

Heat conduction problem of an evaporating liquid wedge

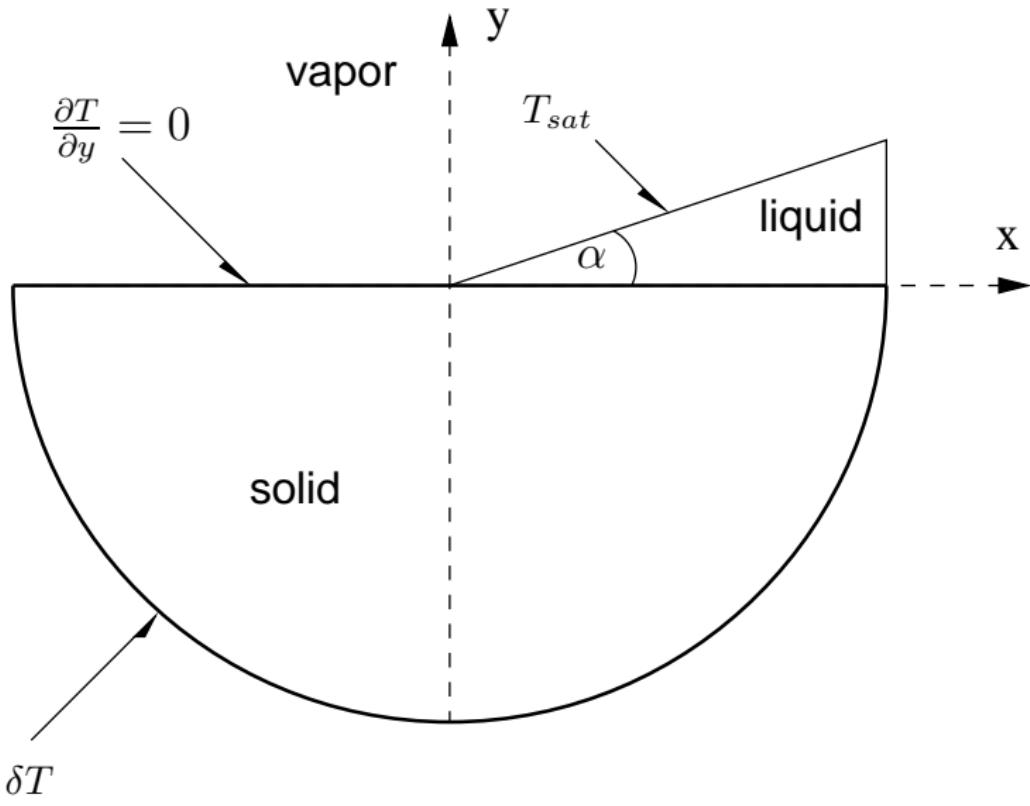
Tomáš Bárta¹, Vladislav Janeček², Dalibor Pražák¹

¹Department of Mathematical Analysis
Charles University, Prague

²EPSCI-CNRS-Université-Paris Diderot-Université P.M. Curie
Paris, France

MORE Liblice 2014

Problem



Equations

$$\Delta T = 0, \quad \text{in } M \quad (0)$$

$$T = T_{\text{sat}} + \delta T, \quad \text{on } \Gamma_1 \quad (1)$$

$$\frac{\partial T}{\partial y} = 0, \quad \text{on } \Gamma_2 \quad (2)$$

$$k_S \frac{\partial T}{\partial y} = k_L \frac{T_{\text{sat}} - T}{\alpha x}, \quad \text{on } \Gamma_3 \quad (3)$$

Functional setting

- $T \in H^1(M)$... the unknown temperature of the solid
- $\gamma_{iD}(T) \in H^{1/2}(\Gamma_i)$... Dirichlet trace for Γ_i
- $\gamma_{iN}(T) \in H^{-1/2}(\Gamma_i)$... Neumann trace for Γ_i
- $L^2_{x dx}(0, 1) \dots \int_0^1 |v(x)|^2 x dx < \infty$
- $L^2_{dx/x}(0, 1) \dots \int_0^1 |v(x)|^2 \frac{dx}{x} < \infty$

