
Existence of global weak solutions to compressible
isentropic finitely extensible nonlinear bead-spring

chain models for dilute polymers

Endre Süli
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M. Buĺıček, J. Málek & E. Süli (Communications in PDEs, 38(5) (2013), 882–924):
Existence of global weak solutions to implicitly constituted kinetic models of
incompressible homogeneous dilute polymers
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Part 1.

The mathematical model:
kinetic theory of dilute polymers
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Problem (P): The solvent is a compressible, isentropic, viscous, isothermal
Newtonian fluid in a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, and T ∈ R>0.
Find:

ρ : (x∼, t) ∈ Ω× [0, T ] 7→ ρ(x∼, t) ∈ R,

u∼ : (x∼, t) ∈ Ω× [0, T ] 7→ u∼(x∼, t) ∈ Rd, such that

Conservation of mass:

∂ρ

∂t
+∇
∼
x · (ρ u

∼
) = 0

∼
in Ω× (0, T ],

ρ(x
∼
, 0) = ρ0(x

∼
) ∀x

∼
∈ Ω,

Conservation of momentum (Navier–Stokes equation

+ elastic effects

):

∂(ρ u
∼

)

∂t
+∇
∼
x · (ρ u

∼
⊗ u
∼

)−∇
∼
x · S

≈
(u
∼
, ρ) +∇

∼
x p(ρ) = ρ f

∼

+∇
∼
x · τ

≈

in Ω× (0, T ],

u
∼

= 0
∼

on ∂Ω× (0, T ],

(ρ u
∼

)(x
∼
, 0) = (ρ0 u

∼
0)(x
∼

) ∀x
∼
∈ Ω.
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ρ: nondimensional solvent density,

u∼: nondimensional solvent velocity,

S
≈

(u∼, ρ) is the Newtonian part of the viscous stress tensor, defined by

S
≈

(u
∼
, ρ) := µS(ρ) [D

≈
(u
∼

)− 1

d
(∇
∼
x · u

∼
) I
≈
] + µB(ρ) (∇

∼
x · u

∼
) I
≈
,

where I
≈

is the d× d identity tensor and

D
≈

(v∼) :=
1

2
(∇
≈ x v∼+ (∇

≈ x v∼)T)

is the rate of strain tensor.

The shear viscosity, µS(·) ∈ R>0, and the bulk viscosity, µB(·) ∈ R≥0, of
the solvent are generally, density-dependent; here both will be assumed to
be constant.
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p is the nondimensional pressure satisfying the isentropic equation of state

p(ρ) = cp ρ
γ ,

where cp ∈ R>0, and the constant γ is such that γ > 3
2 .

Remark
Our analysis applies, without alterations, to some other familiar equations of state,
such as the (Kirkwood-modified) Tait equation of state

p(ρ) = A0

(
ρ

ρ∗

)γ
−A1,

where γ > 3
2 , A0 and A1 are constants, A0 −A1 = p∗ is the equilibrium reference

pressure, and ρ∗ is the equilibrium reference density.

For distilled water: γ ∈ [5.16, 7.11] (depending on the ambient temperature);

for glycerine (at 20◦C) γ = 9.80; for carbon tetrachloride (at 30◦C) γ = 12.54.
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Definition of the elastic extra stress tensor τ≈

In the absence of external forces and neglecting inertial effects Langevin’s
equation for the i-th bead in this model is, for i = 1, . . . ,K + 1:

0 = −ζ
(

dr
∼
i − u

∼
(r
∼
i, ·) dt

)
︸ ︷︷ ︸

Hydrodynamic drag force

+
K∑
j=1

Gij F
∼
j(q
∼
j) dt︸ ︷︷ ︸

Intramolecular force

+
√

2 kB T ζ dW
∼
i︸ ︷︷ ︸

Brownian force

.
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ζ > 0 is a characteristic drag coefficient;

G
≈
∈ R(K+1)×K is the graph incidence matrix :

G
≈

:=


1
−1 1

. . .
. . .

−1 1
−1

 ∈ R(K+1)×K ,

where

Gij :=


+1 if spring j starts from bead i,
−1 if spring j teminates in bead i,
0 otherwise;
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By defining

Z∼ (t) :=


r∼1(t)
r∼2(t)

...
r∼K+1(t)

 , W∼ (t) :=


W∼ 1(t)
W∼ 2(t)

...
W∼ K+1(t)

 , σ
≈

:=

√
2kBT

ζ
I
≈
,

b∼(Z∼ (t)) :=


u∼(r∼1(t), t)
u∼(r∼2(t), t)

...
u∼(r∼K+1(t), t)

+ ζ−1G
≈


F∼ 1(r∼2(t)− r∼1(t))
F∼ 2(r∼3(t)− r∼2(t))

...
F∼ K(r∼K+1(t)− r∼K(t))

