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• This is the end I aim to: to acquire knowledge of the
union of mind with the whole of nature. To do this it is
necessary first to understand as much of nature as
suffices for acquiring such knowledge, and to form a
society of the kind that permits as many as possible to
acquire such knowledge ::: because it is possible to gain
more free time and convenience in life, mechanics is in no
way to be despised.

– B. Spinoza
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• We come to the composition of a continuum, whose
hitherto unsurmounted difficulty has sorely taxed the wits
of all the learned, and everyone without exception
acknowledges it to be virtually insurmountable. Most of
them mask it in obscure terminology with repeated and
tortuous distinctions and sub-distinctions, so that no-one
may openly catch them despairing of other means of
solution which might yield to the light of reason; but they
must necessarily conceal it in the darkness of confusion,
so that it may not be laid bare by perspicuous argument.

– Fransescoe de Oviedo (1602-1651)

(translation appears in Discourse of things above reason,
In Selected Philosophical Papers of Robert Boyle,
edited by M. A. Stewart).
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• In the presentation of a novel outlook with wide
ramifications a single line of communication from
premises to conclusions is not sufficient for intelligibility.
Your audience will construe whatever you say in
conformity with pre-existing outlook.

– A.N. Whitehead

• People think they are thinking when they are merely
rearranging their prejudices.

– William James
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•A point is that which has no part.

– (Euclid-translation by Heath)

• It has been an almost universal opinion amongst
philosophers, ever since the time of Leibniz, that a space
composed of points is logically impossible.

– Bertrand Russell
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Constitutive Equations

How a body responds to stimuli, depends on how it is
constituted and its constitution is expressed by “constitutive
equations”.

The coinage “constitutive equation” unfortunately does not
describe how a material is constituted. It is an incorrect usage
of the English word “constitutive”.

The difference between how a body is constituted and what
one means by “constitutive equations” can be best
understood if we think in terms of a black box responding to
an input by exhibiting a certain output, the input-output
relation does not reveal the contents of the black box.

There is nothing to prevent two different black boxes having
the same input-output relation, similarly there is nothing that
prevents two different bodies to respond in the same manner.
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The terms “constitutive relation”, “constitutive function”,
“constitutive equation” and “constitutive expression” are used
interchangeably in continuum mechanics. This imprecise, careless
and slipshod usage of these terms, as though they have the same
signification, masks crucial differences and obscures fundamental
and profound implications with regard to describing the response
characteristics of bodies, and this point cannot be overemphasized.
The term “constitutive function” suggests that the characterization
of material is through the specification of explicit expressions for a
certain variable, say the stress, in terms of kinematical quantities
such as the strain, or the velocity gradient. The term “relation”
(binary relation), on the other hand, implies that given two sets A
and B, the member of one is related to the members of the other,
usually expressed as xRy wherein x ∈ A and y ∈ B.
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Newton is unequivocal about the fact that force is the cause and
motion is the effect as evidenced by the following sentiments:

• The causes by which true and relative motion are
distinguished, one from the other, are the forces
impressed upon bodies to generate motion.

• The alteration of motion is ever proportional to the
motive force impressed; and is made in the direction of
the right line in which that force is impressed.

– Newton Principia, 1687

• A constitutive equation is a relation between forces and
motions. In popular terms, force is applied to a body to
“cause” it to undergo a motion, and the motion
“caused” differs according to the nature of the body. In
continuum mechanics the forces of interest are contact
forces, which are specified by the stress tensor T .

– Clifford Truesdell, 1984
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Consider the following response:

The response is non-dissipative.

Stored energy ψ depends on both F and T.

ψ = ψ(σ, ε) =

{
ψ̂(ε) ∀ 0 ≤ σ ≤ σcr
ψcr = constant ∀ σ > σcr

(1)
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Bingham Fluid

σ0

σ0

stress

stress

strain rate

strain rate
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One should provide expressions for kinematical quantities
(effects) in terms of stress (cause).

This may not be possible, in which case one might have the
more complicated situation of relations between causes and
effects, which is forces and kinematical quantities.

In classical theories like linearized elasticity it is done both
ways as it is in linearized viscoelasticity.

Example

T = 2µε+ λtr(ε)1
where λ, µ are the Lame constants.
While the Lame constant µ is the shear modulus and has clear
physical underpinning and can be measured directly, the Lame
constant λ cannot be measured directly, (3λ+ 2µ) has a physical
basis, it is the bulk modulus and can be measured directly.

