Complex Gauss quadratures

Miroslav Pranić

Department of Mathematics, University of Banja Luka

joint work with **Stefano Pozza and Zdeněk Strakoš**

Conference of the project ERC-CZ MORE

Liblice, September 21-26, 2014

▶ Mail goal: Can we define Gauss quadratures for approximations of linear functionals which are not positive definite? How far we can go with generalization?

- ▶ Mail goal: Can we define Gauss quadratures for approximations of linear functionals which are not positive definite? How far we can go with generalization?
- ► Yes, for quasi definite functionals

- ▶ Mail goal: Can we define Gauss quadratures for approximations of linear functionals which are not positive definite? How far we can go with generalization?
- ➤ Yes, for quasi definite functionals
- ▶ Questionable (no), if functional is not quasi definite

- ▶ **Mail goal**: Can we define Gauss quadratures for approximations of linear functionals which are not positive definite? How far we can go with generalization?
- ➤ Yes, for quasi definite functionals
- ▶ Questionable (no), if functional is not quasi definite
- Complex Jacobi matrices

 $ightharpoonup \mathcal{L}$ is a linear functional on some space of functions containing the space of polynomials

- $ightharpoonup \mathcal{L}$ is a linear functional on some space of functions containing the space of polynomials
- \triangleright \mathcal{P}_n space of polynomials of degree up to n

- $ightharpoonup \mathcal{L}$ is a linear functional on some space of functions containing the space of polynomials
- $ightharpoonup \mathcal{P}_n$ space of polynomials of degree up to n
- \blacktriangleright L is fully determined by its moments $m_j = \mathcal{L}(x^j), j = 0, 1, \dots$

- \blacktriangleright \mathcal{L} is a linear functional on some space of functions containing the space of polynomials
- $ightharpoonup \mathcal{P}_n$ space of polynomials of degree up to n
- \triangleright \mathcal{L} is fully determined by its moments $m_j = \mathcal{L}(x^j), j = 0, 1, \dots$

$$\blacktriangleright \text{ Hankel determinants } \Delta_j = \begin{vmatrix} m_0 & m_1 & \dots & m_j \\ m_1 & m_2 & \dots & m_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_j & m_{j+1} & \dots & m_{2j} \end{vmatrix}$$

- \blacktriangleright \mathcal{L} is a linear functional on some space of functions containing the space of polynomials
- \triangleright \mathcal{P}_n space of polynomials of degree up to n
- \triangleright \mathcal{L} is fully determined by its moments $m_j = \mathcal{L}(x^j), j = 0, 1, \dots$

$$\blacktriangleright \text{ Hankel determinants } \Delta_j = \begin{vmatrix} m_0 & m_1 & \dots & m_j \\ m_1 & m_2 & \dots & m_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_j & m_{j+1} & \dots & m_{2j} \end{vmatrix}$$

 \triangleright \mathcal{L} is said to be positive definite on \mathcal{P}_k if $\Delta_0, \ldots, \Delta_k$ are positive and m_0, \ldots, m_{2k} are real

- \blacktriangleright \mathcal{L} is a linear functional on some space of functions containing the space of polynomials
- \triangleright \mathcal{P}_n space of polynomials of degree up to n
- \blacktriangleright \mathcal{L} is fully determined by its moments $m_j = \mathcal{L}(x^j), j = 0, 1, \dots$

$$\blacktriangleright \text{ Hankel determinants } \Delta_j = \begin{vmatrix} m_0 & m_1 & \dots & m_j \\ m_1 & m_2 & \dots & m_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_j & m_{j+1} & \dots & m_{2j} \end{vmatrix}$$

- \blacktriangleright \mathcal{L} is said to be positive definite on \mathcal{P}_k if $\Delta_0, \ldots, \Delta_k$ are positive and m_0, \ldots, m_{2k} are real
- There exists some positive Borel measure μ supported on the real axis such that $\mathcal{L}(P) = \int P(x)d\mu(x)$ for all P from \mathcal{P}_k

