **•** spatially periodic problem
	- existence of weak solution for $r > \frac{6}{5}$
	- existence of strong solution for $r > \frac{11}{5}$
	- uniqueness for $r > \frac{5}{2}$, in case of better data for $r > \frac{11}{5}$
	- classical solution only in 2D
- general boundary conditions (slip, no-slip, no-stick,....)
	- existence of weak solution for $r > \frac{6}{5}$
	- existence of strong solution for mysterious $r > \frac{11}{5} + \varepsilon$
	- uniqueness for $r > \frac{5}{2}$, in case of better data $r > \frac{12}{5}$
	- classical solution only in 2D

イロト イ母 トイミト イミト ニヨー りんぴ

Time regularity - uniqueness for $r > \frac{11}{5}$ 5

Theorem (B, Etwein, Kaplický, Pražák)

Let $r > \frac{11}{5}$ $\frac{11}{5}$ and assume any arbitrary relevant boundary conditions. Then any weak solution satisfies

$$
\mathbf{v}_t \in L^{\infty}_{loc}(0, T; L^2) \cap L^2_{loc}(0, T; W^{1,2}). \tag{5}
$$

In particular the solution is unique in the sense of trajectories. Moreover, if the initial data are "smooth" then [\(5\)](#page-10-1) holds without "loc" and the weak solution is unique.

 QQQ

Coupling and "equivalent" reformulation of the problem

Introduce a "new" quantity

$$
E:=\frac{1}{2}|\mathbf{v}|^2+k.
$$

Multiply (2) by **v** and add the result to (3) to get

$$
E_{,t} + \operatorname{div} (\mathbf{v}(E + p)) - \operatorname{div} (\mu(k)\nabla k) - \operatorname{div} (\mathbf{S}\mathbf{v}) + \varepsilon(k) = 0. \quad (6)
$$

- the bad term $S \cdot D(v)$ is not in [\(6\)](#page-11-1)
- \bullet the pressure p is needed! in weak formulation
- the presence of $\sim |{\bf v}|^3$ in the equation

 QQQ

イロト イ押ト イヨト イヨト

Coupling and "equivalent" reformulation of the problem

Introduce a "new" quantity

$$
E:=\frac{1}{2}|\mathbf{v}|^2+k.
$$

Multiply (2) by **v** and add the result to (3) to get

$$
E_{,t} + \operatorname{div} (\mathbf{v}(E + p)) - \operatorname{div} (\mu(k)\nabla k) - \operatorname{div} (\mathbf{S}\mathbf{v}) + \varepsilon(k) = 0. \quad (6)
$$

- the bad term $S \cdot D(v)$ is not in [\(6\)](#page-11-1)
- \bullet the pressure p is needed! in weak formulation
- the presence of $\sim |{\bm \mathsf v}|^3$ in the equation

 QQQ

Navier-Stokes-Fourier

Replace k by e and call it internal energy. Consider S of the form

$$
\mathsf{S} \sim \nu(e)(1+\gamma(e)+|\mathsf{D}(\mathsf{v})|^2)^{\frac{r-2}{2}}\mathsf{D}(\mathsf{v}), \qquad \boxed{\varepsilon(e) \equiv 0}.
$$

Theorem (B, Málek, Rajagopal)

Let $r > \frac{9}{5}$ and ν and γ be not so bad (bounded from above and below and continuous). Then there exists a suitable weak solution for slip bc. Suitable means

$$
e_t + \operatorname{div}(ev) - \operatorname{div}(\mu(e)\nabla e) \geq S \cdot D(v).
$$

Let $r > \frac{6}{5}$. Then there exists Eduard's weak solution, i.e., solution solving balance of linear momentum,

$$
\frac{d}{dt}\int_{\Omega}E=0,
$$

and for any smooth nondecreasing nonnegative (on \mathbb{R}^+) concave bounded function f

 $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$ $f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2$

Navier-Stokes-Fourier

Replace k by e and call it internal energy. Consider S of the form

$$
\mathsf{S} \sim \nu(e)(1+\gamma(e)+|\mathsf{D}(\mathsf{v})|^2)^{\frac{r-2}{2}}\mathsf{D}(\mathsf{v}), \qquad \boxed{\varepsilon(e) \equiv 0}.
$$

Theorem (B, Málek, Rajagopal)