 ,

we get the Itō stochastic differential equation (SDE):

dZ∼ (t) = b∼(Z∼ (t)) dt+ σ
≈

dW∼ (t), Z∼ (0) = Z∼ ,

for the (K + 1)d-component vectorial random variable Z∼ (t), t ∈ [0, T ].
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Theorem (Kolmogorov (1931))

Let the (K + 1)d-component vectorial random variable Z∼ (t) have a
probability density function (z∼, t) 7→ ψ(z∼, t) in C2,1(R(K+1)d × [0, T ]), and
let Z∼ (0) = Z∼ be a square-integrable random variable with probability
density function ψ0 ∈ C2(R(K+1)d). Also, let b and σ in the above SDE be
globally Lipschitz continuous, and c(z∼) := σ(z∼)σ(z∼)T.

Then,

∂ψ

∂t
+

(K+1)d∑
j=1

∂

∂zj
(bjψ) =

1

2

(K+1)d∑
i,j=1

∂2

∂zi ∂zj
(cijψ),

in R(K+1)d × [0,∞) where ψ(z∼, 0) = ψ0(z∼), z∼ = (r∼1, . . . , r∼K+1) ∈ R(K+1)d.
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Thus, after nondimensionalization and the linear change of variables:

x∼ :=
1

K + 1

K+1∑
i=1

r∼i, q
∼i

:= r∼i+1 − r∼i, i = 1, . . . ,K,

we arrive at the Fokker–Planck equation:

∂ψ

∂t
+∇x · (u∼ ψ) +

K∑
i=1

∇∼ qi ·

(∇∼ x u∼) q
∼i
ψ − 1

4λ

K∑
j=1

Aij F∼ i(q∼j)ψ


= ε∆xψ +

1

4λ

K∑
i=1

K∑
j=1

Aij∇∼ qi ·
(
∇∼ qj ψ

)
.

ε :=
1

4λ (K + 1)

(
`0
L0

)2

is the centre-of-mass diffusion coefficient;

λ := (ζ/4H)(U0/L0) = De is the Deborah number;

F∼ i(q∼i) = U ′i(
1
2 |q∼i|

2)q
∼
i, i = 1, . . . ,K: nondimensional spring forces;

A := GTG ∈ RK×Ksymm : Rouse matrix.
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The Maxwellian

The normalized (partial) Maxwellian Mi is:

Mi(q∼i) :=
e
−Ui( 1

2
|q
∼
i|2)∫

Di

e
−Ui( 1

2
|q
∼
i|2)

dq
∼i

, i = 1, . . . ,K.

The Maxwellian in the model is then defined by

M(q
∼
) :=

K∏
i=1

Mi(q
∼
i) ∀q

∼
:= (q

∼
1, . . . , q

∼
K) ∈ D :=

K

×
i=1

Di.

Di := {q
∼i
∈ Rd : |q

∼i
|2 < bi}, bi ∈ (0,∞).

The Ui are finitely extensible nonlinear elastic (FENE) type potentials:

Ui(
1
2 |q∼i|

2)→ +∞ as |q
∼i
|2 → bi.

14 / 39



Letting

ψ̂ :=
ψ

M
gives the following, transformed,

Fokker–Planck equation:

∂

∂t
(M ψ̂) +∇x · (u∼M ψ̂) +

K∑
i=1

∇∼ qi ·
(

(∇∼ x u∼) q
∼i
M ψ̂

)
= ε∆xM ψ̂ +

1

4λ

K∑
i=1

K∑
j=1

Aij∇∼ qi ·
(
M ∇∼ qj ψ̂

)
on Ω×D × (0, T ].

degenerate parabolic PDE; ∂D Feller-natural boundary

The elastic extra-stress tensor τ
≈

is defined by

τ
≈
(ψ)(x∼, t) := τ

≈1(ψ)(x∼, t)−
(∫

D×D
γ(q
∼
, q
∼
′)ψ(x∼, q∼, t)ψ(x∼, q∼

′, t) dq
∼

dq
∼
′
)
I
≈
.
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Here, γ : D×D → R≥0 is a smooth, time-independent, x∼-independent and
ψ-independent interaction kernel, which we shall henceforth consider to be

γ(q
∼
, q
∼
′) ≡ z,

where z ∈ R>0, and

Kramers’ expression (1944):

τ
≈1(ψ)(x∼, t) := k

( K∑
i=1

∫
D

ψ(x∼, q∼, t)q∼i q∼
T
i U
′
i

(
1
2 |q∼i|

2
)

dq
∼︸ ︷︷ ︸

=:C
≈

(ψ)

−(K+1)I
≈

∫
D

ψ(x∼, q∼, t) dq
∼︸ ︷︷ ︸

=:%

)

Remark
We thus have the decomposition of the Cauchy stress π

≈
as the sum of a

contribution from the solvent, π
≈s

, and the polymeric extra stress, π
≈p

:

π
≈

= πs
≈

+ πp
≈

= (S
≈

(u∼, ρ)− ps I≈) +
(
k C
≈

(ψ)− pp I≈
)
,

where ps = p = cp ρ
γ is the fluid pressure, and pp = k (K + 1) %+ z %2 is the

polymeric contribution to the total pressure, defined as ps + pp.
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Part 2.