- \blacktriangleright \mathcal{L} is a linear functional on some space of functions containing the space of polynomials
- \triangleright \mathcal{P}_n space of polynomials of degree up to n
- \triangleright \mathcal{L} is fully determined by its moments $m_j = \mathcal{L}(x^j), j = 0, 1, \dots$

$$lackbox{lackbox{}}$$
 Hankel determinants $\Delta_j = egin{bmatrix} m_0 & m_1 & \dots & m_j \ m_1 & m_2 & \dots & m_{j+1} \ dots & dots & \ddots & dots \ m_j & m_{j+1} & \dots & m_{2j} \ \end{pmatrix}$

- \blacktriangleright \mathcal{L} is said to be positive definite on \mathcal{P}_k if $\Delta_0, \ldots, \Delta_k$ are positive and m_0, \ldots, m_{2k} are real
- There exists some positive Borel measure μ supported on the real axis such that $\mathcal{L}(P) = \int P(x)d\mu(x)$ for all P from \mathcal{P}_k
- \triangleright \mathcal{L} is said to be quasi-definite on \mathcal{P}_k if $\Delta_j \neq 0$, for $j = 0, 1, \ldots, k$

Gauss quadrature for positive definite $\mathcal L$

 $ightharpoonup p_0(x), p_1(x), \ldots, p_n(x)$ - orthonormal polynomials w.r. to \mathcal{L}

Gauss quadrature for positive definite $\mathcal L$

- $ightharpoonup p_0(x), p_1(x), \dots, p_n(x)$ orthonormal polynomials w.r. to \mathcal{L}
- ► They exist, they are unique and have **real** coefficients

Gauss quadrature for positive definite $\mathcal L$

- $ightharpoonup p_0(x), p_1(x), \dots, p_n(x)$ orthonormal polynomials w.r. to \mathcal{L}
- ► They exist, they are unique and have **real** coefficients

►
$$xp_i(x) = \sum_{j=i-1}^{i+1} t_{i,j}p_j(x), \quad t_{i,j} = \mathcal{L}(xp_i(x)p_j(x)) = t_{j,i} \in \mathbb{R}$$

Gauss quadrature for positive definite \mathcal{L}

- $ightharpoonup p_0(x), p_1(x), \dots, p_n(x)$ orthonormal polynomials w.r. to \mathcal{L}
- ► They exist, they are unique and have **real** coefficients

►
$$xp_i(x) = \sum_{j=i-1}^{i+1} t_{i,j} p_j(x), \quad t_{i,j} = \mathcal{L}(xp_i(x)p_j(x)) = t_{j,i} \in \mathbb{R}$$

Gauss quadrature for positive definite \mathcal{L}

- $ightharpoonup p_0(x), p_1(x), \dots, p_n(x)$ orthonormal polynomials w.r. to \mathcal{L}
- ► They exist, they are unique and have **real** coefficients

►
$$xp_i(x) = \sum_{j=i-1}^{i+1} t_{i,j} p_j(x), \quad t_{i,j} = \mathcal{L}(xp_i(x)p_j(x)) = t_{j,i} \in \mathbb{R}$$

$$J_n = \begin{bmatrix} t_{0,1} & t_{0,1} \\ t_{1,0} & t_{1,1} & t_{1,2} \\ & t_{2,1} & t_{2,2} & t_{2,3} \\ & & \ddots & t_{n-2,n-1} \\ & & & t_{n-1,n-2} & t_{n-1,n-1} \end{bmatrix}$$

$$\mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}$$

$$\mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}$$

► Gauss quadrature must be **interpolatory**

$$\mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}$$

- ► Gauss quadrature must be **interpolatory**
- ► Interpolatory quadrature is GQ iff the polynomial

$$\omega_n(x) = \prod_{i=1}^n (x - y_i)$$
 satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}

$$\mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}$$

- ► Gauss quadrature must be **interpolatory**
- Interpolatory quadrature is GQ iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x y_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- ▶ G1: The n-point Gauss quadrature attains the maximum possible algebraic degree of exactness which is 2n 1.

