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W(t, x, r) is the function representing density of polymer molecules
of length r at time t at x.

Or(t, x, r) + divy(u(t, x)(t, x, r))

= 0,(r (1) (t, %, 1)) — B(rY(t,x, 1) +2 / BF)s(r, FY(t, x, F)dF

r

o 7 > 0 is the polimerization rate,

@ [(r) - the rate of fragmentation, 5(r,-) can depend also on
macroscopic quantities, namely on the velocity of the solvent
and the shear rate,

@ k(r,F) - the fragmentation kernel - represents the proportion
of individuals of size r born from a given dividing individual of
size ¥
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Transport equation - formulation

Consider the Cauchy problem for the following system

8t¢(t7X) + U(t,X) ' vxw(tvx) = Oa

$(0,x) = (x).

Where u(t,x) : Ry x RY — R is the velocity of the transported
quantity ¢ : Ry x R = R and ¢ : RY — R is given.
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DiPerna and Lions renormalization scheme.

@ DiPerna, R. J. and Lions, P.-L., Ordinary differential
equations, transport theory and Sobolev spaces. Invent.
Math. (1989).

We say that %) is a renormalized solution to the transport equation
if it satisfies

OB(Y) + u- VxB(¥) =0,
for any B € CY(R;R) (with proper growth condition).

Existence, uniqueness and stability (compactness) for rough
coefficients.
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DiPerna and Lions renormalization scheme.

Note that if
o u" — uin L
o u" is bounded in W11 (it is enough BV, or even BD)
e divu” = 0 (it is enough € L*> or even BMO)

Then

" s ip in LP ]
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DiPerna and Lions renormalization scheme.

Indeed,
O:B(Y") 4+ u"V, (") =0

is equivalent to
0:(¢") + div(u"B(4")) = 0.

Let n — oo, B(u") — B. Then

0B + div(up) = 0.
Choose now (9") = (¢")P. By renormalized property we have

Ot (¢YP) + div(uypP) =0
and by unique solvability we conclude that
B =P

and hence from 9" — 1) in LP and |[¢)"||ze — [|2}||» we have
W™ — b in LP,



Integral operator

&ML@+UUW%VAQJ%=/V&JWUJM%
¢(07 X) = &(X)

The equation for a renormalized quantity is not a linear equation J

on (3(1) only!

&MMLMHMLMVMWMMD:EWﬁM»/%&nwnmw,
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Lagrangian description

@ The typically used description in fluid dynamics is the Eulerian
description.

@ In our considerations the Lagrangian description becomes of
significant interest
If u:[0, T] x R" — R" is a bounded smooth vector field, the
flow of ¢ is a smooth map X : [0, T] x R” — R" such that

dX

7 (t,x) = u(t, X(t,x)), X(0,x) = x.
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Lagrangian description

Regular Lagrangian flows

When u is merely integrable one defines the so-called regular
Lagrangian flows, meaning that for a.a. x € R” the map

t — X(t,x) is an absolutely continuous integral solution of
F(t) = u(t,y(t)) for t € [0, T] with v(t) = x. Moreover, there
exists a constant L independent of t such that

L7(X(t,)7H(A)) < LL(A)

for every Borel set A C R”,

Crippa, Gianluca; De Lellis, Camillo Estimates and regularity
results for the DiPerna-Lions flow. J. Reine Angew. Math. 616
(2008), 15-46
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Consider

Dets + - Vtp = /wdy

on the characteristics
(00t + ) X)) = [ 2X(EX). )0t ) £7()

and introduce the quantity

u}(t?X) = w(taxu(tvx))'
Notice that

6tTZ(t,X) = (0 + uV,p)(t, Xu(t, x))
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Recall that by £" we will mean the n—dimensional Lebesgue
measure and we introduce a measure p; as follows

pe(A) == L"(X(t, A)) for every Borel set A.

proceeding with a change of variables leads to the following
problem

O (t,x) = / A(Xu(t,X), Xa(t, ¥))0(t, y) Denpie £7(dly)

where by Dgnp: we mean the density (Radon-Nikodym derivative)
of the measure p; with respect to the Lebesgue measure L£". In
case when divu = 0 then Dgnpuy = 1 a.e. Otherwise, the change of
variables is not a measure preserving map. For simplicity consider
the case divu = 0.
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We assume that v € L}(0, T; L}I,(Lj’f’)))
Consider a sequence (ug) such that
ug — uin LP([0, T]; WhP).

Then we define X, as a regular Lagrangian flow for uy and 1 as
a solution to equation with uy instead of u. Then

&k(t’x) = wk(t,Xuk(t,X)).
We will claim that
Xu, — Xy in C([0, T; LE,) (1)

loc

moreover, by the reversibility of the flow follows that

-1 -1 - 1
Xt — X7 Vin ([0, T]; L)

loc

Our target is to show that
Yk — P in C([0, T]; Ligc)

loc

and consequently

Y — ¥ in C([0, T); L)

loc
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Let us rewrite
B (£, x) = / (8 Xalts x), Xa(E )5 (L, y)dy

as a linear ordinary differential equation in a Banach space as
follows
di(t)
dt
with an operator A% : [T — [1

A(D] = / (t, Xy (£, %), X (£, Y)Y () pe(dy)

As X,(0,x) = x implies that 1)y = 1, then the solution to (2) is

given by .
30 = e ([ 44(5) ) o]

exp ( /0 A ds) ol = > M[wo]-

j=1
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= A" ()] (2)

where



For simplicity we start with a case when the function ~ has a
product form, namely there exist functions 1, ¥2

Y(Xu(t, %), Xu(t,y)) = n(Xu(t, X)) @ 12(Xu(t, )

with 71 € LP and 7o € LP'. If 4y € LP, p > 1 then the norm of the
operator fot AK(s) ds equals to t[|ya|ce - |72l o -
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In order to apply the Lusin's theorem we observe that from the
information that u € L1(0, T; L>) it follows that for a.a. x

sup | Xu(t, x)[ < [x[ + [[ull 20, 7;1)-
te[0,T]

and we denote by D the set of finite measure containing the values
of X,. Hence for a fixed € > 0 there exist continuous functions

%, i = 1,2 such that

L{w e D :~i(t,w) #7;(t,w),i = 1,2} < e. From

Xy, — Xy in C([0, T; L)

it follows almost everywhere convergence of the sequence X,, and
hence we may conclude that

i(+s Xu,) = 7i(-, Xy) a.e. in [0, T] x D.
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