Mathematical analysis of the model:

existence of global weak solutions
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Assumptions

∂Ω ∈ C2,θ, θ ∈ (0, 1), ρ0 ∈ L∞≥0(Ω), u
∼

0 ∈ L
∼

2(Ω);

µS ∈ R>0, µ
B ∈ R≥0, f

∼
∈ L2(0, T ;L

∼

∞(Ω));

ψ0 ≥ 0 a.e. on Ω×D with
∫
D ψ0(·, q

∼
) dq
∼
∈ L∞≥0(Ω);

F(ψ̂0) ∈ L1
M (Ω×D) where F(s) = s(log s− 1) + 1, s ∈ R≥0;

the Rouse matrix A
≈
∈ RK×Ksymm and there exists a0 > 0 s.t. A

≈
≥ a0 I

≈
;

there exist constants γi > 1, i = 1, . . . ,K, s.t.:

Mi(q∼i) � [dist(q
∼i
, ∂Di)]

γi as q
∼i
→ ∂Di,

where

Di = B(0∼, b
1
2
i ), bi > 0, i = 1, . . . ,K.
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Theorem (Existence of a global weak solution to (P))

There exist functions (ρ, u∼, ψ̂), such that

ρ ∈ Cw([0, T ];Lγ≥0(Ω)) ∩H1(0, T ;W 1,6(Ω)′),

u
∼
∈ L2(0, T ;H

∼

1
0(Ω)),

ψ̂ := ψ
M ∈ L

υ(0, T ;L1
≥0,M (Ω×D)) ∩H1(0, T ;M−1(Hs(Ω×D))′),

for any γ > 3
2 , υ ∈ [1,∞) and s > 1 + 1

2(K + 1)d,

F(ψ̂) ∈ L∞(0, T ;L1
M (Ω×D)) and

√
ψ̂ ∈ L2(0, T ;H1

M (Ω×D)),

τ
≈
(M ψ̂) ∈ L

≈
r(ΩT ) for any r ∈

[
1, 4(d+2)

3d+4

)
;

and,

% :=
∫
DM ψ̂ dq

∼
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),
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Theorem (continued)

ρ u
∼
∈ Cw([0, T ];L

∼

2γ
γ+1 (Ω)) ∩ L2(0, T ;H

∼

1(Ω)′) ∩ L2(0, T ;L
∼

6γ
γ+6 (Ω)),

ρ u
∼
⊗ u
∼
∈ L2(0, T ;L

≈

6γ
4γ+3 (Ω)),

letting Γ := max(γ, 8), s := max{4, 6γ
2γ−3}, r := max{s, Γ+ϑ

ϑ },

ϑ(γ) :=

{ 2γ−3
3 for 3

2 < γ ≤ 4,
5
12γ for 4 ≤ γ,

and letting ΩT := Ω× (0, T ],

ρ u
∼
∈ L
∼

10γ−6
3(γ+1) (ΩT ) ∩W 1,Γ+ϑ

Γ (0, T ;W
∼

1,r
0 (Ω)′),

ρ ∈ Lγ+ϑ(ΩT ),

ργ ∈ L
γ+ϑ
γ (ΩT ),

such that,
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Theorem (continued)

(ρ, u∼, ψ̂) is a global weak solution to the problem, in the sense that∫ T

0

〈
∂ρ

∂t
, η

〉
W 1,6(Ω)

dt−
∫ T

0

∫
Ω

ρ u
∼
· ∇
∼
x η dx

∼
dt = 0 ∀η ∈ L2(0, T ;W 1,6(Ω)),

with ρ(·, 0) = ρ0(·),∫ T

0

〈
∂(ρ u

∼
)

∂t
, w
∼

〉
W 1,r

0 (Ω)

dt+

∫ T

0

∫
Ω

[
S
≈

(u
∼

)− ρ u
∼
⊗ u
∼
− cp ργ I

≈

]
: ∇
≈
x w
∼

dx
∼

dt

=

∫ T

0

∫
Ω

[
ρ f
∼
· w
∼
−
(
τ
≈

1(M ψ̂)− z %2 I
≈

)
: ∇
≈
x w
∼

]
dx
∼

dt

∀w
∼
∈ L

γ+ϑ
ϑ (0, T ;W

∼

1,r
0 (Ω)),

with (ρ u∼)(·, 0) = (ρ0 u∼0)(·), and
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Theorem (continued)