$$\mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}$$

- ► Gauss quadrature must be **interpolatory**
- Interpolatory quadrature is GQ iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x y_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- ▶ G1: The n-point Gauss quadrature attains the maximum possible algebraic degree of exactness which is 2n 1.
- ▶ G2: If $n \le k$ then n-point Gauss quadrature exists and is unique

$$\mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}$$

- ► Gauss quadrature must be **interpolatory**
- Interpolatory quadrature is GQ iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x y_i) \text{ satisfy } \mathcal{L}(\omega_n P) = 0 \text{ for all } P \text{ from } \mathcal{P}_{n-1}$
- ▶ G1: The n-point Gauss quadrature attains the maximum possible algebraic degree of exactness which is 2n 1.
- ▶ G2: If $n \le k$ then n-point Gauss quadrature exists and is unique
- ▶ G3: The Gauss quadrature can be written in the form $m_0 \mathbf{e}_1^T f(J_n) \mathbf{e}_1$

- \blacktriangleright π_0, π_1, \dots is a sequence of orthogonal polynomials w.r. to \mathcal{L} if:
 - 1. $deg(\pi_j) = j \ (\pi_j \text{ is of degree } j),$
 - 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j,$
 - 3. $\mathcal{L}(\pi_i^2) \neq 0$.

- \blacktriangleright π_0, π_1, \ldots is a sequence of orthogonal polynomials w.r. to \mathcal{L} if:
 - 1. $deg(\pi_j) = j \ (\pi_j \text{ is of degree } j),$
 - 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j,$
 - 3. $\mathcal{L}(\pi_i^2) \neq 0$.
- Sequence π_0, \dots, π_k of orthogonal polynomials w.r. to \mathcal{L} exists if and only if \mathcal{L} is quasi definite on \mathcal{P}_k

- $\rightarrow \pi_0, \pi_1, \dots$ is a sequence of orthogonal polynomials w.r. to \mathcal{L} if:
 - 1. $deg(\pi_j) = j \ (\pi_j \text{ is of degree } j),$
 - 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j,$
 - 3. $\mathcal{L}(\pi_i^2) \neq 0$.
- Sequence π_0, \ldots, π_k of orthogonal polynomials w.r. to \mathcal{L} exists if and only if \mathcal{L} is quasi definite on \mathcal{P}_k
- ► OP are unique up to constant factor, they satisfy three-term recurrence relation

- \blacktriangleright π_0, π_1, \ldots is a sequence of orthogonal polynomials w.r. to \mathcal{L} if:
 - 1. $deg(\pi_j) = j \ (\pi_j \text{ is of degree } j),$
 - 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j,$
 - 3. $\mathcal{L}(\pi_i^2) \neq 0$.
- Sequence π_0, \ldots, π_k of orthogonal polynomials w.r. to \mathcal{L} exists if and only if \mathcal{L} is quasi definite on \mathcal{P}_k
- ► OP are unique up to constant factor, they satisfy three-term recurrence relation
- ► Their coefficients does not have to be real, zeros does not have to be simple and real

- \blacktriangleright π_0, π_1, \ldots is a sequence of orthogonal polynomials w.r. to \mathcal{L} if:
 - 1. $deg(\pi_j) = j \ (\pi_j \text{ is of degree } j),$
 - 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j,$
 - 3. $\mathcal{L}(\pi_i^2) \neq 0$.
- Sequence π_0, \ldots, π_k of orthogonal polynomials w.r. to \mathcal{L} exists if and only if \mathcal{L} is quasi definite on \mathcal{P}_k
- ► OP are unique up to constant factor, they satisfy three-term recurrence relation
- ► Their coefficients does not have to be real, zeros does not have to be simple and real
- ► Coefficients from three-term r.r. can be complex

 $ightharpoonup p_0, \ldots, p_n$ - orthonormal

 $ightharpoonup p_0, \ldots, p_n$ - orthonormal

 $ightharpoonup p_0, \ldots, p_n$ - orthonormal

 $ightharpoonup J_n$ - complex Jacobi matrix: three-diagonal, symmetric, no zeros on sub-diagonal

Complex Jacobi matrices

- ► The following properties are equivalent:
 - 1. J is diagonalizable
 - 2. Eigenvalues of J are distinct
 - 3. J is orthogonally diagonalizable $Z^TJZ = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$
 - 4. None of the eigenvectors of J is isotropic ($\mathbf{v} \neq \mathbf{0}$ and $\mathbf{v}^T \mathbf{v} = 0$).

