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Constitutive relations

Governing equations (incompressible homogeneous material):

div v = 0

ρ
dv

dt
= div T + ρb

T = T>

Constitutive relations (Navier–Stokes), D =def
1
2

(
∇v +∇v>

)
:

T = −pI + 2µD

Different perspective, Tr D = div v = 0, Tδ =def T− 1
3 Tr (T) I:

Tδ = 2µD
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Constitutive relations for non-Newtonian fluids

Standard approach: Stress is an function of kinematical variables.

Tδ = f(D)

Example:

Tδ = 2

(
µ∞ +

µ0 − µ∞
(1 + α |D|2)

n
2

)
D

Pierre J. Carreau. Rheological equations from molecular network theories. J. Rheol., 16(1):99–127, 1972

This approach dominates the standard phenomenological theory of
constitutive relations.
C. Truesdell and W. Noll. The non-linear field theories of mechanics. In S. Flüge, editor, Handbuch der Physik,

volume III/3. Springer, Berlin, 1965



Constitutive relations for non-Newtonian fluids

Alternative approach: There is a relation between stress and
kinematical variables.

f(Tδ,D) = 0

Example:

Tδ = 2

(
µ∞ + (µ0 − µ∞) e

−|Tδ|
τ0

)
D

Gilbert R. Seely. Non-newtonian viscosity of polybutadiene solutions. AIChE J., 10(1):56–60, 1964



Constitutive relations for non-Newtonian fluids

Alternative approach: There is a relation between stress and
kinematical variables.

f(Tδ,D) = 0



Shear stress and shear rate

eŷ

eẑ
ex̂

h

x

z

V = Vtopeẑ

∂p
∂z
eẑ

y

V = −Vtopeẑ

T =

Tx̂ x̂ 0 0
0 Tŷ ŷ Tŷ ẑ

0 Tẑ ŷ Tẑ ẑ

 D =
1

2

0 0 0

0 0 dv ẑ

dy

0 dv ẑ

dy 0


σ =def Tŷ ẑ (shear stress) γ̇ =def

dv ẑ

dy
(shear rate)



Example

T ≈ σ (shear stress) D ≈ γ̇ (shear rate, strain rate)

Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359–2362, Sep 1997



Example

T ≈ σ (shear stress) D ≈ γ̇ (shear rate, strain rate)

Navier−Stokes

Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359–2362, Sep 1997



Example

T ≈ σ (shear stress) D ≈ γ̇ (shear rate, strain rate)

Navier−−Stokes

Multivalued constitutive

relations?

Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359–2362, Sep 1997



One-dimensional implicit type relations
One dimensional data:

T ≈ σ (shear stress) D ≈ γ̇ (shear rate, strain rate)

Standard approach (does not work):

Tδ = f(D)

Alternative approach:

f(Tδ,D) = 0 or D = f(Tδ)

Curves:

γ̇ = e−aσ (a1σ + b1) +
(

1− e−bσ
)

(a2σ + b2) (A)

γ̇ =
p1σ

3 + p2σ
2 + p3σ + p4

σ2 + q1σ + q2
(B)

γ̇ =
(
α
(
1 + βσ2

)n
+ γ
)
σ (C)



One dimensional implict type relations – curve fitting



Reconstruction of the tensorial constitutive relation from
one-dimensional data

Task:
f (σ, γ̇) = 0 7→ f (Tδ,D) = 0

Experimental data:

T =

Tx̂ x̂ 0 0
0 Tŷ ŷ Tŷ ẑ

0 Tẑ ŷ Tẑ ẑ

 D =
1

2

0 0 0

0 0 dv ẑ

dy

0 dv ẑ

dy 0


σ =def Tŷ ẑ (shear stress) γ̇ =def

dv ẑ

dy
(shear rate)



Reconstruction of the tensorial constitutive relation from
one-dimensional data – curve B

Task:
f (σ, γ̇) = 0 7→ f (Tδ,D) = 0

Fit of one dimensional experimental data:(
σ2 + q1σ + q2

)
γ̇ =

(
p1σ

2 + p2σ + p3

)
σ

Alternatives: (
|Tδ|2 + q1 |Tδ|+ q2

)
D =

(
p1 |Tδ|2 + p2 |Tδ|+ p3

)
Tδ(

T2
δD + DT2

δ

)
δ

+ q̃1(TδD + DTδ)δ + q2D =
(
p4 |Tδ|2 + p3 |Tδ|+ p2

)
Tδ(

T2
δD + DT2

δ

)
δ

+ q1 |Tδ|D + q2D =
(
p4 |Tδ|2 + p2

)
Tδ + p3

(
T2
δ

)
δ



Non-newtonian fluids and normal stress differences

(a) Weissenberg effect. (b) Barus effect.

