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Constitutive relations

Governing equations (incompressible homogeneous material):

divv =0
p% =divT 4 pb

T=T"



Constitutive relations

Governing equations (incompressible homogeneous material):

divv =0
p% =divT + pb
T=T"

Constitutive relations (Navier-Stokes), D =g¢f % (Vv+ V')

T=—pl+2uD



Constitutive relations

Governing equations (incompressible homogeneous material):

divv =0
p% =divT + pb
T=T"

Constitutive relations (Navier-Stokes), D =g¢f % (Vv+ V')
T=—pl+2uD
Different perspective, TrD =divv =0, Ts =qer T — %Tr (M) I

Ts = 2uD



Constitutive relations for non-Newtonian fluids

Standard approach: Stress is an function of kinematical variables.
Ts = §(D)

Example:
Ho — Moo
Ts=2 + ,,) D
=2+

Pierre J. Carreau. Rheological equations from molecular network theories. J. Rheol., 16(1):99-127, 1972

This approach dominates the standard phenomenological theory of
constitutive relations.
C. Truesdell and W. Noll. The non-linear field theories of mechanics. In S. Fliige, editor, Handbuch der Physik,

volume I11/3. Springer, Berlin, 1965



Constitutive relations for non-Newtonian fluids

Alternative approach: There is a relation between stress and
kinematical variables.

f(Ts,D) =0

Example:
LA
Ts =2 pioo + (o — ptoc)e ™ | D

Gilbert R. Seely. Non-newtonian viscosity of polybutadiene solutions. AIChE J., 10(1):56-60, 1964



Constitutive relations for non-Newtonian fluids

Alternative approach: There is a relation between stress and
kinematical variables.
f(Ts,D) =0



Shear stress and shear rate

V= *Vmpes

Ty, 0 O
Ty, T

2z

o =qef Tys (shear stress)




Example

T = o (shear stress)

D = 4 (shear rate, strain rate)
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Philippe Boltenhagen, Yuntao Hu,

E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359-2362, Sep 1997



Example

T = o (shear stress) D ~ 4 (shear rate, strain rate)
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Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359-2362, Sep 1997



Example

T = o (shear stress)

D ~ ¥ (shear rate, strain rate)
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Philippe Boltenhagen, Yuntao Hu, E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359-2362, Sep 1997



One-dimensional implicit type relations
One dimensional data:

T ~ o (shear stress) D = 4 (shear rate, strain rate)

Standard approach (does not work):
Ts = §(D)
Alternative approach:
f(Ts,D) =0 or D = {(Ts)
Curves:

Yy =e" (a1o+ b1) + (1 — e_b") (a20 + b2)

5= p10> + p20? + p30 + pa
02+ qio+ q2

v = (a(1+ﬁ02)n+7>0




One dimensional implict type
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Reconstruction of the tensorial constitutive relation from
one-dimensional data

Task:
f(O',’.}/) =0 f(Tﬁa D) =0

Experimental data:

Tee, 0 0 000
dv?
0 T, T, 0 ¥ 9

dv?
dy

o =gef Tys (shear stress) A =def (shear rate)



Reconstruction of the tensorial constitutive relation from
one-dimensional data — curve B

Task:
f((fvﬁ.y) =0~ f(T§aD) =0

Fit of one dimensional experimental data:
(0® + q1o + @) ¥ = (p10® + p20 + p3) o
Alternatives:
(ITs> + a1 ITsl + a2) D = (p1 [Tol” + p2 [Ts| + p3) T
(T30 +DT3), + &(TsD + DTy); + 62D = (pua [Ts + p3[Tsl + p2) Ts

(T30 +DT3); + a1 Ts| D+ 2D = (e [Tsl> + p2) Ts + p3(T3)



Non-newtonian fluids and normal stress differences

(a) Weissenberg effect. (b) Barus effect.

Normal stress differences:

N1 =qer Ty — Ty

N2 —def Tyy/ - Ty

XX



Non-newtonian fluids and normal stress differences

Navier-Stokes, T = —pl 4+ 2uD:

T, 0 0 100 0 0 0
dv?
0 Tyy Tyl =—p (0 1 0 bp )0 0

0 T, Ty 00 1 0 4 o

A non-newtonian model, T = —pl + 2uD + 4/iD?:

Te, 00 100 0 0 0
dv?

Ty Toa| =—p |0 1 0| +4 |0 dO% dy
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Key question

What are the implications of the implicit constitutive relations with
respect to the modelling of normal stress differences?