Complex Jacobi matrices

- ► The following properties are equivalent:
 - 1. J is diagonalizable
 - 2. Eigenvalues of J are distinct
 - 3. J is orthogonally diagonalizable $Z^TJZ = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$
 - 4. None of the eigenvectors of J is isotropic ($\mathbf{v} \neq \mathbf{0}$ and $\mathbf{v}^T \mathbf{v} = 0$).
- ► The following properties are equivalent:
 - 1. J is not diagonalizable
 - 2. All eigenvalues of J are not distinct
 - 3. J is not orthogonally similar to its Jordan form
 - 4. One of the eigenvectors is isotropic.

Complex Jacobi matrices

- ► The following properties are equivalent:
 - 1. J is diagonalizable
 - 2. Eigenvalues of J are distinct
 - 3. J is orthogonally diagonalizable $Z^TJZ = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$
 - 4. None of the eigenvectors of J is isotropic ($\mathbf{v} \neq \mathbf{0}$ and $\mathbf{v}^T \mathbf{v} = 0$).
- ► The following properties are equivalent:
 - 1. J is not diagonalizable
 - 2. All eigenvalues of J are not distinct
 - 3. J is not orthogonally similar to its Jordan form
 - 4. One of the eigenvectors is isotropic.
- ▶ Matching moment property: $\mathcal{L}(x^i) = m_0 \mathbf{e}_1^T J_n^i \mathbf{e}_1, \ i = 0, \dots, 2n-1,$

 $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) 2n-1

- ▶ $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) 2n 1
- ADE is at least 2n-1 iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x-z_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}

- $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) 2n-1
- ADE is at least 2n-1 iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x-z_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- ► GQ exists if and only if:
 - 1. \mathcal{L} is quasi-definite on \mathcal{P}_n ,
 - 2. Corresponding Jacobi matrix J_n is digonalizable.

- ▶ $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) 2n 1
- ADE is at least 2n-1 iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x-z_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- ► GQ exists if and only if:
 - 1. \mathcal{L} is quasi-definite on \mathcal{P}_n ,
 - 2. Corresponding Jacobi matrix J_n is digonalizable.
- ► Gragg, Rocky Mountain J. Math. (1974)

- $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) 2n-1
- ADE is at least 2n-1 iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x-z_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- ► GQ exists if and only if:
 - 1. \mathcal{L} is quasi-definite on \mathcal{P}_n ,
 - 2. Corresponding Jacobi matrix J_n is digonalizable.
- ► Gragg, Rocky Mountain J. Math. (1974)
- ► Saylor and Smolarski, Numer. Algorithms (2001)

$$\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i - 1} A_{i,h} f^{(h)}(z_i) + R_n(f), \qquad n = s_1 + \ldots + s_{\ell}$$

\overline{GQ} for quasi definite \mathcal{L}

$$\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i - 1} A_{i,h} f^{(h)}(z_i) + R_n(f), \qquad n = s_1 + \ldots + s_{\ell}$$

- ▶ It has degree of exactness 2n-1 if and only if:
 - 1. it is exact on \mathcal{P}_{n-1}
 - 2. $\pi_n(x) = (x z_1)^{s_1} (x z_2)^{s_2} \dots (x z_\ell)^{s_\ell}$, where $\{\pi_j\}_{j=0}^n$ is the sequence of monic orthogonal polynomials with respect to \mathcal{L}

$$\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i - 1} A_{i,h} f^{(h)}(z_i) + R_n(f), \qquad n = s_1 + \ldots + s_{\ell}$$