Equivalently, = 1
1+ET − νtr(T )1, E is the Young’s modulus and

ν is the Poisson’s ratio.
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One could also do so in the Navier-Stokes theory though it is never
done so. In fact, it makes much more sense to do so especially
when it comes to enforcing constraints such as incompressibility.

T = −pth(ρ, θ)1 + λ(ρ, θ)tr(D)1 + 2µ(ρ, θ)D (2)

Suppose 3λ+ 2µ 6= 0. Then one can rewrite the above as
(Rajagopal, 2012)

D =
pth

3λ+ 2µ
1− λtr(T )

2µ(3λ+ 2µ)
1 +

1

2µ
T (3)

The question is whether 3λ+ 2µ can be zero. In fact Stokes makes
the assumption that it is zero. One can show that this assumption
is untenable. It is WRONG (As Sheharazade said “that is another
story”). Books like that by Batchelor use incorrect mathematics to
be in conformity with the Great Stokes.
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Early implicit rate type theories for fluids are due to Burgers and
Oldroyd. Implicit theories have been discussed in great generality
including implicit theories wherein the material moduli depend on
both the invariants of the stress and the velocity gradient has been
carried out by Rajagopal (2003), (2006), (2007). A reasonably
general implicit model (Prusa and Rajagopal (2012)):

F∞s=0{ρ(t− s), θ(t− s),T (t− s),F (t− s)} = 0 (4)

A special sub-class (Rajagopal 2012):

(n)

∇
T

R{ρ, θ,T ,D,
∇
T ,
∇
D, · · ·

(n)

∇
T ,

(n)

∇
D} = 0 (5)

where ∇ denotes a frame indifferent material time derivative and
(n)

∇ denotes the frame indifferent nth time derivative. The
Navier-Stokes, Maxwell, Oldroyd and Burgers models are special
sub-classes of the above model.
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Why consider such implicit models

Consider the following generalization of the Navier-Stokes fluid:

T = −p1 + 2µ(p, tr(D2))D, (6)

tr(D) = 0 (7)

Since p = −1

3
tr(T ), it belongs to the class of implicit fluid models

h(T ,D) = 0 (8)
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Fluids with pressure dependent viscosity have been studied by
several persons: Bulicek, Gazzola, Hron, Kannan, Malek, Prusa,
Rajagopal, Renardy, Saccomandi, Srinivasan, and others.
Consider the more general model:

h(ρ,T ,D) = 0 (9)

Since the fluid is isotropic,
Qh(ρ,T ,D)QT = h(ρ,QTQT ,QDQT ) ∀ Q ∈ O
Thus,

α01 + α1T + α2D + α3T
2 + α4D

2 + α5(TD +DT )

+α6(T
2D +D2T ) + α7(TD

2 +DT 2) + α8(T
2D2 +D2T 2) = 0

(10)

The material functions αi, i = 0 . . . 8 depend on the density and
the invariants.

K.R. Rajagopal On Implicit Constitutive Theories 15/1



Fluids with pressure dependent viscosity have been studied by
several persons: Bulicek, Gazzola, Hron, Kannan, Malek, Prusa,
Rajagopal, Renardy, Saccomandi, Srinivasan, and others.
Consider the more general model:

h(ρ,T ,D) = 0 (9)

Since the fluid is isotropic,
Qh(ρ,T ,D)QT = h(ρ,QTQT ,QDQT ) ∀ Q ∈ O
Thus,

α01 + α1T + α2D + α3T
2 + α4D

2 + α5(TD +DT )

+α6(T
2D +D2T ) + α7(TD

2 +DT 2) + α8(T
2D2 +D2T 2) = 0

(10)

The material functions αi, i = 0 . . . 8 depend on the density and
the invariants.

K.R. Rajagopal On Implicit Constitutive Theories 15/1



Fluids with pressure dependent viscosity have been studied by
several persons: Bulicek, Gazzola, Hron, Kannan, Malek, Prusa,
Rajagopal, Renardy, Saccomandi, Srinivasan, and others.
Consider the more general model:

h(ρ,T ,D) = 0 (9)

Since the fluid is isotropic,
Qh(ρ,T ,D)QT = h(ρ,QTQT ,QDQT ) ∀ Q ∈ O
Thus,

α01 + α1T + α2D + α3T
2 + α4D

2 + α5(TD +DT )

+α6(T
2D +D2T ) + α7(TD

2 +DT 2) + α8(T
2D2 +D2T 2) = 0

(10)

The material functions αi, i = 0 . . . 8 depend on the density and
the invariants.

