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◮ L is said to be positive definite onPk if ∆0, . . . ,∆k are positive and

m0, . . . ,m2k are real

◮ There exists some positive Borel measureµ supported on the real axis

such thatL(P ) =
∫
P (x)dµ(x) for all P fromPk

◮ L is said to be quasi-definite onPk if ∆j 6= 0, for j = 0, 1, . . . , k
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◮ L(f) =
n∑

k=1

λkf(yk) +Rn(f), Rn(f) = 0 for all f ∈ P2n−1

◮ Gauss quadrature must beinterpolatory

◮ Interpolatory quadrature is GQ iff the polynomial

ωn(x) =
∏n

i=1(x− yi) satisfyL(ωnP ) = 0 for all P fromPn−1

◮ G1: Then-point Gauss quadrature attains the maximum possible

algebraic degree of exactness which is2n− 1.

◮ G2: If n ≤ k thenn-point Gauss quadrature exists and is unique

◮ G3: The Gauss quadrature can be written in the formm0e
T
1 f(Jn)e1
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◮ π0, π1, . . . is a sequence of orthogonal polynomials w.r. toL if:

1. deg(πj) = j (πj is of degreej),

2. L(πi πj) = 0, i < j,

3. L(π2
j ) 6= 0.

◮ Sequenceπ0, . . . , πk of orthogonal polynomials w.r. toL exists if and

only if L is quasi definite onPk

◮ OP are unique up to constant factor, they satisfy three-termrecurrence

relation

◮ Their coefficients does not have to be real, zeros does not have to be

simple and real

◮ Coefficients from three-term r.r. can be complex
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◮ Jn - complex Jacobi matrix: three-diagonal, symmetric, no zeros on

sub-diagonal
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◮ The following properties are equivalent:

1. J is diagonalizable

2. Eigenvalues ofJ are distinct

3. J is orthogonally diagonalizableZTJZ = diag(λ1, . . . , λn)

4. None of the eigenvectors ofJ is isotropic (v 6= 0 andvT
v = 0).

◮ The following properties are equivalent:

1. J is not diagonalizable

2. All eigenvalues ofJ are not distinct

3. J is not orthogonally similar to its Jordan form

4. One of the eigenvectors is isotropic .

◮ Matching moment property:L(xi) = m0e
T
1 J

i
ne1, i = 0, . . . , 2n− 1,
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◮ ADE is at least2n− 1 iff the polynomialωn(x) =
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i=1(x− zi)

satisfyL(ωnP ) = 0 for all P fromPn−1

◮ GQ exists if and only if:

1. L is quasi-definite onPn,

2. Corresponding Jacobi matrixJn is digonalizable.

◮ Gragg, Rocky Mountain J. Math. (1974)

◮ Saylor and Smolarski, Numer. Algorithms (2001)
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L(f) =
ℓ∑

i=1

si−1∑

h=0

Ai,h f
(h)(zi) +Rn(f), n = s1 + . . .+ sℓ

◮ It has degree of exactness2n− 1 if and only if:

1. it is exact onPn−1

2. πn(x) = (x− z1)
s1(x− z2)

s2 . . . (x− zℓ)
sℓ , where{πj}

n
j=0 is

the sequence of monic orthogonal polynomials with respect toL

◮ quadrature= L(Tn−1)

◮ Tn−1 - the interpolating polynomial off in the nodeszi of

multiplicitiessi

◮ Should we call it Gauss quadrature? (G1, G2 and G3)
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si is the multiplicity ofzi as a zero ofπn

◮ Jn = Wdiag(Λ1, . . . ,Λℓ)W
−1 - Jordan decomposition
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◮

e
T
1 f(Jn)e1 = e

T
1 W diag(f(Λ1), . . . , f(Λℓ))W

−1
e
T
1 =

ℓ
∑

i=1

si−1
∑

h=0

Bi,hf
(h)(zi)

◮ m0e
T
1 f(Jn)e1 = L(f), for all f ∈ P2n−1
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◮ LetL be quasi-definite onPn−1, but not onPn

◮ There exists a unique monic polynomialπn of degreen which is

orthogonal toPn−1

◮ L(π2
n) = 0 ⇒ there isn-weight quadratureQn whose degree of

exactness is at least2n

◮ Problem 1: If we only know the momentsm0, . . . ,m2n, we cannot

determine the degree of exactness. Ifm2n+1 = Qn(x
2n+1) then the

degree of exactness ofQn is at least2n+ 1. If Qn(x
2n+1) 6= m2n+1

then the degree of exactness is2n. And so on.

◮ Problem 2: The construction ofQn+1. Monic polynomialπn+1 of

degreen+ 1 which is orthogonal toPn either does not exist or there

are infinitely many of them. SoQn+1 either does not exist or it is not

unique.
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◮ The zeros ofπ2 arex1 = x2 = 2, which means that the 2-point Gauss quadrature does

not exist. In other words, the nonlinear system
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k
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k
2 = mk, k = 0, 1, 2, 3,

has no solution inC
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◮ J3 is diagonalizable,J2 is not diagonalizable.
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Example
◮ Instead of 2-point we have 2-weight Gauss quadrature of the form: A1f(2) +A2f

′(2).

It is easy to check that the nonlinear system

A1 · 1 +A2 · 0 = 1

A1z1 +A2 · 1 = 3

A1z
2
1 +A2(2z1) = 8

A1z
3
1 +A2(3z

2
1) = 20

has unique solution (inC): A1 = 1, A2 = 1, z1 = 2. So the quadraturef(2) + f ′(2)

has degree of exactness 3. Its degree of exactness would be higher if and only if

m4 = 24 + 4 · 23 = 48. But in that case we would have∆2 = 0, i.e.L would not be

quasi definite onP2.
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m4 = 24 + 4 · 23 = 48. But in that case we would have∆2 = 0, i.e.L would not be
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◮ The functionalL1 whose first five moments are

m0 = 1, m1 = 3, m2 = 8, m3 = 20, m4 = 48,

is not quasi-definite onP2. If m5 = 25 + 5 · 24 = 112 then the quadrature

f(2) + f ′(2) would have degree of exactness at least 5.
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THANK YOU FOR YOUR ATTENTION!
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