Complex Gauss quadratures

Miroslav Pranic´

Department of Mathematics, University of BanjaLuka

> joint work with**Stefano Pozza and Zdenek Strako ^ˇ sˇ**

Conference of the project ERC-CZ MORE**Liblice, September 21-26, 2014**

◮ **Mail goal**: Can we define Gauss quadratures for approximations of linear functionals which are not positive definite? How far we can gowith generalization?

- ◮ **Mail goal**: Can we define Gauss quadratures for approximations of linear functionals which are not positive definite? How far we can gowith generalization?
- ▶ Yes, for quasi definite functionals

- ◮ **Mail goal**: Can we define Gauss quadratures for approximations of linear functionals which are not positive definite? How far we can gowith generalization?
- \blacktriangleright Yes, for quasⁱ definite functionals
- \blacktriangleright Questionable (no), if functional is not quasⁱ definite

- ◮ **Mail goal**: Can we define Gauss quadratures for approximations of linear functionals which are not positive definite? How far we can gowith generalization?
- \blacktriangleright Yes, for quasⁱ definite functionals
- \blacktriangleright Questionable (no), if functional is not quasⁱ definite
- \blacktriangleright Complex Jacobi matrices

 \blacktriangleright $\mathcal L$ is a linear functional on some space of functions containing the space of polynomials

- \blacktriangleright $\mathcal L$ is a linear functional on some space of functions containing the space of polynomials
- \blacktriangleright \mathcal{P}_n space of polynomials of degree up to n

- \blacktriangleright $\mathcal L$ is a linear functional on some space of functions containing the space of polynomials
- \blacktriangleright \mathcal{P}_n space of polynomials of degree up to n
- \blacktriangleright $\mathcal L$ is fully determined by its moments $m_j = \mathcal L(x^j), j = 0, 1, \dots$

 \blacktriangleright $\mathcal L$ is a linear functional on some space of functions containing the space of polynomials

> I I I I I I I I I I I

 \blacktriangleright \mathcal{P}_n - space of polynomials of degree up to n

 \blacktriangleright $\mathcal L$ is fully determined by its moments $m_j = \mathcal L(x^j), j = 0, 1, \ldots$

$$
\blacktriangleright \text{ Hankel determinants } \Delta_j = \begin{vmatrix} m_0 & m_1 & \dots & m_j \\ m_1 & m_2 & \dots & m_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_j & m_{j+1} & \dots & m_{2j} \end{vmatrix}
$$

 \blacktriangleright

- \blacktriangleright $\mathcal L$ is a linear functional on some space of functions containing the space of polynomials
- \blacktriangleright \mathcal{P}_n space of polynomials of degree up to n

 \blacktriangleright $\mathcal L$ is fully determined by its moments $m_j = \mathcal L(x^j), j = 0, 1, \ldots$

$$
\blacktriangleright \text{ Hankel determinants } \Delta_j = \begin{vmatrix} m_0 & m_1 & \dots & m_j \\ m_1 & m_2 & \dots & m_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_j & m_{j+1} & \dots & m_{2j} \end{vmatrix}
$$

 \blacktriangleright $\mathcal L$ is said to be positive definite on $\mathcal P_k$ if Δ $0, \ldots, 4$ Δ_k are positive and m_0, \ldots, m_{2k} are real

 \blacktriangleright

 \blacktriangleright $\mathcal L$ is a linear functional on some space of functions containing the space of polynomials

> I I I I I I I I I I I I

 \blacktriangleright \mathcal{P}_n - space of polynomials of degree up to n

 \blacktriangleright $\mathcal L$ is fully determined by its moments $m_j = \mathcal L(x^j), j = 0, 1, \ldots$

$$
\blacktriangleright \text{ Hankel determinants } \Delta_j = \begin{vmatrix} m_0 & m_1 & \dots & m_j \\ m_1 & m_2 & \dots & m_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_j & m_{j+1} & \dots & m_{2j} \end{vmatrix}
$$

- \blacktriangleright $\mathcal L$ is said to be positive definite on $\mathcal P_k$ if Δ $0, \ldots, 4$ Δ_k are positive and m_0, \ldots, m_{2k} are real
- \blacktriangleright • There exists some positive Borel measure μ supported on the real axis such that $\mathcal{L}(P) = \int P(x) d\mu(x)$ for all P from \mathcal{P}_k

 \blacktriangleright

 \blacktriangleright $\mathcal L$ is a linear functional on some space of functions containing the space of polynomials