General algebraic implicit constitutive relation — restrictions

Incompressible, homogeneous, isotropic fluid:

a1Ts+02D+a3(T5) s+0a(D?) s+as(TsD + DTs)5+ae (T;D + DT3) 4
+ a7(TsD? + D*Ty); + ag(T3D* + D*T5), =0
Second law of thermodynamics:
T:D>0
Dynamical admissibility in simple shear flow:

Vio
— P
vV = h ez




Simple implicit model a1 Ts + asD + a3 (T§>5 =0

Cauchy stress tensor:

C 0 0
T=10 C+A T
0 T C+B
Normal stress differences:

N1 =gef B— A No =ger A

Dynamical admissibility:




Simple implicit model a1 Ts + asD + a3 (T§>5 =0

Simple model (« is a positive constant):

T ‘\/1+’y|D _
5_,

2 Df?

Features of the model:
» thermodynamically admissible
» dynamically admissible

» nonzero normal stress differences (A = B # 0)

Earlier, we have seen that implicit constitutive relations can:

> fit experimental data with S-shaped graphs of shear stress
versus shear rate



Fractional extension
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Fig. 1. Sketch of de Gennes’ classic steady-
state extension curve for polymers in exten-
sional flow. De Gennes argued that polymers
could exist in two physically realizable states (a
stretched "S" and coiled "C" state) in a narrow
range of flow strengths. The coiled and
stretched polymer configurations correspond
to free-energy minima E/KT in a double-welled
potential, separated by an energy barrier with a
maximum at extension “P.” If a coiled polymer
is exposed to an adiabatic increase in the strain
rate, there would exist a particular ¢ = ¢* at
which E S/kT = ES/kT, at which the polymer
would spend equal amounts of time in the
coiled and stretched states. However, given the
limited residence and observation times for
polymers in extensional flows, a hysteresis in
extension would occur for most practical situ-
ations for € between ¢ _; and €__ .

Using simple polymer kinetic theory, de
Gennes arrived at an S-shaped curve for the
steady-state polymer extension versus De
(Fig. 1) and argued that in a narrow range of
flow strengths near the coil-stretch transition,
three molecular configurations were possible:
a highly stretched “S” state, a compacted
coiled “C” state, and a physically unstable
“P” configuration.

The behavior of long-chain polymers near
this phase transition has been a highly debat-
ed topic for several decades. Although the
notion of conformation hysteresis was sup-

Fig. 2. (A) Classic first-
order phase transition for
vaporization or fusion of a
pure substance. For tem-
peratures T less than a
critical temperature T,,
vapor and liquid phases
may coexist along an iso-
therm T, where the molar
free energies of the liquid
and vapor phases are
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f: \

neous mixture of two states with well-defined
molar volumes. Saturated vapors can be sub-
cooled into metastable states in the absence
of liquid nucleation sites; similarly, saturated
liquids may be superheated into the two-
phase region specified by the dotted line. In
both cases, the system is kinetically trapped
in a local minimum of free energy. The pres-
ence of hysteresis is a signature of a first-
order phase transition with an associated la-
tent heat.

By analogy, polymers above a critical
length M, can exist in two stable states of

~ Stretched M,

Coiled
\ $
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equal. A cubic equation of T
state is merely an approx-
imation to actual phase

Molar volume

Strain rate

behavior (dashed line). (B) Coil-stretch phase transition for flexible polymers in extensional flows.
For linear polymers with molecular weights M, greater than a critical molecular weight M,,
configuration hysteresis is possible in a range of De. Clearly, the steady-state extension will be a
function of the deformation history of the polymer. The coil-stretch transition (given by the vertical
dotted line) may be defined at the strain rate where the configurational free energies of the

stretched and coiled states are equal for M > M,

Charles M. Schroeder, Hazen P. Babcock, Eric S. G. Shaqfeh, and Steven Chu. Observation of polymer

conformation hysteresis in extensional flow. Science, 301(5639):1515-1519, 2003



Example

T = o (shear stress)

D = 4 (shear rate, strain rate)
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Philippe Boltenhagen, Yuntao Hu,

E. F. Matthys, and D. J. Pine. Observation of bulk phase separation and

coexistence in a sheared micellar solution. Phys. Rev. Lett., 79:2359-2362, Sep 1997



would still not be present.) We also see that, contrary to the
statement by Truesdell and Noll (ref. 11, p. 473), it is possible to
distinguish some simple fluids from Reiner-Rivlin fluids in experi-
ments in simple elongation, because we have here exhibited some
simple fluids which do not always obey the usual rules for finite
memory of the past, whereas the Reiner-Rivlin fluids respond only
to the instantaneous kinematic field. Perhaps the most important
aspect of the present investigation is that it serves as a cautionary
tale. Despite the simplicity and deceptive innocence of the micro-

R. I. Tanner. Stresses in dilute-solutions of bead-nonlinear-spring macromolecules. 3. Friction coefficient varying

with dumbbell extension. Trans. Soc. Rheol., 19(4):557-582, 1975



Conclusion

>

Some experimental data that can not be interpreted using the
standard models T5 = (D).

Implicit constitutive relations f(Ts, D) = 0 provide a tool how
to develop constitutive models.

Building a model using one-dimensional data is always a
problem. (Rethinking of experimental procedures is necessary.)
Construction of a specific constitutive relation with normal
stress differences effect.

Construction of a three dimensional fully implicit tensorial
constitutive relations (thermodynamic background).

divv =20
p% =divT + pb
T=T"

9(Ts,D) =0