Let $r > \frac{9}{5}$ and ν and γ be not so bad (bounded from above and below and continuous). Then there exists a suitable weak solution for slip bc. Suitable means

$$
e_t + \operatorname{div}(ev) - \operatorname{div}(\mu(e)\nabla e) \geq S \cdot D(v).
$$

Theorem

Let $r > \frac{6}{5}$. Then there exists Eduard's weak solution, i.e., solution solving balance of linear momentum,

$$
\frac{d}{dt}\int_{\Omega}E=0,
$$

and for any smooth nondecreasing nonnegative (on \mathbb{R}^+) concave bounded function f

$$
f(e)_t + \text{div}(f(e)\mathbf{v}) - \text{div}(\mu(e)f'(e)\nabla e) \ge f'(e)\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) - \mu(e)f''(e)|\nabla e|^2
$$

- **•** spatially periodic setting, constant heat conductivity
- **•** linear model, i.e., $r = 2$, i.e., $S = \nu(e)D(v)$

o neglect inertia

Theorem (B, Kaplický, Málek)

Let ν be smooth function bounded from above and below. Assume that $e(0, x) \ge e_{\min} > 0$. Assume in addition that

$$
\frac{|\nu'(e)|}{\nu(e)}\leq \frac{1}{16(e-e_{\sf min})}
$$

Then there exists a strong solution.

Even in 2D we are not able to handle the c[on](#page-14-0)[ve](#page-16-0)[c](#page-14-0)[ti](#page-15-0)[v](#page-19-0)[e](#page-23-0)[t](#page-13-0)e[r](#page-24-0)[m](#page-12-0)[.](#page-13-0) QQ

- **•** spatially periodic setting, constant heat conductivity
- **•** linear model, i.e., $r = 2$, i.e., $S = \nu(e)D(v)$
- neglect inertia

Theorem (B, Kaplický, Málek)

Let ν be smooth function bounded from above and below. Assume that $e(0, x) \ge e_{\min} > 0$. Assume in addition that

$$
\frac{|\nu'(e)|}{\nu(e)}\leq \frac{1}{16(e-e_{\sf min})}
$$

Then there exists a strong solution.

Even in 2D we are not able to handle the c[on](#page-15-0)[ve](#page-17-0)[c](#page-14-0)[ti](#page-15-0)[v](#page-19-0)[e](#page-23-0)[t](#page-13-0)e[r](#page-24-0)[m](#page-12-0)[.](#page-13-0) QQ

- **•** spatially periodic setting, constant heat conductivity
- **•** linear model, i.e., $r = 2$, i.e., $S = \nu(e)D(v)$
- neglect inertia

The system is still with critical growth $+$ dependence only on symmetric gradient $+$ presence of the pressure

Theorem (B, Kaplický, Málek)

Let ν be smooth function bounded from above and below. Assume that $e(0, x) > e_{\min} > 0$. Assume in addition that

$$
\frac{|\nu'(e)|}{\nu(e)}\leq \frac{1}{16(e-e_{\sf min})}
$$

Then there exists a strong solution.

Even in 2D we are not able to handle the c[on](#page-16-0)[ve](#page-18-0)[c](#page-14-0)[ti](#page-15-0)[v](#page-19-0)[e](#page-23-0)[t](#page-13-0)e[r](#page-24-0)[m](#page-12-0)[.](#page-13-0) QQ

- **•** spatially periodic setting, constant heat conductivity
- **•** linear model, i.e., $r = 2$, i.e., $S = \nu(e)D(v)$
- neglect inertia

The system is still with critical growth $+$ dependence only on symmetric gradient $+$ presence of the pressure

Theorem (B, Kaplický, Málek)

Let ν be smooth function bounded from above and below. Assume that $e(0, x) \ge e_{\min} > 0$. Assume in addition that

$$
\frac{|\nu'(e)|}{\nu(e)}\leq \frac{1}{16(e-e_{\sf min})}
$$

Then there exists a strong solution.

Even in 2D we are not able to handle the c[on](#page-17-0)[ve](#page-19-0)[c](#page-14-0)[ti](#page-15-0)[v](#page-19-0)[e](#page-23-0)[t](#page-13-0)e[r](#page-24-0)[m](#page-12-0)[.](#page-13-0) Ω

- **•** spatially periodic setting, constant heat conductivity
- **•** linear model, i.e., $r = 2$, i.e., $S = \nu(e)D(v)$
- neglect inertia

The system is still with critical growth $+$ dependence only on symmetric gradient $+$ presence of the pressure

Theorem (B, Kaplický, Málek)

Let ν be smooth function bounded from above and below. Assume that $e(0, x) \ge e_{\min} > 0$. Assume in addition that

$$
\frac{|\nu'(e)|}{\nu(e)}\leq \frac{1}{16(e-e_{\sf min})}
$$

Then there exists a strong solution.