> I I I I I I I I I I I I

 \blacktriangleright \mathcal{P}_n - space of polynomials of degree up to n

 \blacktriangleright $\mathcal L$ is fully determined by its moments $m_j = \mathcal L(x^j), j = 0, 1, \ldots$

$$
\blacktriangleright \text{ Hankel determinants } \Delta_j = \begin{vmatrix} m_0 & m_1 & \dots & m_j \\ m_1 & m_2 & \dots & m_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_j & m_{j+1} & \dots & m_{2j} \end{vmatrix}
$$

- \blacktriangleright $\mathcal L$ is said to be positive definite on $\mathcal P_k$ if Δ $0, \ldots, 4$ Δ_k are positive and m_0, \ldots, m_{2k} are real
- \blacktriangleright • There exists some positive Borel measure μ supported on the real axis such that $\mathcal{L}(P) = \int P(x) d\mu(x)$ for all P from \mathcal{P}_k
- \blacktriangleright $\mathcal L$ is said to be quasi-definite on $\mathcal P_k$ if $\Delta_j \neq 0$, for $j = 0, 1, \ldots, k$

 $\blacktriangleright \;\; p_0(x), p_1(x), \ldots, p_n(x)$ **- orthonormal** polynomials w.r. to $\mathcal L$

- $\blacktriangleright \;\; p_0(x), p_1(x), \ldots, p_n(x)$ **- orthonormal** polynomials w.r. to $\mathcal L$
- ▶ They exist, they are unique and have **real** coefficients

- $\blacktriangleright \;\; p_0(x), p_1(x), \ldots, p_n(x)$ **- orthonormal** polynomials w.r. to $\mathcal L$
- ▶ They exist, they are unique and have **real** coefficients

$$
\blacktriangleright \quad xp_i(x) = \sum_{j=i-1}^{i+1} t_{i,j} p_j(x), \quad t_{i,j} = \mathcal{L}(xp_i(x)p_j(x)) = t_{j,i} \in \mathbb{R}
$$

 $\blacktriangleright \;\; p_0(x), p_1(x), \ldots, p_n(x)$ **- orthonormal** polynomials w.r. to $\mathcal L$

 \blacktriangleright They exist, they are unique and have **real** coefficients

$$
\triangleright \quad xp_i(x) = \sum_{j=i-1}^{i+1} t_{i,j} p_j(x), \quad t_{i,j} = \mathcal{L}(xp_i(x)p_j(x)) = t_{j,i} \in \mathbb{R}
$$
\n
$$
\triangleright \quad x \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} = J_n \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} + t_{n-1,n} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ p_n(x) \end{bmatrix}
$$

 $\blacktriangleright \;\; p_0(x), p_1(x), \ldots, p_n(x)$ **- orthonormal** polynomials w.r. to $\mathcal L$

 \blacktriangleright They exist, they are unique and have **real** coefficients

$$
\triangleright p_i(x) = \sum_{j=i-1}^{i+1} t_{i,j} p_j(x), \quad t_{i,j} = \mathcal{L}(x p_i(x) p_j(x)) = t_{j,i} \in \mathbb{R}
$$

\n
$$
\triangleright x \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} = J_n \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} + t_{n-1,n} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ p_n(x) \end{bmatrix}
$$

\n
$$
\triangleright J_n = \begin{bmatrix} t_{0,1} & t_{0,1} \\ t_{1,0} & t_{1,1} & t_{1,2} \\ t_{2,1} & t_{2,2} & t_{2,3} \\ \vdots \\ t_{n-1,n-2} & t_{n-1,n-1} \end{bmatrix}
$$

$$
\blacktriangleright \mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}
$$

$$
\blacktriangleright \mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}
$$

 \blacktriangleright Gauss quadrature must be **interpolatory**

$$
\blacktriangleright \mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}
$$

- \blacktriangleright Gauss quadrature must be **interpolatory**
- \blacktriangleright Interpolatory quadrature is GQ iff the polynomial $\omega_n(x)=\prod_{i=1}^n$ $\frac{n}{i=1}(x-\$ $y_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}

$$
\blacktriangleright \mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}
$$

- \blacktriangleright Gauss quadrature must be **interpolatory**
- \blacktriangleright Interpolatory quadrature is GQ iff the polynomial $\omega_n(x)=\prod_{i=1}^n$ $\frac{n}{i=1}(x-\$ $y_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- \blacktriangleright G1: The *n*-point Gauss quadrature attains the maximum possible algebraic degree of exactness which is $2n-1.$

$$
\blacktriangleright \mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}
$$

