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» Questionable (no), if functional is not quasi definite

» Complex Jacobi matrices
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» L s alinear functional on some space of functions contaitiegspace
of polynomials

» P, - space of polynomials of degree upito

» L is fully determined by its moments; = £(z’),j = 0,1, ...

mo ma 500 mj
. mi mo oo o mij41
» Hankel determinants; =
mj  mMi41 ... T2j
» L Is said to be positive definite dR if A, ..., A, are positive and

mo, ..., Mo are real

» There exists some positive Borel measumsupported on the real axis
such thatZ(P) = [ P(x)du(z) for all P from Py

» L is said to be quasi-definite o, iIf A; #0,forj =0,1,...,k
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Gauss quadrature for positive definiteL

>

>

po(x), p1(x),..

They exist, they are unique and haeal coefficients

141

zpi(xr) = Y, tipi(x),

j=i—1

po(x)
p1(x)

po(x)
p1(x)

'+tn—Ln

tn—Ln—Q

., pn(x)- orthonormal polynomials w.r. tol

t;; = L(zps(z)pj(T)) =t €R

tn—ln—l

tn—Ln—l
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>

>

L(f) = : Mef (i) + Ro(f)s Ra(f) = 0forall f € Py,_;
=1

Gauss quadrature must imgerpolatory

Interpolatory quadrature is GQ iff the polynomial
wn(x) = [[;_(z — y;) satisfyL(w, P) = 0 for all P from P,,_,

G1l: Then-point Gauss quadrature attains the maximum possible
algebraic degree of exactness whicBdis— 1.

G2: If n <k thenn-point Gauss quadrature exists and is unique

G3: The Gauss quadrature can be written in the forpe! f(.J,,)e;
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» 7o, 71,...IS asequence of orthogonal polynomials w.rtd:
1. dedw;) = j (7, is of degreg)),
2. L(mym;)=0,1<}7,
3. L(75) #0.
» Sequencer, ..., ; of orthogonal polynomials w.r. t@ exists if and

only if £ is quasi definite orPy

» OP are unique up to constant factor, they satisfy three-teoumrrence
relation

» Their coefficients does not have to be real, zeros does nettbhave
simple and real

» Coefficients from three-term r.r. can be complex
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po(x)
p1(x)

| Pn-—1 (33)

‘|‘tn—1,n




OP for quasi definite £

» Do, ..

» J, - complex Jacobi matrix: three-diagonal, symmetric, n@zem
sub-diagonal

po(x)
p1(x)

i pn—l(w) i

In

| Pn-—1 (37)

, D, - Orthonormal

po(x)
p1(x)

‘|‘tn—1,n

| Pnl@)
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Complex Jacobi matrices

» The following properties are equivalent:

1.
2.
3.
4.

J Is diagonalizable

Eigenvalues off are distinct

J is orthogonally diagonalizablg”’ JZ = diag A1, ..., \,)
None of the eigenvectors dfis isotropic { # 0 andv!v = 0).

» The following properties are equivalent:

1.

J Is not diagonalizable

2. All eigenvalues of/ are not distinct
3.
4

. One of the eigenvectors is isotropic .

J is not orthogonally similar to its Jordan form

» Matching moment property2(z*) = mgel J'e;, i =0,...,2n — 1,
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>

L(f)=>",Aif(z:i) + Rn(f), algebraic degree of exactness is
(exactly)2n — 1

ADE is at leastn — 1 iff the polynomialw,, (x) = [[;_, (z — 2)
satisfyL(w, P) = 0 for all P fromP,,_1

GQ exists if and only if:
1. L is quasi-definite orP,,,

2. Corresponding Jacobi matrik, is digonalizable.

Gragg, Rocky Mountain J. Math. (1974)

Saylor and Smolarski, Numer. Algorithms (2001)
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>

14 Si—l

‘C(f):ZZAi,hf(h)(Zi)+Rn(f)a n==s+...+

1=1 h=0

» It has degree of exactne®s — 1 if and only if:
1. itis exactorP,,_
2. mp(x) = (v — 21)% (. — 22)°2 ... (x — 2¢)%, Where{m; }7_g is
the sequence of monic orthogonal polynomials with respmect t

» quadrature= L(T},_1)

» 1, 1 -the interpolating polynomial of in the nodeg; of
multiplicities s;

» Should we call it Gauss quadrature? (G1, G2 and G3)

—n. 10/15



GQ for quasi definite £

» existence iffL is quasi definite orP,,



GQ for quasi definite £

» existence iffL is quasi definite orP,,

» uniguenesst, IS unique./ is the number of different zeros af,, and
s; IS the multiplicity of z; as a zero ofr,,



GQ for quasi definite £

» existence iffL is quasi definite orP,,

» uniguenesst, IS unique./ is the number of different zeros af,, and
s; IS the multiplicity of z; as a zero ofr,,

» J, =WdiagA4,...,A,)W ! - Jordan decomposition



GQ for quasi definite £

» existence iffL is quasi definite orP,,

» uniguenesst, IS unique./ is the number of different zeros af,, and
s; IS the multiplicity of z; as a zero ofr,,

» J, =WdiagA4,...,A,)W ! - Jordan decomposition

— (s;—1) %)
flzs)  f'(z) ... f(si_1§!)