K.R. Rajagopal On Implicit Constitutive Theories 15/1



Unknowns:

Stress - six scalars since it is symmetric
Velocity - three three scalars
Density - one scalar

Total of 10 unknowns

Constitutive relations: six scalar equations

Balance of mass: one scalar equation

Balance of linear momentum: three scalar equations

Total number of equations: 10
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The insidious effect of mathematics on physics

When one has a constitutive expression for the stress in terms
of either the density and the displacement (solids) or
velocity(fluids), and substitutes this expression into the
balance of linear momentum, one has just the balance of linear
momentum and the balance of mass (four equations) for the
density and either displacement or velocity (four equations).

However, one increased the order of the equation!

Causality has been turned on its head!

Hammer Syndrome!
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Consider how an incompressible Navier-Stokes fluid is expressed:

T = −pI + 2µD, (11)

tr(D) = 0 (12)

We have introduced a “Lagrange multiplier”(constraint reaction)
“p” which we know nothing about. We do not know the space
which it belongs to, etc.
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Suppose we start with (Srinivasa and Rajagopal (2012))

L :=
∂v

∂x
= f(ρ, θ,T ). (13)

Balance of angular momentum (symmetry of stress) and Galilean
Invariance leads to

D = f(ρ, θ,T ). (14)

Isotropy of the fluid leads to

f(ρ, θ,QTQT ) = Qf(ρ, θ,T )QT ∀ Q ∈ O (15)

and representation theorems lead to

D = γ11 + γ2T + γ3T
2, (16)

where the γi, i = 1, 2, 3 depend on ρ, θ, trT , trT 2 and trT 3
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Linearity in the stress leads to

D = [φ0(ρ)] I + [φ1(ρ)] (trT ) I + [φ2(ρ)]T (17)

Starting with this model one can show that the Stokes assumption
is incorrect.
To describe an incompressible fluid within the above context, the
constitutive relation would be

D = α

(
T − 1

3
(trT )

)
(18)

Notice that
trD = 0. (19)
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Leads to exceedingly interesting models for solid behavior. We will
only consider elastic response.
Classical Cauchy elastic body:

T = δ11 + δ2B + δ3B
2 (20)

where the δi, i = 1, 2, 3 depends on ρ, θ, trB, trB2, trB3.
Let us consider an implicit constitutive relation of the form

f(T,B) = 0. (21)

Standard arguments in the case of isotropic bodies leads to

α01 + α1T + α2B + α3T
2 + α4B

2

+α5TB +BT + α6T
2B +BT 2

+α7B
2T +B2 + α8T

2B2 +B2T 2 (22)

where the material moduli αi, i = 0, ..., 8 depend upon

ρ, trB, trT , trB2, trT 2, trB3, trT 3,

trTB, trT 2B, trB2T , trT 2B2
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Notice a model of the form

B = ᾱ01 + ᾱ1T + ᾱ2T
2, (23)

is also a subclass of the above implicit equation.
Suppose we require that

max
X∈κ(B),t∈R

‖∇xu‖ = O(δ), δ << 1, (24)

where ‖.‖ stands for the trace norm, induced through the scalar
product.
It follows that

B = 1 + 2ε+O(δ)2 (25)

In the case of a Cauchy elastic body we are inexorably led to

T = λ(trε)1 + 2µε (26)

We have a linear relationship between the stress and the strain.
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Linearization of the implicit model leads to

ε+α̂11+α̂2T+α̂3T
2+α̂4 [Tε+ εT ]+α̂5

[
T 2ε+ εT 2

]
= 0. (27)

We have a non-linear relationship between the linearized strain
and the stress!!

Has tremendous applications in Fracture Mechanics.

Even when we linearize (27) we obtain

ε = β̂01 + β̂1T + β̂2T
2 (28)

which is yet a non-linear relationship between the linearized
strain and the stress!
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Can show that strains can be bounded at crack tip for the
anti-plane stress problem (Rajagopal and Walton (2011)).

Can show the strain is bounded at the tip of a V-notch
(Kulvait, Malek and Rajagopal (2012)).
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Inelastic Response

Consider (Rajagopal and Srinivasa (2014))

h(σ, ε, θ) = 0. (29)

A process is “elastic ” if

Aε̇+Bσ̇ + αθ̇ = 0 (30)

where A := ∂h
∂ε , B := ∂h

∂σ , α := ∂h
∂θ .

-
(
B
A

)
is the isothermal tangent modulus when θ̇ = 0.(

α
A

)
is the coefficient of expansion.
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Let X={ε, σ, θ} and A0 = ∂h
∂X .