∫ T

0

〈
M

∂ψ̂

∂t
, ϕ

〉
Hs(Ω×D)

dt+
1

4λ

K∑
i,j=1

Aij

∫ T

0

∫
Ω×D

M ∇
∼
qj ψ̂ · ∇

∼
qi ϕ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
x ψ̂ − u

∼
ψ̂
]
· ∇
∼
x ϕ dq

∼
dx
∼

dt

−
∫ T

0

∫
Ω×D

M

K∑
i=1

[
σ
≈

(u
∼

) q
∼
i

]
ψ̂ · ∇

∼
qi ϕ dq

∼
dx
∼

dt = 0

∀ϕ ∈ L2(0, T ;Hs(Ω×D)),

with ψ̂(·, 0) = ψ̂0(·) and s > 1 + 1
2(K + 1)d.
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Theorem (continued)

In addition, the following energy inequality holds for a.e. t ∈ [0, T ]:

1
2

∫
Ω

ρ(t) |u
∼
(t)|2 dx

∼
+

∫
Ω

P (ρ(t)) dx
∼
+ k

∫
Ω×D

M F(ψ̂(t)) dq
∼
dx
∼

+ µSc0

∫ t

0

‖u
∼
‖2H1(Ω) ds+ k

∫ t

0

∫
Ω×D

M

[
a0

2λ

∣∣∣∣∇∼ q
√
ψ̂

∣∣∣∣2 + 2ε

∣∣∣∣∇∼ x
√
ψ̂

∣∣∣∣2
]

dq
∼
dx
∼
ds

+ z ‖%(t)‖2L2(Ω) + 2 z ε

∫ t

0

‖∇
∼
x %‖2L2(Ω) ds

≤ et
[

1
2

∫
Ω

ρ0 |u
∼

0|2 dx
∼
+

∫
Ω

P (ρ0) dx
∼
+ k

∫
Ω×D

M F(ψ̂0) dq
∼
dx
∼

+ z

∫
Ω

(∫
D

M ψ̂0 dq
∼

)2

dx
∼
+ 1

2

∫ s

0

‖f
∼
‖2L∞(Ω) dt

∫
Ω

ρ0 dx
∼

]
,

with

P (ρ) :=
p(ρ)

γ − 1
, k := kB T, z > 0.
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Key to the proof of the existence of global weak solutions

Formal energy identity:

d

dt

∫
Ω

[
1

2
ρ |u
∼
|2 + P (ρ) + z %2 + k

∫
D

M F
(
ψ

M

)
dq
∼

]
dx
∼

+ µS
∫

Ω

∣∣∣∣D≈ (u
∼

)− 1

d
(∇
∼
x · u

∼
) I
≈

∣∣∣∣2 dx
∼

+ µB
∫

Ω

|∇
∼
x · u

∼
|2 dx

∼

+ 2ε z

∫
Ω

|∇
∼
x %|2 dx

∼
+ ε k

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψ

M

)∣∣∣∣2 dq
∼

dx
∼

+
k

4λ

K∑
i=1

K∑
j=1

Aij

∫
Ω×D

M ∇
∼
qj

(
ψ

M

)
· ∇
∼
qi

(
ψ

M

)
dq
∼

dx
∼

=

∫
Ω

ρ f
∼
· u
∼

dx
∼
, for all t ∈ (0, T ].

Idea: construct an approximating sequence obeying an energy inequality
−→ Energy inequality yields weak convergence of the approximating sequence

−→ Most difficult step: passage to limit in nonlinear terms requires strong convergence

24 / 39



Key to the proof of the existence of global weak solutions

Formal energy identity:

d

dt

∫
Ω

[
1

2
ρ |u
∼
|2 + P (ρ) + z %2 + k

∫
D

M F
(
ψ

M

)
dq
∼

]
dx
∼

+ µS
∫

Ω

∣∣∣∣D≈ (u
∼

)− 1

d
(∇
∼
x · u

∼
) I
≈

∣∣∣∣2 dx
∼

+ µB
∫

Ω

|∇
∼
x · u

∼
|2 dx

∼

+ 2ε z

∫
Ω

|∇
∼
x %|2 dx

∼
+ ε k

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψ

M

)∣∣∣∣2 dq
∼

dx
∼

+
k

4λ

K∑
i=1

K∑
j=1

Aij

∫
Ω×D

M ∇
∼
qj

(
ψ

M

)
· ∇
∼
qi

(
ψ

M

)
dq
∼

dx
∼

=

∫
Ω

ρ f
∼
· u
∼

dx
∼
, for all t ∈ (0, T ].

