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Motivation

ψ(t, x , r) is the function representing density of polymer molecules
of length r at time t at x .

∂tψ(t, x , r) + divx(u(t, x)ψ(t, x , r))

= ∂r (τ(r)ψ(t, x , r))−β(r)ψ(t, x , r) + 2

∫ ∞
r

β(r̃)κ(r , r̃)ψ(t, x , r̃)dr̃

τ > 0 is the polimerization rate,

β(r) - the rate of fragmentation, β(r , ·) can depend also on
macroscopic quantities, namely on the velocity of the solvent
and the shear rate,

κ(r , r̃) - the fragmentation kernel - represents the proportion
of individuals of size r born from a given dividing individual of
size r̃
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Transport equation - formulation

Consider the Cauchy problem for the following system

∂tψ(t, x) + u(t, x) · ∇xψ(t, x) = 0,

ψ(0, x) = ψ̄(x).

Where u(t, x) : R+ × Rd → Rd is the velocity of the transported
quantity ψ : R+ × Rd → R and ψ̄ : Rd → R is given.
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DiPerna and Lions renormalization scheme.

DiPerna, R. J. and Lions, P.-L., Ordinary differential
equations, transport theory and Sobolev spaces. Invent.
Math. (1989).

We say that ψ is a renormalized solution to the transport equation
if it satisfies

∂tβ(ψ) + u · ∇xβ(ψ) = 0,

for any β ∈ C 1(R;R) (with proper growth condition).

Existence, uniqueness and stability (compactness) for rough
coefficients.
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DiPerna and Lions renormalization scheme.

Note that if

un → u in L1,

un is bounded in W 1,1 (it is enough BVloc or even BD)

divun = 0 (it is enough ∈ L∞ or even BMO)

Then

ψn → ψ in Lp
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DiPerna and Lions renormalization scheme.

Indeed,
∂tβ(ψn) + un∇xβ(ψn) = 0

is equivalent to

∂tβ(ψn) + div(unβ(ψn)) = 0.

Let n→∞, β(un) ⇀ β. Then

∂tβ + div(uβ) = 0.

Choose now β(ψn) = (ψn)p. By renormalized property we have

∂t(ψ
p) + div(uψp) = 0

and by unique solvability we conclude that

β = ψp

and hence from ψn ⇀ ψ in Lp and ‖ψn‖Lp → ‖ψ‖Lp we have
ψn → ψ in Lp.
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Integral operator

∂tψ(t, x) + u(t, x) · ∇xψ(t, x) =

∫
γ(x , y)ψ(t, y)dy ,

ψ(0, x) = ψ̄(x).

The equation for a renormalized quantity is not a linear equation
on β(ψ) only!

∂tβ(ψ(t, x))+u(t, x)·∇xβ(ψ(t, x)) = β′(ψ(t, x))

∫
γ(x , y)ψ(t, y)dy ,

β(ψ(0, x)) = β(ψ̄(x)).

Piotr Gwiazda Regular Lagrangian flow and size-structure equations



Lagrangian description

The typically used description in fluid dynamics is the Eulerian
description.

In our considerations the Lagrangian description becomes of
significant interest
If u : [0,T ]× Rn → Rn is a bounded smooth vector field, the
flow of ψ is a smooth map X : [0,T ]× Rn → Rn such that

dX

dt
(t, x) = u(t,X (t, x)), X (0, x) = x .
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Lagrangian description

Regular Lagrangian flows

When u is merely integrable one defines the so-called regular
Lagrangian flows, meaning that for a.a. x ∈ Rn the map
t 7→ X (t, x) is an absolutely continuous integral solution of
γ̇(t) = u(t, γ(t)) for t ∈ [0,T ] with γ(t) = x . Moreover, there
exists a constant L independent of t such that

Ln(X (t, ·)−1(A)) ≤ LLn(A)

for every Borel set A ⊂ Rn,

Crippa, Gianluca; De Lellis, Camillo Estimates and regularity
results for the DiPerna-Lions flow. J. Reine Angew. Math. 616
(2008), 15–46
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Consider

∂tψ + u · ∇xψ =

∫
γψdy

on the characteristics

(∂tψ + u∇xψ)(t,Xu(t, x)) =

∫
γ(Xu(t, x), y)ψ(t, y) Ln(dy)

and introduce the quantity

ψ̃(t, x) := ψ(t,Xu(t, x)).