Functional setting

- $T \in H^1(M)$... the unknown temperature of the solid
- $\gamma_{iD}(T) \in H^{1/2}(\Gamma_i)$... Dirichlet trace for Γ_i
- $\gamma_{iN}(T) \in H^{-1/2}(\Gamma_i)$... Neumann trace for Γ_i
- $L^2_{x dx}(0, 1) \dots \int_0^1 |v(x)|^2 x dx < \infty$
- $L^2_{dx/x}(0, 1) \dots \int_0^1 |v(x)|^2 \frac{dx}{x} < \infty$

Functional setting

- $T \in H^1(M)$... the unknown temperature of the solid
- $\gamma_{iD}(T) \in H^{1/2}(\Gamma_i)$... Dirichlet trace for Γ_i
- $\gamma_{iN}(T) \in H^{-1/2}(\Gamma_i)$... Neumann trace for Γ_i
- $L^2_{x dx}(0, 1) \dots \int_0^1 |v(x)|^2 x dx < \infty$
- $L^2_{dx/x}(0, 1) \dots \int_0^1 |v(x)|^2 \frac{dx}{x} < \infty$

Functional setting

- $T \in H^1(M)$... the unknown temperature of the solid
- $\gamma_{iD}(T) \in H^{1/2}(\Gamma_i)$... Dirichlet trace for Γ_i
- $\gamma_{iN}(T) \in H^{-1/2}(\Gamma_i)$... Neumann trace for Γ_i
- $L^2_{x dx}(0, 1) \dots \int_0^1 |v(x)|^2 x dx < \infty$
- $L^2_{dx/x}(0, 1) \dots \int_0^1 |v(x)|^2 \frac{dx}{x} < \infty$

Functional setting

- $T \in H^1(M)$... the unknown temperature of the solid
- $\gamma_{iD}(T) \in H^{1/2}(\Gamma_i)$... Dirichlet trace for Γ_i
- $\gamma_{iN}(T) \in H^{-1/2}(\Gamma_i)$... Neumann trace for Γ_i
- $L^2_{x dx}(0, 1) \dots \int_0^1 |v(x)|^2 x dx < \infty$
- $L^2_{dx/x}(0, 1) \dots \int_0^1 |v(x)|^2 \frac{dx}{x} < \infty$

Main theorem

$$\Delta T = 0, \quad \text{in } M \tag{0}$$

$$T = \theta, \quad \text{on } \Gamma_1 \tag{1}$$

$$\frac{\partial T}{\partial Y} = 0, \quad \text{on } \Gamma_2 \tag{2}$$

$$K \frac{\partial T}{\partial Y} = -\frac{T + \sigma}{X}, \quad \text{on } \Gamma_3 \tag{3}$$

Theorem.

$\forall \theta \in H^{1/2}(\Gamma_1), \sigma \in H^{1/2}(\Gamma_3)$

$\exists!$ solution $T \in H^1(M)$ such that

$\gamma_{3N}(T) \in H^{-1/2} \cap L^2_{xdx}(\Gamma_3), \gamma_{3D}(T) + \sigma \in L^2_{dx/x}$

Ideas of the proof

- new unknown function:

$$T \in H^1(M) \iff \tau \in H^{-1/2}(\Gamma_3)$$

- (3) $\iff (I - \mathcal{B})\tau = f$
- Fredholm Theorem

Ideas of the proof

- new unknown function:
 $T \in H^1(M) \iff \tau \in H^{-1/2}(\Gamma_3)$
- (3) $\iff (I - \mathcal{B})\tau = f$
- Fredholm Theorem

Ideas of the proof

- new unknown function:

$$T \in H^1(M) \iff \tau \in H^{-1/2}(\Gamma_3)$$

- (3) $\iff (I - \mathcal{B})\tau = f$

- Fredholm Theorem

Further problems

- $\int_0^1 \tau, \int_0^x \tau = ??$
- singularity/regularity in 0
- numerical solution
- weaker functional setting
- more general model

Further problems

- $\int_0^1 \tau, \int_0^x \tau = ??$
- singularity/regularity in 0
- numerical solution
- weaker functional setting
- more general model

Further problems

- $\int_0^1 \tau, \int_0^x \tau = ??$
- singularity/regularity in 0
- numerical solution
- weaker functional setting
- more general model

Further problems

- $\int_0^1 \tau, \int_0^x \tau = ??$
- singularity/regularity in 0
- numerical solution
- weaker functional setting
- more general model

Further problems

- $\int_0^1 \tau, \int_0^x \tau = ??$
- singularity/regularity in 0
- numerical solution
- weaker functional setting
- more general model