> () = H=0




GQ for quasi definite £
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» uniguenesst, IS unique./ is the number of different zeros af,, and
s; IS the multiplicity of z; as a zero ofr,,

» J, =WdiagA4,...,A,)W ! - Jordan decomposition

R
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GQ for quasi definite £

>

>

existence IffL is quasi definite orP,,

uniguenessr,, is unique./ is the number of different zeros af,, and
s; IS the multiplicity of z; as a zero ofr,,

J, = Wdiag(A4,...,A,)W ! - Jordan decomposition

Cf) ) .. LSRG T
f(A) = fe)
f'(2:)
f(z:)
¢ s;—1
ei f(Jn)er = ef Wdiag(f(A1),. .-, f(Ar)) => Z B nf™ ()
1=1 h=0
moe;i f(Jn)er = L(f), forall f € Pay,—
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» Let L be quasi-definite o®,,_1, but not onP,,

» There exists a unique monic polynomig) of degreen which is
orthogonal toP,, 4

» L(72) = 0 = there isn-weight quadratureé),, whose degree of
exactness is at least

» Problem 1: If we only know the moments,, . . ., msy,, We cannot
determine the degree of exactnessnlf,,; = Q,,(z°" 1) then the
degree of exactness @, is at leastn + 1. If Q,,(2°" 1) # ma,i1
then the degree of exactnes2is And so on.

» Problem 2: The construction @},, .. Monic polynomialr,,,; of
degreen + 1 which is orthogonal t@>,, either does not exist or there
are infinitely many of them. S@,,. 1 either does not exist or it is not
unique.
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» The zeros ofry arexr; = xo = 2, which means that the 2-point Gauss quadrature does
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Example

>

>

L is defined by sequence of momemts3, 8, 20, 52, 156, 1, ...

L is quasi definite ofP3: Ag =1, A1 = -1, Ao = -4, A3z =2128— 41.
mo=1, wm(zx)=xz-3, ma(x)=z%—4x+4, =3(x)=x3—"7x%+20z—24.
The zeros ofry arex; = x2 = 2, which means that the 2-point Gauss quadrature does
not exist. In other words, the nonlinear system

A28 + Ag 28 =my, k=0,1,2,3,

has no solution irC

The zeros ofrs arex; = 3, x2 = 2 — 27 andxs = 2 + 2¢, which means that 3-point
Gauss quadrature exists

3 5 0 |
Js = ) 1 22
|0 20 3

J3 is diagonalizable,J; is not diagonalizable.
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Example
» Instead of 2-point we have 2-weight Gauss quadrature ofatme:fA; f(2) + As f/(2).
It is easy to check that the nonlinear system

A1 -14+A2-0 = 1

Aiz1 +A2-1 = 3
A122 + A3(221) = 8
A1z3 +Ax(322) = 20

has unique solution (i€): A; = 1, A3 = 1, 27 = 2. So the quadraturé(2) + f/(2)
has degree of exactness 3. Its degree of exactness wouldhe ifiand only if

my = 24 + 4 .23 = 48. But in that case we would havky = 0, i.e. £ would not be
guasi definite orpP-.



Example
» Instead of 2-point we have 2-weight Gauss quadrature ofatme:fA; f(2) + As f/(2).
It is easy to check that the nonlinear system

A1 1+ A0 = 1

Aiz1 +A2-1 = 3
A122 + Ax(221) = 8
A1z3 +Ax(322) = 20

has unique solution (i€): A; = 1, A3 = 1, 27 = 2. So the quadraturé(2) + f/(2)
has degree of exactness 3. Its degree of exactness wouldhe ifiand only if

my = 24 + 4 .23 = 48. But in that case we would havky = 0, i.e. £ would not be
guasi definite orpP-.

» The functionall; whose first five moments are

mo =1, mp = 3, mg = 8, m3 = 20, myg = 48,

is not quasi-definite oPs. If ms = 2° + 5 - 24 = 112 then the quadrature
f(2) + f’(2) would have degree of exactness at least 5.
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