Notice that

∂tψ̃(t, x) = (∂tψ + u∇xψ)(t,Xu(t, x))
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Recall that by Ln we will mean the n−dimensional Lebesgue
measure and we introduce a measure µt as follows

µt(A) := Ln(X−1
u (t,A)) for every Borel set A.

proceeding with a change of variables leads to the following
problem

∂tψ̃(t, x) =

∫
γ(Xu(t, x),Xu(t, y))ψ̃(t, y)DLnµt Ln(dy)

where by DLnµt we mean the density (Radon-Nikodym derivative)
of the measure µt with respect to the Lebesgue measure Ln. In
case when divu = 0 then DLnµt = 1 a.e. Otherwise, the change of
variables is not a measure preserving map. For simplicity consider
the case divu = 0.
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We assume that γ ∈ L1(0,T ; L1
y (L∞x )))

Consider a sequence (uk) such that

uk → u in Lp([0,T ];W 1,p).

Then we define Xuk as a regular Lagrangian flow for uk and ψk as
a solution to equation with uk instead of u. Then

ψ̃k(t, x) := ψk(t,Xuk (t, x)).

We will claim that

Xuk → Xu in C([0,T ]; L1
loc) (1)

moreover, by the reversibility of the flow follows that

X−1
uk
→ X−1

u in C([0,T ]; L1
loc).

Our target is to show that

ψ̃k → ψ̃ in C([0,T ]; L1
loc)

and consequently

ψk → ψ in C([0,T ]; L1
loc).
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Let us rewrite

∂tψ̃(t, x) =

∫
γ(t,Xu(t, x),Xu(t, y))ψ̃(t, y)dy

as a linear ordinary differential equation in a Banach space as
follows

dψ̃(t)

dt
= Ak(t)[ψ̃] (2)

with an operator Ak : L1 → L1

Ak(t)[ψ̃] :=

∫
γ(t,Xuk (t, x),Xuk (t, y))ψ̃(y) µt(dy)

As Xu(0, x) = x implies that ψ0 = ψ̃0, then the solution to (2) is
given by

ψ̃(t) = exp

(∫ t

0
Ak(s) ds

)
[ψ0]

where

exp

(∫ t

0
Ak(s) ds

)
[ψ0] =

∞∑
i=1

(∫ t
0 Ak(s) ds

)i
i !

[ψ0].
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For simplicity we start with a case when the function γ has a
product form, namely there exist functions γ1, γ2

γ(Xu(t, x),Xu(t, y)) = γ1(Xu(t, x))⊗ γ2(Xu(t, y))

with γ1 ∈ Lp and γ2 ∈ Lp
′
. If ψ0 ∈ Lp, p > 1 then the norm of the

operator
∫ t

0 Ak(s) ds equals to t‖γ1‖Lp · ‖γ2‖Lp′ .
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In order to apply the Lusin’s theorem we observe that from the
information that u ∈ L1(0,T ; L∞) it follows that for a.a. x

sup
t∈[0,T ]

|Xu(t, x)| ≤ |x |+ ‖u‖L1(0,T ;L∞).

and we denote by D the set of finite measure containing the values
of Xu. Hence for a fixed ε > 0 there exist continuous functions
γ i , i = 1, 2 such that
Ln{w ∈ D : γi (t,w) 6= γ i (t,w), i = 1, 2} < ε. From

Xuk → Xu in C([0,T ]; L1
loc)

it follows almost everywhere convergence of the sequence Xuk and
hence we may conclude that

γ i (·,Xuk )→ γ i (·,Xu) a.e. in [0,T ]× D.
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