- \blacktriangleright Gauss quadrature must be **interpolatory**
- \blacktriangleright Interpolatory quadrature is GQ iff the polynomial $\omega_n(x)=\prod_{i=1}^n$ $\frac{n}{i=1}(x-\$ $y_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- \blacktriangleright \blacktriangleright G1: The *n*-point Gauss quadrature attains the maximum possible algebraic degree of exactness which is $2n-1.$
- \blacktriangleright G2: If $n \leq k$ then *n*-point Gauss quadrature exists and is unique

$$
\blacktriangleright \mathcal{L}(f) = \sum_{k=1}^{n} \lambda_k f(y_k) + R_n(f), \quad R_n(f) = 0 \text{ for all } f \in \mathcal{P}_{2n-1}
$$

- \blacktriangleright Gauss quadrature must be **interpolatory**
- \blacktriangleright Interpolatory quadrature is GQ iff the polynomial $\omega_n(x)=\prod_{i=1}^n$ $\frac{n}{i=1}(x-\$ $y_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- \blacktriangleright \blacktriangleright G1: The *n*-point Gauss quadrature attains the maximum possible algebraic degree of exactness which is $2n-1.$
- \blacktriangleright ► G2: If $n \leq k$ then *n*-point Gauss quadrature exists and is unique
- \blacktriangleright G3: The Gauss quadrature can be written in the form $m_0 \mathbf{e}_1^T$ $_{1}^{T}f(J_{n})\mathbf{e}_{1}$

- $\blacktriangleright \pi_0, \pi_1, \ldots$ is a sequence of orthogonal polynomials w.r. to $\mathcal L$ if:
	- 1. deg $(\pi_j) = j$ (π_j is of degree j),
	- 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j$,
	- 3. $\mathcal{L}(\pi_j^2) \neq 0.$

- $\blacktriangleright \pi_0, \pi_1, \ldots$ is a sequence of orthogonal polynomials w.r. to $\mathcal L$ if:
	- 1. deg $(\pi_j) = j$ (π_j is of degree j),
	- 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j$,
	- 3. $\mathcal{L}(\pi_j^2) \neq 0.$
- Sequence π_0, \ldots, π_k of orthogonal polynomials w.r. to $\mathcal L$ exists if and only if ${\cal L}$ is quasi definite on ${\cal P}_k$

- $\blacktriangleright \pi_0, \pi_1, \ldots$ is a sequence of orthogonal polynomials w.r. to $\mathcal L$ if:
	- 1. deg $(\pi_j) = j$ (π_j is of degree j),
	- 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j$,
	- 3. $\mathcal{L}(\pi_j^2) \neq 0.$
- Sequence π_0, \ldots, π_k of orthogonal polynomials w.r. to $\mathcal L$ exists if and only if ${\cal L}$ is quasi definite on ${\cal P}_k$
- \blacktriangleright • OP are unique up to constant factor, they satisfy three-term recurrence relation

- $\blacktriangleright \pi_0, \pi_1, \ldots$ is a sequence of orthogonal polynomials w.r. to $\mathcal L$ if:
	- 1. deg $(\pi_j) = j$ (π_j is of degree j),
	- 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j$,
	- 3. $\mathcal{L}(\pi_j^2) \neq 0.$
- Sequence π_0, \ldots, π_k of orthogonal polynomials w.r. to $\mathcal L$ exists if and only if ${\cal L}$ is quasi definite on ${\cal P}_k$
- \blacktriangleright • OP are unique up to constant factor, they satisfy three-term recurrence relation
- \blacktriangleright Their coefficients does not have to be real, zeros does not have to be simple and real

- $\blacktriangleright \pi_0, \pi_1, \ldots$ is a sequence of orthogonal polynomials w.r. to $\mathcal L$ if:
	- 1. deg $(\pi_j) = j$ (π_j is of degree j),
	- 2. $\mathcal{L}(\pi_i \, \pi_j) = 0, i < j$,
	- 3. $\mathcal{L}(\pi_j^2) \neq 0.$
- Sequence π_0, \ldots, π_k of orthogonal polynomials w.r. to $\mathcal L$ exists if and only if ${\cal L}$ is quasi definite on ${\cal P}_k$
- \blacktriangleright • OP are unique up to constant factor, they satisfy three-term recurrence relation
- \blacktriangleright Their coefficients does not have to be real, zeros does not have to be simple and real
- \blacktriangleright Coefficients from three-term r.r. can be complex

OP for quasi definite $\mathcal L$

 ρ_0, \ldots, p_n - orthonormal

$$
\triangleright x \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} = J_n \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} + t_{n-1,n} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ p_n(x) \end{bmatrix}
$$

 ρ_0, \ldots, p_n - orthonormal

$$
\triangleright x \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} = J_n \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} + t_{n-1,n} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ p_n(x) \end{bmatrix}
$$

 \blacktriangleright J_n - complex Jacobi matrix: three-diagonal, symmetric, no zeros on sub-diagonal

Complex Jacobi matrices

- ▶ The following properties are equivalent:
	- 1. J is diagonalizable
	- 2. Eigenvalues of J are distinct
	- 3. *J* is orthogonally diagonalizable $Z^T J Z = \text{diag}(\lambda_1, \dots, \lambda_n)$
	- 4. None of the eigenvectors of *J* is isotropic ($v \neq 0$ and $v^T v = 0$).