Even in 2D we are not able to handle the c[on](#page-18-0)[ve](#page-20-0)[c](#page-14-0)[ti](#page-15-0)[v](#page-19-0)[e](#page-20-0)[t](#page-13-0)[e](#page-23-0)[r](#page-24-0)[m](#page-12-0)[.](#page-13-0) Ω

- **•** spatially periodic setting, constant heat conductivity
- nonlinear model, but $\nu(e)=1$, i.e., ${\sf S}=(1+\gamma(e)+|{\sf D}({\sf v})|^2)^{\frac{r-2}{2}}{\sf D}({\sf v})$
- keep inertia

Theorem (B, Málek, Shilkin)

Let γ be smooth nonnegative bounded function. Assume in addition that $r \in [\frac{11}{5}]$ $\frac{11}{5}$, 4] and

$$
|\gamma'(e)| \leq Ce^{-\alpha} \quad \text{ with } \alpha > \frac{1}{2}.
$$

Then there exists a strong solution.

In 2D it is enough to assume $r \in (1, 4]$. Moreover for $r > \frac{4}{3}$ $\frac{4}{3}$ we have a classical solution.

- 3

 200

イロト イ押ト イヨト イヨト

- **•** spatially periodic setting, constant heat conductivity
- nonlinear model, but $\nu(e)=1$, i.e., ${\sf S}=(1+\gamma(e)+|{\sf D}({\sf v})|^2)^{\frac{r-2}{2}}{\sf D}({\sf v})$
- keep inertia

The system is still with critical growth but of much better structure

Theorem (B, Málek, Shilkin)

Let γ be smooth nonnegative bounded function. Assume in addition that $r \in [\frac{11}{5}]$ $\frac{11}{5}$, 4] and

$$
|\gamma'(e)| \leq Ce^{-\alpha} \quad \text{ with } \alpha > \frac{1}{2}.
$$

Then there exists a strong solution.

In 2D it is enough to assume $r \in (1, 4]$. Moreover for $r > \frac{4}{3}$ $\frac{4}{3}$ we have a classical solution.

- 3

 200

イロト イ押ト イヨト イヨト

- **•** spatially periodic setting, constant heat conductivity
- nonlinear model, but $\nu(e)=1$, i.e., ${\sf S}=(1+\gamma(e)+|{\sf D}({\sf v})|^2)^{\frac{r-2}{2}}{\sf D}({\sf v})$
- keep inertia

The system is still with critical growth but of much better structure

Theorem (B, Málek, Shilkin)

Let γ be smooth nonnegative bounded function. Assume in addition that $r \in [\frac{11}{5}]$ $\frac{11}{5}$,4] and

$$
|\gamma'(e)| \leq Ce^{-\alpha} \quad \text{ with } \alpha > \frac{1}{2}.
$$

Then there exists a strong solution.

In 2D it is enough to assume $r \in (1, 4]$. Moreover for $r > \frac{4}{3}$ $\frac{4}{3}$ we have a classical solution.

- 3

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- **•** spatially periodic setting, constant heat conductivity
- nonlinear model, but $\nu(e)=1$, i.e., ${\sf S}=(1+\gamma(e)+|{\sf D}({\sf v})|^2)^{\frac{r-2}{2}}{\sf D}({\sf v})$
- keep inertia

The system is still with critical growth but of much better structure

Theorem (B, Málek, Shilkin)

Let γ be smooth nonnegative bounded function. Assume in addition that $r \in [\frac{11}{5}]$ $\frac{11}{5}$,4] and

$$
|\gamma'(e)| \leq Ce^{-\alpha} \quad \text{ with } \alpha > \frac{1}{2}.
$$

Then there exists a strong solution.

In 2D it is enough to assume $r \in (1, 4]$. Moreover for $r > \frac{4}{3}$ $\frac{4}{3}$ we have a classical solution.