Idea: construct an approximating sequence obeying an energy inequality

−→ Energy inequality yields weak convergence of the approximating sequence
−→ Most difficult step: passage to limit in nonlinear terms requires strong convergence

24 / 39



Key to the proof of the existence of global weak solutions

Formal energy identity:

d

dt

∫
Ω

[
1

2
ρ |u
∼
|2 + P (ρ) + z %2 + k

∫
D

M F
(
ψ

M

)
dq
∼

]
dx
∼

+ µS
∫

Ω

∣∣∣∣D≈ (u
∼

)− 1

d
(∇
∼
x · u

∼
) I
≈

∣∣∣∣2 dx
∼

+ µB
∫

Ω

|∇
∼
x · u

∼
|2 dx

∼

+ 2ε z

∫
Ω

|∇
∼
x %|2 dx

∼
+ ε k

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψ

M

)∣∣∣∣2 dq
∼

dx
∼

+
k

4λ

K∑
i=1

K∑
j=1

Aij

∫
Ω×D

M ∇
∼
qj

(
ψ

M

)
· ∇
∼
qi

(
ψ

M

)
dq
∼

dx
∼

=

∫
Ω

ρ f
∼
· u
∼

dx
∼
, for all t ∈ (0, T ].

Idea: construct an approximating sequence obeying an energy inequality
−→ Energy inequality yields weak convergence of the approximating sequence

−→ Most difficult step: passage to limit in nonlinear terms requires strong convergence

24 / 39



Key to the proof of the existence of global weak solutions

Formal energy identity:

d

dt

∫
Ω

[
1

2
ρ |u
∼
|2 + P (ρ) + z %2 + k

∫
D

M F
(
ψ

M

)
dq
∼

]
dx
∼

+ µS
∫

Ω

∣∣∣∣D≈ (u
∼

)− 1

d
(∇
∼
x · u

∼
) I
≈

∣∣∣∣2 dx
∼

+ µB
∫

Ω

|∇
∼
x · u

∼
|2 dx

∼

+ 2ε z

∫
Ω

|∇
∼
x %|2 dx

∼
+ ε k

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψ

M

)∣∣∣∣2 dq
∼

dx
∼

+
k

4λ

K∑
i=1

K∑
j=1

Aij

∫
Ω×D

M ∇
∼
qj

(
ψ

M

)
· ∇
∼
qi

(
ψ

M

)
dq
∼

dx
∼

=

∫
Ω

ρ f
∼
· u
∼

dx
∼
, for all t ∈ (0, T ].

Idea: construct an approximating sequence obeying an energy inequality
−→ Energy inequality yields weak convergence of the approximating sequence

−→ Most difficult step: passage to limit in nonlinear terms requires strong convergence

24 / 39



weak convergence −→ strong convergence

incompressible NS with variable ρ, µ(ρ)
Aubin–Lions–Simon compactness theorem works:
Antontsev, Kazhikhov & Monakhov (1990), Simon (1990), P.-L. Lions (1996).

incompressible NSFP with constant ρ, µ, ζ
Dubinskĭı’s nonlinear compact embedding theorem works:
Barrett & Süli (M3AS 2011, M3AS 2012).

incompressible NSFP with variable ρ, µ(ρ), ζ(ρ)
neither Aubin–Lions–Simon nor Dubinskĭı’s theorem works.

A much more complicated argument had to be used:

entropy estimates, together with

Vitali’s theorem,

Feireisl & Novotný theorem on weak lower-semicontinuity of convex functions,

a compensated compactness argument based on the Div-Curl lemma,

interior estimates based on function space interpolation.

M. Buĺıček, J. Málek & E. Süli (Communications in PDEs, 2013);

Barrett & Süli (J. Diff. Eqs., 2012).
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Barrett & Süli (J. Diff. Eqs., 2012).

25 / 39



weak convergence −→ strong convergence

incompressible NS with variable ρ, µ(ρ)
Aubin–Lions–Simon compactness theorem works:
Antontsev, Kazhikhov & Monakhov (1990), Simon (1990), P.-L. Lions (1996).

incompressible NSFP with constant ρ, µ, ζ
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The proof

... is long and extremely technical.
Perform several regularizations, discretize in time the resulting regularized
system of PDEs, show existence of solutions to the discretized regularized
system of PDEs, and then pass to the natural limits with the regularization
parameters and the temporal discretization parameter, with the aim to
show that the limit is a weak solution, that satisfies the energy inequality.

1st regularization (cut-off in the Fokker–Planck equation):
introduce cut-off in the transport terms in FP by the cut-off function:

ψ̂  MβL

(
ψ̂

M

)
where βL(s) := min(s, L), L > 1.

2nd regularization (continuity eq. regularization):
add to the continuity equation the term

−α∆ρ, α > 0.

3rd regularization (pressure regularization):

pκ(ρ) := p(ρ) + κ(ρ4 + ρΓ), κ > 0, Γ := max{γ, 8}.
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STEP 1. [Problem (P∆t
κ,α,L)]

Discretize in time the (κ, α, L)-regularized system using a time step ∆t
while retaining the cancellation between the regularized continuity,
momentum and FP equations resulting in a crucial energy inequality.