- ▶ It has degree of exactness 2n-1 if and only if:
 - 1. it is exact on \mathcal{P}_{n-1}
 - 2. $\pi_n(x) = (x z_1)^{s_1} (x z_2)^{s_2} \dots (x z_\ell)^{s_\ell}$, where $\{\pi_j\}_{j=0}^n$ is the sequence of monic orthogonal polynomials with respect to \mathcal{L}
- quadrature = $\mathcal{L}(T_{n-1})$

$$\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i - 1} A_{i,h} f^{(h)}(z_i) + R_n(f), \qquad n = s_1 + \ldots + s_{\ell}$$

- ▶ It has degree of exactness 2n-1 if and only if:
 - 1. it is exact on \mathcal{P}_{n-1}
 - 2. $\pi_n(x) = (x z_1)^{s_1} (x z_2)^{s_2} \dots (x z_\ell)^{s_\ell}$, where $\{\pi_j\}_{j=0}^n$ is the sequence of monic orthogonal polynomials with respect to \mathcal{L}
- ightharpoonup quadrature = $\mathcal{L}(T_{n-1})$
- ▶ T_{n-1} the interpolating polynomial of f in the nodes z_i of multiplicities s_i

$$\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i - 1} A_{i,h} f^{(h)}(z_i) + R_n(f), \qquad n = s_1 + \ldots + s_{\ell}$$

- ▶ It has degree of exactness 2n-1 if and only if:
 - 1. it is exact on \mathcal{P}_{n-1}
 - 2. $\pi_n(x) = (x z_1)^{s_1} (x z_2)^{s_2} \dots (x z_\ell)^{s_\ell}$, where $\{\pi_j\}_{j=0}^n$ is the sequence of monic orthogonal polynomials with respect to \mathcal{L}
- quadrature = $\mathcal{L}(T_{n-1})$
- $ightharpoonup T_{n-1}$ the interpolating polynomial of f in the nodes z_i of multiplicities s_i
- ► Should we call it Gauss quadrature? (G1, G2 and G3)

 \blacktriangleright existence iff $\mathcal L$ is quasi definite on $\mathcal P_n$

- \blacktriangleright existence iff \mathcal{L} is quasi definite on \mathcal{P}_n
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n

- \blacktriangleright existence iff \mathcal{L} is quasi definite on \mathcal{P}_n
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n
- $J_n = W \operatorname{diag}(\Lambda_1, \dots, \Lambda_\ell) W^{-1}$ Jordan decomposition

- \blacktriangleright existence iff \mathcal{L} is quasi definite on \mathcal{P}_n
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n
- $J_n = W \operatorname{diag}(\Lambda_1, \dots, \Lambda_\ell) W^{-1}$ Jordan decomposition

$$f(\Lambda_i) = \begin{bmatrix} f(z_i) & f'(z_i) & \dots & \frac{f^{(s_i-1)}(z_i)}{(s_i-1)!} \\ & f(z_i) & \ddots & \vdots \\ & & \ddots & f'(z_i) \\ & & f(z_i) \end{bmatrix}$$

- \blacktriangleright existence iff \mathcal{L} is quasi definite on \mathcal{P}_n
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n
- $\overline{I}_n = W \operatorname{diag}(\Lambda_1, \dots, \Lambda_\ell) W^{-1}$ Jordan decomposition

$$f(\Lambda_i) = \begin{bmatrix} f(z_i) & f'(z_i) & \dots & \frac{f^{(s_i-1)}(z_i)}{(s_i-1)!} \\ & f(z_i) & \ddots & \vdots \\ & & \ddots & f'(z_i) \\ & & & f(z_i) \end{bmatrix}$$

$$\mathbf{e}_1^T f(J_n) \mathbf{e}_1 = \mathbf{e}_1^T W \operatorname{diag}(f(\Lambda_1), \dots, f(\Lambda_\ell)) W^{-1} \mathbf{e}_1^T = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i-1} B_{i,h} f^{(h)}(z_i)$$