- 로

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Turbulent kinetic energy models

- \bullet introduce the equation for E
- assume the following growth conditions

$$
C_1(1 + k)^{\alpha} \leq \nu(k) \leq C_2(1 + k)^{\alpha},
$$

\n
$$
C_1(1 + k)^{\beta} \leq \mu(k) \leq C_2(1 + k)^{\beta},
$$

\n
$$
C_1k^{1+\gamma} \leq \varepsilon(k) \leq C_2k^{1+\gamma},
$$

with some

$$
\alpha,\beta,\gamma\in[0,\infty)
$$

People usually use $\alpha = \beta = \frac{1}{2}$

4 0 8

目

 QQ

Turbulent kinetic energy models

- \bullet introduce the equation for E
- assume the following growth conditions

$$
C_1(1 + k)^{\alpha} \leq \nu(k) \leq C_2(1 + k)^{\alpha},
$$

\n
$$
C_1(1 + k)^{\beta} \leq \mu(k) \leq C_2(1 + k)^{\beta},
$$

\n
$$
C_1k^{1+\gamma} \leq \varepsilon(k) \leq C_2k^{1+\gamma},
$$

with some

$$
\alpha,\beta,\gamma\in[0,\infty)
$$

People usually use $\alpha = \beta = \frac{1}{2}$ 2

4 D F

目

 QQ

Existence of weak solution

Theorem (B, Lewandowski, Málek) Let α, β, γ satisfy $\gamma < \beta + \frac{2}{3}$ $\frac{2}{3}$, $\alpha < \frac{2\beta}{5}$ $\frac{2\beta}{5} + \frac{2}{3}$ $\frac{1}{3}$.

Then there exists a weak solution for slip bc.

目

 QQ

化重新润滑脂

Relevance to regularity of Navier-Stokes equation

Criterium for regularity of 3D Navier-Sokes:

Theorem

There exists $\varepsilon > 0$ such that if **v** is a suitable weak solution to N-S in $(-1, 0) \times B_1(0)$ satisfying

$$
\boxed{\int_{-1}^0 \int_{B_1(0)} \nu_0 |D({\boldsymbol v})|^2 \leq \varepsilon}
$$

then

$$
|\textbf{v}|\leq C\ in\ (-\frac{1}{2},0]\times B_{\frac{1}{2}}(0)
$$

 Ω

Conjecture for Turbulent kinetic energy model

Conjecture (B, Lewandowski, Málek)

There exists $\varepsilon > 0$ such that if **v** is a solution to N-S-F like system in $(-1, 0) \times B_1(0)$ satisfying

$$
\int_{-1}^0 \int_{B_1(0)} \nu(k)|\mathbf{D}(\mathbf{v})|^2 \leq \varepsilon
$$

then

$$
\boxed{|{\bf v}|^2 + 2k \leq C \ \ in \ (-\frac{1}{2},0) \times B_{\frac{1}{2}}(0)}
$$

 \equiv

 QQ

Conjecture implies regularity for turbulent kinetic energy models

Assume that

$$
\boxed{\nu(k)=\nu_0k^\alpha, \qquad \mu(k)=\mu_0k^\alpha}
$$

with $\alpha \in \mathbb{R}_+$.

Then we can introduce a scaling similar BUT different to Navier-Stokes, i.e., if (v, k) solves the problem in

$$
(-\lambda^{2(1-\alpha)},0)\times B_{\lambda^{1-2\alpha}}(0)
$$

for some $\lambda > 0$. Then

$$
\mathbf{v}_{\lambda}(t,x) := \lambda \mathbf{v}(\lambda^{2(1-\alpha)}t, \lambda^{1-2\alpha}x), \qquad k_{\lambda}(t,x) := \lambda^2 k(\lambda^{2(1-\alpha)}t, \lambda^{1-2\alpha}x)
$$

solves the same problem in $(-1, 0) \times B_1(0)$.

 QQ

イロト イ何 トイヨ トイヨ トー ヨ

Conjecture implies regularity for turbulent kinetic energy models

Assume that

$$
\boxed{\nu(k)=\nu_0k^\alpha, \qquad \mu(k)=\mu_0k^\alpha}
$$

with $\alpha \in \mathbb{R}_+$.

Then we can introduce a scaling similar BUT different to Navier-Stokes, i.e., if (v, k) solves the problem in

$$
(-\lambda^{2(1-\alpha)},0)\times B_{\lambda^{1-2\alpha}}(0)
$$

for some $\lambda > 0$. Then

$$
\boxed{\mathbf{v}_{\lambda}(t,x):=\lambda\mathbf{v}(\lambda^{2(1-\alpha)}t,\lambda^{1-2\alpha}x),\qquad k_{\lambda}(t,x):=\lambda^2k(\lambda^{2(1-\alpha)}t,\lambda^{1-2\alpha}x)}
$$

solves the same problem in $(-1, 0) \times B_1(0)$.