Define an upper-truncated entropy FL using the cut-off parameter L > 1
as we need to cut off ψ̂∆t

κ,α,L from above in the transport term.

STEP 2. [Problem (P∆t
κ,α,L,δ)]

Since the solution of the resulting problem is not regular enough to deduce
the necessary energy inequality, a sixth-order hyperviscosity term is added,
in weak form, to the momentum equation, with coefficient δ ∈ (0, 1).

In the argument that follows we need to truncate the upper-truncated
entropy FL from below also, using a δ ∈ (0, 1) as a lower cut-off
parameter; call the resulting upper-lower truncated entropy function FLδ .

STEP 3.
We use Schaefer’s fixed point theorem to show that the nonlinear system
resulting at each time step in (P∆t

κ,α,L,δ) has a solution.
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STEP 4.
We pass to the limit δ → 0 in problem (P∆t

κ,α,L,δ) using the available bounds

on the solution, to deduce the existence of a solution to (P∆t
κ,α,L).

STEP 5.
We wish to pass to the limits ∆t→ 0+ and L→ +∞. To this end,...

we require bounds, independent of L and ∆t, on ρ∆t
κ,α,L, u∼

∆t
κ,α,L, ψ̂∆t

κ,α,L.

We obtain these by passing to the limit δ → 0 in the available norm bounds
on the solution of (P∆t

κ,α,L,δ) obtained by testing based on the entropy FLδ .

Hence, from the time-discrete equations we derive L and ∆t independent
bounds on the temporal difference quotients of ρ∆t

κ,α,L, u∼
∆t
κ,α,L, ψ̂∆t

κ,α,L.

Passage to the limit requires linking ∆t to L:

∆t = o(L−1), with ∆t→ 0 (as L→∞).
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κ,α,L.

Passage to the limit requires linking ∆t to L:

∆t = o(L−1), with ∆t→ 0 (as L→∞).
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STEP 6.
We use Vitali’s theorem to deduce strong convergence of the sequence
ρ∆t
κ,α,L as ∆t→ 0 (and L→∞).

We use Simon’s compactness theorem to deduce strong convergence of
the sequence u∼

∆t
κ,α,L as ∆t→ 0 (and L→∞).

We use Dubinskĭı’s compactness theorem to deduce strong convergence
of the sequence ψ̂∆t

κ,α,L as ∆t→ 0 (and L→∞).

STEP 7.
We prove strong converge of τ

≈
(Mψ̂∆t

κ,α,L) in L1(ΩT ).

Using this and boundedness of τ
≈
(Mψ̂∆t

κ,α,L) in L
≈

4(d+2)
3d+4 (ΩT ), we deduce

strong convergence in L
≈
r(ΩT ) for r ∈ [1, 4(d+2)

3d+4 ).
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STEP 8. [Level 1 passage to the limit]
We pass to the limit ∆t→ 0 (and L→∞) in (P∆t

κ,α,L) to deduce the
existence of a solution to (Pκ,α), and we pass to the same limit in the
energy inequality satisfied by the solution of (P∆t

κ,α,L) to deduce the
associated energy inequality for the solution of (Pκ,α).

STEP 9. [Notation: ∈α:= belongs to, and is bdd w.r.t. α]

P.-L. Lions (1998), E. Feireisl (2002, 2004), A. Novotný & I. Straškraba (2004)

ρκ,α ∈α L∞(0, T ;LΓ(Ω)) ∩H1(0, T ;H1(Ω)′), Γ := max(γ, 8),

u∼κ,α ∈α L
2(0, T ;H∼

1
0(Ω)),

ρκ,α u∼κ,α ∈α L
∞(0, T ;L∼

2Γ
Γ+1 (Ω)) ∩ L2(0, T ;L∼

6Γ
Γ+6 (Ω))

∩ L∼
10Γ−6
3(Γ+1) (ΩT ) ∩W 1, 8Γ−12

7Γ−6 (0, T ;W∼
1,4
0 (Ω)′),

ρκ,α |u∼κ,α|
2 ∈α L∞(0, T ;L∼

1(Ω)) ∩ L2(0, T ;L∼
6Γ

4Γ+3 (Ω)).
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ρκ,α ∈α L∞(0, T ;LΓ(Ω)) ∩H1(0, T ;H1(Ω)′), Γ := max(γ, 8),

u∼κ,α ∈α L
2(0, T ;H∼

1
0(Ω)),

ρκ,α u∼κ,α ∈α L
∞(0, T ;L∼

2Γ
Γ+1 (Ω)) ∩ L2(0, T ;L∼

6Γ
Γ+6 (Ω))

∩ L∼
10Γ−6
3(Γ+1) (ΩT ) ∩W 1, 8Γ−12

7Γ−6 (0, T ;W∼
1,4
0 (Ω)′),

ρκ,α |u∼κ,α|
2 ∈α L∞(0, T ;L∼

1(Ω)) ∩ L2(0, T ;L∼
6Γ

4Γ+3 (Ω)).