- \blacktriangleright existence iff \mathcal{L} is quasi definite on \mathcal{P}_n
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n
- $J_n = W \operatorname{diag}(\Lambda_1, \dots, \Lambda_\ell) W^{-1}$ Jordan decomposition

$$f(\Lambda_i) = \begin{bmatrix} f(z_i) & f'(z_i) & \dots & \frac{f^{(s_i-1)}(z_i)}{(s_i-1)!} \\ & f(z_i) & \ddots & \vdots \\ & & \ddots & f'(z_i) \\ & & & f(z_i) \end{bmatrix}$$

$$\mathbf{e}_1^T f(J_n) \mathbf{e}_1 = \mathbf{e}_1^T W \operatorname{diag}(f(\Lambda_1), \dots, f(\Lambda_\ell)) W^{-1} \mathbf{e}_1^T = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i-1} B_{i,h} f^{(h)}(z_i)$$

 $ightharpoonup m_0 \mathbf{e}_1^T f(J_n) \mathbf{e}_1 = \mathcal{L}(f), \text{ for all } f \in \mathcal{P}_{2n-1}$

▶ Let \mathcal{L} be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n

- ▶ Let \mathcal{L} be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n
- There exists a unique monic polynomial π_n of degree n which is orthogonal to \mathcal{P}_{n-1}

- ▶ Let \mathcal{L} be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n
- ► There exists a unique monic polynomial π_n of degree n which is orthogonal to \mathcal{P}_{n-1}
- ▶ $\mathcal{L}(\pi_n^2) = 0$ ⇒ there is *n*-weight quadrature Q_n whose degree of exactness is at least 2n

- ▶ Let \mathcal{L} be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n
- There exists a unique monic polynomial π_n of degree n which is orthogonal to \mathcal{P}_{n-1}
- \blacktriangleright $\mathcal{L}(\pi_n^2) = 0 \Rightarrow$ there is *n*-weight quadrature Q_n whose degree of exactness is at least 2n
- Problem 1: If we only know the moments m_0, \ldots, m_{2n} , we cannot determine the degree of exactness. If $m_{2n+1} = Q_n(x^{2n+1})$ then the degree of exactness of Q_n is at least 2n+1. If $Q_n(x^{2n+1}) \neq m_{2n+1}$ then the degree of exactness is 2n. And so on.

- ▶ Let \mathcal{L} be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n
- There exists a unique monic polynomial π_n of degree n which is orthogonal to \mathcal{P}_{n-1}
- ▶ $\mathcal{L}(\pi_n^2) = 0$ ⇒ there is *n*-weight quadrature Q_n whose degree of exactness is at least 2n
- Problem 1: If we only know the moments m_0, \ldots, m_{2n} , we cannot determine the degree of exactness. If $m_{2n+1} = Q_n(x^{2n+1})$ then the degree of exactness of Q_n is at least 2n+1. If $Q_n(x^{2n+1}) \neq m_{2n+1}$ then the degree of exactness is 2n. And so on.
- ▶ Problem 2: The construction of Q_{n+1} . Monic polynomial π_{n+1} of degree n+1 which is orthogonal to \mathcal{P}_n either does not exist or there are infinitely many of them. So Q_{n+1} either does not exist or it is not unique.

 \triangleright \mathcal{L} is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, ...

- \triangleright \mathcal{L} is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, ...
- \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 4i$.

- \triangleright L is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, ...
- \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 4i$.
- $\pi_0 = 1, \quad \pi_1(x) = x 3, \quad \pi_2(x) = x^2 4x + 4, \quad \pi_3(x) = x^3 7x^2 + 20x 24.$

