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Introduction

Let Ω ⊂ �2 be a bounded domain with boundary ∂Ω and f be a
function defined on Ω̄

We are interested in interpolating f on Ω̄ with bivariate
polynomials of total degree d

Let X = {ξi}Ni=1 = {(xi , yi )}Ni=1 with N = (d + 1)(d + 2)/2 be a
unisolvent set of points in Ω̄

The N Lagrange polynomials `j related to these points are such
that `j is equal to 1 at point ξj and zero at the other points
The interpolating polynomial is

p(ξ) =
N∑
j=1

f (ξj)`j(ξ)



Interpolation error

We have
‖f − p‖∞ ≤ (1 + λX )‖f − p∗‖∞

where p∗ is the polynomial of best approximation to f in the
∞-norm and

λX = max
ξ∈Ω̄

ΛX (ξ)

is the Lebesgue constant,

ΛX (ξ) =
N∑
i=1

|`i (ξ)|

is the Lebesgue function



Hence, it makes sense to try to choose the set of points X to
minimize the Lebesgue constant or, at least, to have a small
Lebesgue constant

However, the problem

min
X

max
ξ∈Ω̄

N∑
i=1

|`i (ξ)|

is difficult to solve

I The function is not differentiable

I The Lebesgue function is oscillating and the max difficult to
compute

Note that the number of unknowns is 2N



Bivariate orthogonal polynomials

A way to compute the Lagrange polynomials is to use the
(discrete) orthogonal polynomials associated with X

〈ϕi , ϕj〉 =
1

N

N∑
k=1

ϕi (ξk)ϕj(ξk) = δi ,j

Then

`j(ξ) =
1

N

N∑
k=1

ϕk(ξj)ϕk(ξ)



Currently we have two ways to compute the orthogonal polynomials

I The method of Van Barel & al which is an extension of what
was done by Gragg and Harrod, Reichel for the univariate case

I The Lanczos-like method from Huhtanen and Larsen

The second method suffers more from rounding errors but
A. Sommariva proposed to use it with a double reorthogonalization

Even in this case, it is much faster than the other method



We choose an ordering of the monomials x iy j

We start from a vector of unit norm with components 1/
√
N. Let

Dx and Dy be the diagonal matrices corresponding to the
coordinates of the points

We multiply successively by Dx or Dy to obtain the monomials in
the order we need and we orthogonalize with respect to the
previous vectors

Since we generally loose orthogonality we double reorthogonalize at
the end

From this we obtain the recursion coefficients for the orthogonal
polynomials
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Square: Padua points for d = 6
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Square: Padua points for d = 6, multiplication matrices for x and y
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Sets of points with a small Lebesgue constant

Even though the minimization of the Lebesgue constant can be
done it is rather expensive for large degrees

Instead we propose to minimize the following functional

min
X , ξj∈Ω̄

IΩ, IΩ =

{∫
Ω

[`1(x , y)2 + · · ·+ `N(x , y)2] dxdy

} 1
2

It is sometimes better to add a boundary integral and to minimize

min
X , ξj∈Ω̄

IΩ,∂Ω, IΩ,∂Ω =

{
I 2
Ω + µ

∫
∂Ω

[`1(ξ)2 + · · ·+ `N(ξ)2] ds

} 1
2

where µ is a positive real number



For the minimization we use a translation to Matlab of the
algorithm praxis proposed by R. Brent

Algorithms for Minimization without Derivatives, Prentice Hall
(1973), reprinted by Dover (2002)

The values of the integrals are computed with cubature formulas
proposed by Sommariva and Vianello (Padua university)

With a large enough number of nodes we can integrate exactly our
polynomials



Refinement (1)

Even though the Lebesgue constants are not increasing too fast
with the degree, they are not as good as those known in the
literature for the unit square

Therefore, we add refinement algorithms after the minimization
process inspired by what was done by Van Barel and al

For all the points in turn, we remove the point from the point set,
compute the new approximate maximum of the Lebesgue function
(using praxis) and put a point there. We iterate several times
this process

Along this algorithm we keep the best distribution obtained so far
that is, the one with the smallest Lebesgue constant



Refinement (2)

Even when using this refinement process in some cases we still
have a quite large global maximum

Then we look for the point closest to this maximum and minimize
the Lebesgue constant as a function of the two coordinates of this
point. This is done using a fine mesh to locate the maximum

We denote this as local minimization



Examples
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Square: Lebesgue constant with L2-norm minimization as a function of

the degree



2 4 6 8 10 12 14 16
2

3

4

5

6

7

8

9

10

11

12
Square: Results after refinement

 

 

mu=0
mu=0.25
mu=0.5
mu=1
best

Square: Lebesgue constant with L2-norm minimization + refinement as a

function of the degree
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Square: Lebesgue constant with L2-norm minimization + refinement +

local min as a function of the degree
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Square: The distribution of points for degree 15



Double bubble

The domain is the union of 2 disks:

center (0,0), radius 5

center (6,0), radius 3



Double bubble
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Double bubble: Lebesgue constant with L2-norm minimization as a

function of the degree
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Double bubble: Lebesgue constant with L2-norm minimization +

refinement as a function of the degree
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Double bubble: Lebesgue constant with L2-norm minimization +

refinement + local min as a function of the degree
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Double bubble: Lebesgue function, d = 10, µ = 3
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Double bubble: The distribution of points for degree 10, µ = 3



Interpolation

We use the orthogonal polynomials to compute the Lagrange
polynomials and the interpolates of the functions:

f1 = cos(x + y),

f4 = |x − 1/2|+ |y − 1/2|

We consider the square and the double bubble
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Square: interpolation error as a function of the degree, function f1
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Square: interpolation error as a function of the degree, function f4
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Double bubble: interpolation error as a function of the degree, function f1
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Double bubble: interpolation error as a function of the degree, function f4



Conclusion

I We obtain sets of points with small Lebesgue constants using
minimization of an integral

I The values of the functional are computed using bivariate
orthogonal polynomials

I We use cubature formulas to compute the integrals

I This can be done for any bounded 2D domain for which we
have an indicating function and a cubature formula
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