30 / 39



STEP 10.

ψ̂κ,α ∈α Lυ(0, T ;L1
≥0,M (Ω×D)) ∩H1(0, T ;M−1(Hs(Ω×D))′),

where υ ∈ [1,∞) and s > 1 + 1
2(K + 1)d, with

F(ψ̂κ,α) ∈α L∞(0, T ;L1
M (Ω×D)) and

√
ψ̂κ,α ∈α L2(0, T ;H1

M (Ω×D)).

STEP 11.
In addition

%κ,α :=

∫
D
M ψ̂κ,α dq

∼
∈α L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

%κ,α ∈α L
2(d+2)
d (ΩT ) ∩ L4(0, T ;L

2d
d−1 (Ω)).

Hence,

τ
≈
(M ψ̂κ,α) ∈α L2(0, T ;L

4
3 (Ω)) ∩ L

4(d+2)
3d+4 (ΩT ).
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STEP 12.
From the NS momentum equation:∣∣∣∣∣∣

∫ T

0

〈
∂(ρκ,α u

∼
κ,α)

∂t
, w
∼

〉
W 1,4

0 (Ω)

dt−
∫ T

0

∫
Ω

p
∼
κ(ρκ,α)∇

∼
x · w

∼
dx
∼

dt

∣∣∣∣∣∣
≤ C ‖w

∼
‖Ls′ (0,T ;W 1,4(Ω)) ∀w

∼
∈ Ls

′
(0, T ;W

∼

1,4
0 (Ω)), s′ :=

5Γ− 3

Γ− 3
.

Consider the Bogovskĭı operator B∼ : Lr0(Ω)→W∼
1,r
0 (Ω), r ∈ (1,∞), s.t.:∫

Ω

(
∇x · B

∼
(ζ)− ζ

)
η dx

∼
= 0 ∀η ∈ L

r
r−1 (Ω),

which satisfies

‖B
∼

(ζ)‖W 1,r(Ω) ≤ C ‖ζ‖Lr(Ω) ∀ζ ∈ Lr0(Ω),

‖B
∼

(∇
∼
x · w

∼
)‖Lr(Ω) ≤ C ‖w

∼
‖Lr(Ω) ∀w

∼
∈ L
∼

r(Ω), ∇
∼
x · w

∼
∈ Ls(Ω).
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STEP 13.
Take w∼ = η B∼ ((I −

∫
− )ρκ,α), η ∈ C∞0 (0, T ), in the inequality in STEP 12.

Using the bounds from STEP 9 → STEP 11:

∣∣∣∣∣
∫ T

0

η

∫
Ω

(
cp ρ

γ+1
κ,α + κ

(
ρ5
κ,α + ρΓ+1

κ,α

))
dx
∼

dt

∣∣∣∣∣ ≤ C
[
‖η‖L∞(0,T ) +

∥∥∥∥dη

dt

∥∥∥∥
L1(0,T )

]
.

We take η = ηm ∈ C∞0 (0, T ), m ∈ N, where ηm ∈ [0, 1] with ηm(t) = 1 for
t ∈ [ 1

m , T −
1
m ] and ‖dηm

dt ‖L∞(0,T ) ≤ 2m yielding ‖dηm
dt ‖L1(0,T ) ≤ 4.

As ηm → 1 pointwise in (0, T ), as m→∞, we obtain the crucial bound

ρκ,α ∈α LΓ+1(ΩT ).
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STEP 14.
With this information we return to the inequality in STEP 12, noting that
4 < s′ < Γ + 1 to deduce that∣∣∣∣∣∣

∫ T

0

〈
∂(ρκ,α u

∼
κ,α)

∂t
, w
∼

〉
W 1,Γ+1

0 (Ω)

dt

∣∣∣∣∣∣ ≤ C ‖w∼ ‖LΓ+1(0,T ;W 1,Γ+1(Ω))

for all w∼ ∈ LΓ+1(0, T ;W∼
1,Γ+1
0 (Ω)), and hence

∂(ρκ,αu∼κ,α)

∂t
∈α L

Γ+1
Γ (0, T ;W 1,Γ+1

0 (Ω)′).

STEP 15. [Level 2 passage to the limit]
With the information from STEP 9 → STEP 11, STEP 13, STEP 14, we
pass to the limit α→ 0 in (Pκ,α) to deduce the existence of a solution to
(Pκ), and we pass to the same limit in the energy inequality satisfied by
the solution of (Pκ,α) to deduce the associated energy inequality for the
solution of (Pκ).
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STEP 16.
Unfortunately, all that can be claimed at this point is that

pκ(ρκ,α) ⇀ pκ(ρκ,α) in L
Γ+1

Γ (ΩT ) as α→ 0.