- \triangleright L is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, ...
- \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 4i$.
- $\pi_0 = 1$, $\pi_1(x) = x 3$, $\pi_2(x) = x^2 4x + 4$, $\pi_3(x) = x^3 7x^2 + 20x 24$.
- The zeros of π_2 are $x_1 = x_2 = 2$, which means that the 2-point Gauss quadrature does not exist. In other words, the nonlinear system

$$A_1 z_1^k + A_2 z_2^k = m_k, \quad k = 0, 1, 2, 3,$$

has no solution in $\mathbb C$

- \triangleright L is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, ...
- \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 4i$.
- The zeros of π_2 are $x_1 = x_2 = 2$, which means that the 2-point Gauss quadrature does not exist. In other words, the nonlinear system

$$A_1 z_1^k + A_2 z_2^k = m_k, \quad k = 0, 1, 2, 3,$$

has no solution in \mathbb{C}

The zeros of π_3 are $x_1 = 3$, $x_2 = 2 - 2i$ and $x_3 = 2 + 2i$, which means that 3-point Gauss quadrature exists

- \triangleright L is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, ...
- \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 4i$.
- The zeros of π_2 are $x_1 = x_2 = 2$, which means that the 2-point Gauss quadrature does not exist. In other words, the nonlinear system

$$A_1 z_1^k + A_2 z_2^k = m_k, \quad k = 0, 1, 2, 3,$$

has no solution in \mathbb{C}

The zeros of π_3 are $x_1 = 3$, $x_2 = 2 - 2i$ and $x_3 = 2 + 2i$, which means that 3-point Gauss quadrature exists

- \triangleright L is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, ...
- \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 4i$.
- The zeros of π_2 are $x_1 = x_2 = 2$, which means that the 2-point Gauss quadrature does not exist. In other words, the nonlinear system

$$A_1 z_1^k + A_2 z_2^k = m_k, \quad k = 0, 1, 2, 3,$$

has no solution in \mathbb{C}

The zeros of π_3 are $x_1 = 3$, $x_2 = 2 - 2i$ and $x_3 = 2 + 2i$, which means that 3-point Gauss quadrature exists

 $ightharpoonup J_3$ is diagonalizable, J_2 is not diagonalizable.

Instead of 2-point we have 2-weight Gauss quadrature of the form: $A_1 f(2) + A_2 f'(2)$. It is easy to check that the nonlinear system

$$A_{1} \cdot 1 + A_{2} \cdot 0 = 1$$

$$A_{1}z_{1} + A_{2} \cdot 1 = 3$$

$$A_{1}z_{1}^{2} + A_{2}(2z_{1}) = 8$$

$$A_{1}z_{1}^{3} + A_{2}(3z_{1}^{2}) = 20$$

has unique solution (in \mathbb{C}): $A_1 = 1$, $A_2 = 1$, $z_1 = 2$. So the quadrature f(2) + f'(2) has degree of exactness 3. Its degree of exactness would be higher if and only if $m_4 = 2^4 + 4 \cdot 2^3 = 48$. But in that case we would have $\Delta_2 = 0$, i.e. \mathcal{L} would not be quasi definite on \mathcal{P}_2 .

Instead of 2-point we have 2-weight Gauss quadrature of the form: $A_1 f(2) + A_2 f'(2)$. It is easy to check that the nonlinear system

$$A_{1} \cdot 1 + A_{2} \cdot 0 = 1$$

$$A_{1}z_{1} + A_{2} \cdot 1 = 3$$

$$A_{1}z_{1}^{2} + A_{2}(2z_{1}) = 8$$

$$A_{1}z_{1}^{3} + A_{2}(3z_{1}^{2}) = 20$$

has unique solution (in \mathbb{C}): $A_1 = 1$, $A_2 = 1$, $z_1 = 2$. So the quadrature f(2) + f'(2) has degree of exactness 3. Its degree of exactness would be higher if and only if $m_4 = 2^4 + 4 \cdot 2^3 = 48$. But in that case we would have $\Delta_2 = 0$, i.e. \mathcal{L} would not be quasi definite on \mathcal{P}_2 .

 \triangleright The functional \mathcal{L}_1 whose first five moments are

$$m_0 = 1, m_1 = 3, m_2 = 8, m_3 = 20, m_4 = 48,$$

is not quasi-definite on \mathcal{P}_2 . If $m_5 = 2^5 + 5 \cdot 2^4 = 112$ then the quadrature f(2) + f'(2) would have degree of exactness at least 5.

THANK YOU FOR YOUR ATTENTION!