Normal stress differences:

N1 =def Tẑ ẑ − Tŷ ŷ

N2 =def Tŷ ŷ − Tx̂ x̂



Non-newtonian fluids and normal stress differences

Navier–Stokes, T = −pI + 2µD:Tx̂ x̂ 0 0
0 Tŷ ŷ Tŷ ẑ

0 Tẑ ŷ Tẑ ẑ

 = −p

1 0 0
0 1 0
0 0 1

+ µ

0 0 0

0 0 dv ẑ

dy

0 dv ẑ

dy 0


A non-newtonian model, T = −pI + 2µD + 4µ̃D2:

Tx̂ x̂ 0 0
0 Tŷ ŷ Tŷ ẑ

0 Tẑ ŷ Tẑ ẑ

 = −p

1 0 0
0 1 0
0 0 1

+ µ

0 0 0

0 0 dv ẑ

dy

0 dv ẑ

dy 0



+ µ̃


0 0 0

0
(
dv ẑ

dy

)2
0

0 0
(
dv ẑ

dy

)2





Key question

What are the implications of the implicit constitutive relations with
respect to the modelling of normal stress differences?



General algebraic implicit constitutive relation – restrictions

Incompressible, homogeneous, isotropic fluid:

α1Tδ+α2D+α3

(
T2
δ

)
δ
+α4

(
D2
)
δ
+α5(TδD + DTδ)δ+α6

(
T2
δD + DT2

δ

)
δ

+ α7

(
TδD

2 + D2Tδ

)
δ

+ α8

(
T2
δD

2 + D2T2
δ

)
δ

= 0

Second law of thermodynamics:

T : D ≥ 0

Dynamical admissibility in simple shear flow:

v =
Vtop

h
eẑ



Simple implicit model α1Tδ + α2D + α3

(
T2
δ

)
δ

= 0
Cauchy stress tensor:

T =

C 0 0
0 C + A T
0 T C + B


Normal stress differences:

N1 =def B−A N2 =def A

Dynamical admissibility:

(A− B)

(
A + B

3
α3 + α1

)
= 0

−α1
A + B

3
− α3

(
3 (A− B)2 − (A + B)2

18
+

2

3
T2

)
= 0

α1T +
α2

2

dv ẑ

dy
+ α3T

A + B

9
= 0



Simple implicit model α1Tδ + α2D + α3

(
T2
δ

)
δ

= 0

Simple model (α is a positive constant):

αTδ −
1

2

∣∣T2
δ

∣∣√1 + γ̃ |D|2

|D|2
D +

(
T2
δ

)
δ

= 0

Features of the model:

I thermodynamically admissible

I dynamically admissible

I nonzero normal stress differences (A = B 6= 0)

Earlier, we have seen that implicit constitutive relations can:

I fit experimental data with S-shaped graphs of shear stress
versus shear rate



Charles M. Schroeder, Hazen P. Babcock, Eric S. G. Shaqfeh, and Steven Chu. Observation of polymer

conformation hysteresis in extensional flow. Science, 301(5639):1515–1519, 2003



Example

T ≈ σ (shear stress) D ≈ γ̇ (shear rate, strain rate)

Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359–2362, Sep 1997



R. I. Tanner. Stresses in dilute-solutions of bead-nonlinear-spring macromolecules. 3. Friction coefficient varying

with dumbbell extension. Trans. Soc. Rheol., 19(4):557–582, 1975



Conclusion
I Some experimental data that can not be interpreted using the

standard models Tδ = f(D).
I Implicit constitutive relations f(Tδ,D) = 0 provide a tool how

to develop constitutive models.
I Building a model using one-dimensional data is always a

problem. (Rethinking of experimental procedures is necessary.)
I Construction of a specific constitutive relation with normal

stress differences effect.
I Construction of a three dimensional fully implicit tensorial

constitutive relations (thermodynamic background).

div v = 0

ρ
dv

dt
= div T + ρb

T = T>

g(Tδ,D) = 0


