Regular Lagrangian flow and size-structure equations

Piotr Gwiazda

University of Warsaw, Institute of Applied Mathematics and **Mechanics**

Modeling, analysis and computing in nonlinear PDEs September 21-26, 2014, Chateau Liblice

Foundation for Polish Science

 $\psi(t, x, r)$ is the function representing density of polymer molecules of length r at time t at x .

$$
\partial_t \psi(t, x, r) + \text{div}_x(u(t, x)\psi(t, x, r))
$$

= $\partial_r(\tau(r)\psi(t, x, r)) - \beta(r)\psi(t, x, r) + 2 \int_r^{\infty} \beta(\tilde{r})\kappa(r, \tilde{r})\psi(t, x, \tilde{r}) d\tilde{r}$

- $\bullet \tau > 0$ is the polimerization rate,
- θ $\beta(r)$ the rate of fragmentation, $\beta(r, \cdot)$ can depend also on macroscopic quantities, namely on the velocity of the solvent and the shear rate,
- \bullet $\kappa(r,\tilde{r})$ the fragmentation kernel represents the proportion of individuals of size r born from a given dividing individual of size ˜r

Consider the Cauchy problem for the following system

$$
\partial_t \psi(t,x) + u(t,x) \cdot \nabla_x \psi(t,x) = 0,
$$

$$
\psi(0,x)=\bar{\psi}(x).
$$

Where $\mathit{u}(t,x): \mathbb{R}_+ \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is the velocity of the transported quantity $\psi: \mathbb{R}_+\times \mathbb{R}^d \to \mathbb{R}$ and $\bar{\psi}: \mathbb{R}^d \to \mathbb{R}$ is given.

DiPerna, R. J. and Lions, P.-L., Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. (1989).

We say that ψ is a renormalized solution to the transport equation if it satisfies

$$
\partial_t \beta(\psi) + u \cdot \nabla_x \beta(\psi) = 0,
$$

for any $\beta \in C^1(\mathbb{R};\mathbb{R})$ (with proper growth condition).

Existence, uniqueness and stability (compactness) for rough coefficients.

Note that if

 $u^n \rightarrow u$ in L^1 ,

- u^n is bounded in $W^{1,1}$ (it is enough BV_{loc} or even BD)
- $div u^n = 0$ (it is enough $\in L^{\infty}$ or even BMO)

Then

$$
\psi^n \to \psi \quad \text{in } L^p
$$

DiPerna and Lions renormalization scheme.

Indeed,

$$
\partial_t \beta(\psi^n) + u^n \nabla_x \beta(\psi^n) = 0
$$

is equivalent to

$$
\partial_t \beta(\psi^n) + \mathrm{div}(u^n \beta(\psi^n)) = 0.
$$

Let $n \to \infty$, $\beta(u^n) \to \beta$. Then

 $\partial_t \beta + \text{div}(u\beta) = 0.$

Choose now $\beta(\psi^n) = (\psi^n)^p$. By renormalized property we have

 $\partial_t(\psi^p) + \text{div}(u\psi^p) = 0$

and by unique solvability we conclude that

$$
\beta = \psi^p
$$

and hence from $\psi^{\bm n} \rightharpoonup \psi$ in $L^{\bm p}$ and $\|\psi^{\bm n}\|_{L^{\bm p}} \to \|\psi\|_{L^{\bm p}}$ we have $\psi^n \to \psi$ in L^p .

Integral operator

$$
\partial_t \psi(t,x) + u(t,x) \cdot \nabla_x \psi(t,x) = \int \gamma(x,y) \psi(t,y) dy,
$$

$$
\psi(0,x) = \bar{\psi}(x).
$$

The equation for a renormalized quantity is not a linear equation on $\beta(\psi)$ only!

$$
\partial_t \beta(\psi(t,x)) + u(t,x) \cdot \nabla_x \beta(\psi(t,x)) = \beta'(\psi(t,x)) \int \gamma(x,y) \psi(t,y) dy,
$$

$$
\beta(\psi(0,x)) = \beta(\bar{\psi}(x)).
$$

- The typically used description in fluid dynamics is the Eulerian description.
- In our considerations the Lagrangian description becomes of significant interest If $u : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ is a bounded smooth vector field, the flow of ψ is a smooth map $X : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that

$$
\frac{dX}{dt}(t,x)=u(t,X(t,x)),\quad X(0,x)=x.
$$

Regular Lagrangian flows

When u is merely integrable one defines the so-called *regular* Lagrangian flows, meaning that for a.a. $x \in \mathbb{R}^n$ the map $t \mapsto X(t, x)$ is an absolutely continuous integral solution of $\dot{\gamma}(t) = u(t, \gamma(t))$ for $t \in [0, T]$ with $\gamma(t) = x$. Moreover, there exists a constant L independent of t such that

$$
\mathcal{L}^n(X(t,\cdot)^{-1}(A))\leq L\mathcal{L}^n(A)
$$

for every Borel set $A\subset \mathbb{R}^n$,

Crippa, Gianluca; De Lellis, Camillo Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 616 (2008), 15–46