We say that a material is “inelastic” if

A0 · Ẋ = ξ(X, Ẋ). (31)

If ξ ≡ 0, we have an “elastic” body.
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Suppose

ξ(X, Ẋ) = w(X) < µ · Ẋ >= w(X)(µ · Ẋ)(µ · Ẋ), (32)

where µ = µ(X).

A0 · Ẋ =

{
w(X)(µ · Ẋ) ifµ · Ẋ ≥ 0

0 otherwise.
(33)
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Examples (Classical Plasticity)

σ̇ − Eε̇ = −H(σ · ε̇)H(|σ| − σy)ε̇ (34)

If |σ| = σy and σε̇ > 0, then σ̇ = 0

- - -perfect plastic response

σ̇ − Eε̇ = 0 otherwise.
The above corresponds to A0 = (1,−E), µ = (0, σ) and
w = E

σyH(|σ|−σy) .
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We have a sharp transition to yield

Figure : Elastic perfectly plastic response with a sharp yield point ob-
tained by using the model (34)
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Suppose

σ̇ − Eε̇ = −EH(σε̇)[1 + tanh(α|σ| − σy)]ε̇ (35)

Leads to a smooth transition to yield

Figure : Elimination of the sharp yield point by replacing the step
function with a smooth transition as shown in equation 35
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Non-Classical Inelasticity

Intermettalic Alloys (Ti-Ta-Nb-Va-Zr-O)
Suppose

−a(σ+bσ3)σ̇+ ε̇ = f(σ) < σε̇ >, f(σ) =

[
1 + tanhb

(
σ − σy

2σ

)]
.

(36)

Figure : (a) Comparison of the prediction of the model 15 for gum metal
with experiments by Saito et al (b) Predictions of unloading and reload-
ing of gum metal with experiments of Besse et al
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Loss of cohesion(Soils, Rocks)

εσ̇ − σε̇ = H(σ +Kε− σy)(−σ +Kε̇)εH(σε̇). (37)

Figure : (a) A model for a degrading material with loss of stiffness and
with a sharp point of degradation (b) A model with a more gradual onset
of degradation. Notice how the subsequent loading causes a nonlinear
response due to gradual onset of degradation compared to the sudden
onset shown in figure (a). The response replicates, in an idealized way,
the decrease in the moduli of rocks during compressive loading
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Can consider multi-network inelasticity

Also can consider a variety of visco-inelastic responses.
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Implicit constitutive theories are the best way in which to
present constrained materials.

For instance if one wants to model a fluid that is
incompressible to mechanical stimuli but is expansible or
compressible to thermal stimuli, it can be represented, in the
case of the Navier-Stokes Fourier fluid, very simply as
(Rajagopal (2012)).

D = βf (θ)

(
T − 1

3
tr(T )1

)
+

1

3
αf (θ)θ̇1 (38)

The celebrated Oberbeck-Boussinesq approximation follows
very cleanly from the above representation. Practically all the
justifications using the classical approach are either wrong or
most convoluted.
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Relation between the stress, the symmetric part of the
velocity gradient and temperature, if one is interested in
describing the possibility of a fluid that is mechanically
incompressible but can undergo volume changes with regard
to temperature, one would use the constraint:

detF = f(p, θ), (39)

where p = −1
3 trT .

The above constraint (39) can be applied to the class of
models defined through

T = −pI + 2µ(p, θ)

[
D − 1

3
(trD) I

]
. (40)
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Another class of constitutive relations which imply mechanical
incompressibility but thermal compressibility/expansivity is:

D = α(θ)

[
T− 1

3
(trT)1

]
+ β(θ)θ̇. (41)

Note that (41) automatically satisfies trD = 0.
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The above approach can be extended to solids. In the case of
an elastic solid that is incompressible with regard to
mechanical stimuli but can expand or contract due to thermal
stimuli, and which can undergo only small displacement
gradients, the model becomes once again simple and elegant:
ε = γs1(ρ, θ, I1, I2, I3)T d + γs2(ρ, θ, I1, I2, I3)T d

2

The above constraint can be generalized to non-linear elastic
solids, but the model is more complicated.
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• Aristotle has said that the sweetest of all things is
knowledge. And he is right. But if you were to suppose
that the publication of a new view were productive of
unbounded sweetness, you would be highly mistaken. No
one disturbs his fellow man with a new view unpunished.

– E. Mach

• Most people would rather die than think. Most do.

– B. Russell

• Everything of importance has been said by somebody
who did not discover it.

– A. N. Whitehead
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