Conjecture implies regularity for some turbulent kinetic energy models

Theorem (B, Málek, Lewandowski)

Let Conjecture be true. Then for $\alpha \in [\frac{1}{6}]$ $\frac{1}{6}, \frac{1}{2}$ $\frac{1}{2}$ the solution is bounded.

Apply the Conjecture to (v_λ, k_λ) :

$$
\int_{-1}^{0} \int_{B_1(0)} \nu(k_{\lambda}) |\mathbf{D}(\mathbf{v}_{\lambda})|^2 dx dt
$$

= $\lambda^{6\alpha-1} \int_{-\lambda^2(1-\alpha)}^{0} \int_{B_{\lambda^{1-2\alpha}}(0)} k^{\alpha} |\mathbf{D}(\mathbf{v})|^2 dx dt \stackrel{\lambda \to 0}{\to} 0.$

Moreover, some estimate on the dimension of possible singularities.

 QQ

イロメ イ何 メイヨメ イヨメーヨ

Conjecture implies regularity for some turbulent kinetic energy models

Theorem (B, Málek, Lewandowski)

Let Conjecture be true. Then for $\alpha \in [\frac{1}{6}]$ $\frac{1}{6}, \frac{1}{2}$ $\frac{1}{2}$ the solution is bounded.

Apply the Conjecture to (v_λ, k_λ) :

$$
\int_{-1}^{0} \int_{B_1(0)} \nu(k_\lambda) |\mathbf{D}(\mathbf{v}_\lambda)|^2 dx dt
$$

= $\lambda^{6\alpha-1} \int_{-\lambda^2(1-\alpha)}^{0} \int_{B_{\lambda^{1-2\alpha}}(0)} k^{\alpha} |\mathbf{D}(\mathbf{v})|^2 dx dt \stackrel{\lambda \to 0}{\to} 0.$

Moreover, some estimate on the dimension of possible singularities.

 QQ

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Kolmogorov model of turbulence

$$
\operatorname{div} \mathbf{v} = 0,
$$

$$
\mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \nu_0 \operatorname{div} \left(\frac{k}{\omega} \mathbf{D}(\mathbf{v})\right) = -\nabla p,
$$

$$
\omega_{,t} + \operatorname{div}(\omega \mathbf{v}) - \kappa_1 \operatorname{div} \left(\frac{k}{\omega} \nabla \omega\right) = -\kappa_2 \omega^2,
$$

$$
k_{,t} + \operatorname{div}(k\mathbf{v}) - \kappa_3 \operatorname{div} \left(\frac{k}{\omega} \nabla k\right) = -k\omega + \kappa_4 \frac{k}{\omega} |\mathbf{D}(\mathbf{v})|^2.
$$

- v is the statistical mean velocity of the fluid
- k denotes the turbulent kinetic energy
- ω is related to the length scale ℓ by the relation $\omega := \mathcal{C}$ √ k/ℓ
- $\bullet \nu_0, \kappa_1, \ldots, \kappa_4$ are assumed to be given positive constants

Existence of solution

Theorem (B, Málek)

There exists a weak solution.

Moreover, for any a, $b > 0$ and any weak solution (v, k, ω) in $(-b, 0) \times B_a(0)$, the scaled quantities

$$
\mathbf{v}_{a,b}(x,t) := \frac{b}{a}\mathbf{v}(ax, bt),
$$

\n
$$
k_{a,b}(x,t) := \frac{b^2}{a^2}b(ax, bt),
$$

\n
$$
\omega_{a,b}(x,t) := b\omega(ax, bt)
$$

solves the same problem in $(-1, 0) \times B_1(0)$

目

 QQ

イロト イ押ト イヨト イヨト

Existence of solution

Theorem (B, Málek)

There exists a weak solution.

Moreover, for any a, $b > 0$ and any weak solution (v, k, ω) in $(-b, 0) \times B_a(0)$, the scaled quantities

$$
\mathbf{v}_{a,b}(x,t) := \frac{b}{a}\mathbf{v}(ax, bt),
$$

\n
$$
k_{a,b}(x,t) := \frac{b^2}{a^2}b(ax, bt),
$$

\n
$$
\omega_{a,b}(x,t) := b\omega(ax, bt)
$$

solves the same problem in $(-1,0) \times B_1(0)$

 QQ