Consider

$$
\partial_t \psi + u \cdot \nabla_x \psi = \int \gamma \psi \, d\mathbf{y}
$$

 \overline{a}

on the characteristics

$$
(\partial_t \psi + u \nabla_x \psi)(t, X_u(t, x)) = \int \gamma(X_u(t, x), y) \psi(t, y) \mathcal{L}^n(dy)
$$

and introduce the quantity

$$
\tilde{\psi}(t,x):=\psi(t,X_u(t,x)).
$$

Notice that

$$
\partial_t \tilde{\psi}(t,x) = (\partial_t \psi + u \nabla_x \psi)(t, X_u(t,x))
$$

Recall that by \mathcal{L}^n we will mean the n-dimensional Lebesgue measure and we introduce a measure μ_t as follows

$$
\mu_t(A) := \mathcal{L}^n(X_u^{-1}(t, A)) \quad \text{for every Borel set } A.
$$

proceeding with a change of variables leads to the following problem

$$
\partial_t \tilde{\psi}(t,x) = \int \gamma(X_u(t,x),X_u(t,y)) \tilde{\psi}(t,y) D_{\mathcal{L}^n} \mu_t \mathcal{L}^n(dy)
$$

where by $D_{\mathcal{L}^n}\mu_t$ we mean the density (Radon-Nikodym derivative) of the measure μ_t with respect to the Lebesgue measure \mathcal{L}^n . In case when divu = 0 then $D_{\mathcal{L}^n}\mu_t = 1$ a.e. Otherwise, the change of variables is not a measure preserving map. For simplicity consider the case div $u = 0$.

We assume that $\gamma \in L^1(0,\, T; L^1_{\mathbf{y}}(L^\infty_{\mathbf{x}})))$ Consider a sequence (u_k) such that

$$
u_k \to u \text{ in } L^p([0, T]; W^{1,p}).
$$

Then we define X_{u_k} as a regular Lagrangian flow for u_k and ψ_k as a solution to equation with u_k instead of u. Then

$$
\tilde{\psi}_k(t,x):=\psi_k(t,X_{u_k}(t,x)).
$$

We will claim that

$$
X_{u_k} \to X_u \text{ in } C([0, T]; L^1_{loc})
$$
 (1)

moreover, by the reversibility of the flow follows that

$$
X_{u_k}^{-1} \to X_u^{-1} \text{ in } C([0, T]; L^1_{loc}).
$$

Our target is to show that

$$
\tilde{\psi}_k \to \tilde{\psi} \text{ in } C([0, T]; L^1_{loc})
$$

and consequently

$$
\psi_k \to \psi \text{ in } C([0, T]; L^1_{loc}).
$$

Let us rewrite

$$
\partial_t \tilde{\psi}(t,x) = \int \gamma(t,X_u(t,x),X_u(t,y))\tilde{\psi}(t,y)dy
$$

as a linear ordinary differential equation in a Banach space as follows

$$
\frac{d\tilde{\psi}(t)}{dt} = A^k(t)[\tilde{\psi}]
$$
 (2)

with an operator $\mathcal{A}^k: L^1 \rightarrow L^1$

$$
A^k(t)[\tilde{\psi}] := \int \gamma(t,X_{u_k}(t,x),X_{u_k}(t,y))\tilde{\psi}(y)\ \mu_t(dy)
$$

As $X_\mu(0,x)=x$ implies that $\psi_0=\tilde\psi_0$, then the solution to [\(2\)](#page-12-0) is given by

$$
\tilde{\psi}(t) = \exp\left(\int_0^t A^k(s) \; ds\right) [\psi_0]
$$

where

$$
\exp\left(\int_0^t A^k(s) \; ds\right)[\psi_0] = \sum_{\substack{i=1 \text{gcd} \\ \text{Piotr Gwiazda} }}^{\infty} \frac{\left(\int_0^t A^k(s) \; ds\right)^i}{i!} [\psi_0].
$$

For simplicity we start with a case when the function γ has a product form, namely there exist functions γ_1, γ_2

$$
\gamma(X_u(t,x),X_u(t,y))=\gamma_1(X_u(t,x))\otimes \gamma_2(X_u(t,y))
$$

with $\gamma_1\in L^p$ and $\gamma_2\in L^{p'}$. If $\psi_0\in L^p,\, p>1$ then the norm of the operator $\int_0^t A^k(s) \; ds$ equals to $t \|\gamma_1\|_{L^p} \cdot \|\gamma_2\|_{L^{p'}}$.

In order to apply the Lusin's theorem we observe that from the information that $u\in L^1(0,\,T;L^\infty)$ it follows that for a.a. $\,$

$$
\sup_{t\in[0,T]}|X_u(t,x)|\leq |x|+\|u\|_{L^1(0,T;L^\infty)}.
$$

and we denote by D the set of finite measure containing the values of X_{μ} . Hence for a fixed $\epsilon > 0$ there exist continuous functions $\overline{\gamma}_i,\,i=1,2$ such that $\mathcal{L}^n\{w\in D:\gamma_i(t,w)\neq\overline{\gamma}_i(t,w),i=1,2\}<\epsilon.$ From

$$
X_{u_k} \to X_u \text{ in } C([0, T]; L^1_{loc})
$$

it follows almost everywhere convergence of the sequence X_{u_k} and hence we may conclude that

$$
\overline{\gamma}_i(\cdot,X_{u_k})\to \overline{\gamma}_i(\cdot,X_u) \text{ a.e. in } [0,T]\times D.
$$