It is yet to be proved that pκ(ρκ,α) = pκ(ρκ).

In the case of the compressible NS system this can be proved by using P.-L.
Lions’ effective viscous flux technique. The presence of the extra stress term
on the r.h.s. of the momentum equation here complicates the analysis.

Nevertheless, it is possible to show that, as α→ 0,

ρκ,α → ρκ strongly in Lr(ΩT ), for any r ∈ [1,Γ + 1),

pκ(ρκ,α)→ pκ(ρκ) weakly in L
Γ+1

Γ (ΩT ), that is, pκ(ρκ,α) = pκ(ρκ).
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STEP 17. [Notation: ∈κ:= belongs to, and is bdd w.r.t. κ]

ψ̂κ ∈κ L∞(0, T ;L1
≥0,M (Ω×D)) ∩H1(0, T ;M−1(Hs(Ω×D))′),

ψ̂κ ∈κ L∞(0, T ;L1
M (Ω×D),

√
ψ̂κ ∈κ L2(0, T ;H1

M (Ω×D)),

%κ ∈κ L∞(0, T ;L2(Ω)) ∩ L
2(d+2)
d (ΩT ) ∩ L2(0, T ;L6(Ω)) ∩ L4(0, T ;L

2d
d−1 (Ω)).

Hence,

τ
≈

1(M ψ̂κ) ∈κ L2(0, T ;L
4
3 (Ω)) ∩ L

4(d+2)
3d+4 (ΩT ) ∩ L 4

3 (0, T ;L
12
7 (Ω)).

Further, for any Γ = max(γ, 8) and γ > 3
2 ,

ρκ ∈κ L∞(0, T ;Lγ(Ω)) ∩ L2(0, T ;W 1,6(Ω)′),

u
∼
κ ∈κ L2(0, T ;H

∼

1
0(Ω)),

κ
1
Γ ρκ ∈κ L∞(0, T ;LΓ(Ω)),

ρκ |u
∼
κ|2 ∈κ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;L

6γ
3(γ+1) (Ω)),

ρκu
∼
κ ∈κ L

∼

∞(0, T ;L
2γ
γ+1 (Ω)) ∩ L2(0, T ;L

∼

6γ
γ+6 (Ω)) ∩ L

∼

10γ−6
3(γ+1) (ΩT ).
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STEP 18.
Using an analogous argument as in STEP 12 and STEP 13, we deduce that

ρκ ∈κ Lγ+ϑ(γ)(ΩT ),

where

ϑ(γ) :=

{ 2γ−3
3 for 3

2 < γ ≤ 4,
5
12γ for 4 ≤ γ.

STEP 19. Using an analogous argument as in STEP 14, we deduce that

∂(ρκ u
∼
κ)

∂t
∈κ L

Γ+ϑ
Γ (0, T ;W 1,r

0 (Ω)′),

where r = max{s, Γ+θ
θ } and s = max{4, 6γ

2γ−3}.
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STEP 20. [Level 3 passage to the limit]
Unfortunately, all that can be claimed at this point is that

pκ(ρκ) ⇀ pκ(ρκ) in L
γ+ϑ(γ)

γ (ΩT ) as κ→ 0.

It is yet to be proved that pκ(ρκ) = p(ρ) = ργ .

In the case of the compressible NS system this can be proved by using the
compactness of the effective viscous flux in combination with properties of
renormalized solutions to the continuity equation.

The presence of the extra stress term on the r.h.s. of the momentum
equation here complicates the analysis.

Nevertheless it is possible to show that, as κ→ 0,

ρκ → ρ strongly in Ls(ΩT ), for any s ∈ [1, γ + ϑ(γ)),

pκ(ρκ)→ ργ weakly in L
γ+ϑ(γ)

γ (ΩT ), that is, pκ(ρκ) = ργ .

That completes our passage to the limit κ→ 0. 2
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Comments

Elsewhere, in the case of incompressible flows:

1 we proved the existence and equilibration of global weak solutions to
general classes of both FENE-type and Hookean-type models in the
case of constant density, viscosity and drag and as well as in the case
of variable density, and density-dependent viscosity and drag (see p.4).

2 ... developed & analyzed numerical methods for these:

J.W. Barrett & E. Süli (M2AN 46 (2012) 949–978): Finite element
approximation of finitely extensible nonlinear elastic dumbbell models

3 ... and considered more general models:

M. Buĺıček, J. Málek & E Süli (Communications in PDEs (2013) 882–924):
Existence of global weak solutions to implicitly constituted kinetic models of
incompressible dilute homogeneous polymers

The extensions of these to compressible flows are open.
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