Complex Jacobi matrices

- ▶ The following properties are equivalent:
	- 1. J is diagonalizable
	- 2. Eigenvalues of J are distinct
	- 3. *J* is orthogonally diagonalizable $Z^T J Z = \text{diag}(\lambda_1, \dots, \lambda_n)$
	- 4. None of the eigenvectors of *J* is isotropic ($v \neq 0$ and $v^T v = 0$).
- ▶ The following properties are equivalent:
	- 1. J is not diagonalizable
	- 2. All eigenvalues of J are not distinct
	- 3. J is not orthogonally similar to its Jordan form
	- 4. One of the eigenvectors is isotropic .

Complex Jacobi matrices

- ▶ The following properties are equivalent:
	- 1. J is diagonalizable
	- 2. Eigenvalues of J are distinct
	- 3. *J* is orthogonally diagonalizable $Z^T J Z = \text{diag}(\lambda_1, \dots, \lambda_n)$
	- 4. None of the eigenvectors of *J* is isotropic ($v \neq 0$ and $v^T v = 0$).
- ▶ The following properties are equivalent:
	- 1. J is not diagonalizable
	- 2. All eigenvalues of J are not distinct
	- 3. J is not orthogonally similar to its Jordan form
	- 4. One of the eigenvectors is isotropic .

 \blacktriangleright Matching moment property: $\mathcal{L}(x^i) = m_0 \mathbf{e}_1^T J_n^i \mathbf{e}_1, \quad i = 0, \ldots, 2n - 1,$

 \blacktriangleright $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) $2n-1$

- \blacktriangleright $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) $2n-1$
- ADE is at least 2n − 1 iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x z_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}

- \blacktriangleright $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) $2n-1$
- ADE is at least 2n − 1 iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x z_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- ► GQ exists if and only if:
	- 1. $\mathcal L$ is quasi-definite on $\mathcal P_n$,
	- 2. Corresponding Jacobi matrix J_n is digonalizable.

- \blacktriangleright $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) $2n-1$
- ADE is at least 2n − 1 iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x z_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- ► GQ exists if and only if:
	- 1. $\mathcal L$ is quasi-definite on $\mathcal P_n$,
	- 2. Corresponding Jacobi matrix J_n is digonalizable.
- ► Gragg, Rocky Mountain J. Math. (1974)

- \blacktriangleright $\mathcal{L}(f) = \sum_{i=1}^{n} A_i f(z_i) + R_n(f)$, algebraic degree of exactness is (exactly) $2n-1$
- ADE is at least 2n − 1 iff the polynomial $\omega_n(x) = \prod_{i=1}^n (x z_i)$ satisfy $\mathcal{L}(\omega_n P) = 0$ for all P from \mathcal{P}_{n-1}
- ► GQ exists if and only if:
	- 1. $\mathcal L$ is quasi-definite on $\mathcal P_n$,
	- 2. Corresponding Jacobi matrix J_n is digonalizable.
- \blacktriangleright Gragg, Rocky Mountain J. Math. (1974)
- \blacktriangleright Saylor and Smolarski, Numer. Algorithms (2001)

 \blacktriangleright

 $\mathcal{L}(f) = \sum_{i=1}^n$ ℓ $i{=}1$ $h{=}0$ s \sum $\sum_{i=1}^{n-1}A_{i,h}\,f^{(h)}(z_i)+R_n(f),\hspace{0.5cm}n=s_1+\ldots+s_\ell$

◮

$\mathcal{L}(f) = \sum_{i=1}^n$ ℓ $i{=}1$ $h{=}0$ s \sum $\sum_{i=1}^{n-1}A_{i,h}\,f^{(h)}(z_i)+R_n(f),\hspace{0.5cm}n=s_1+\ldots+s_\ell$

 \blacktriangleright It has degree of exactness $2n - 1$ if and only if:

- 1. it is exact on \mathcal{P}_{n-1}
- 2. $\pi_n(x) = (x z_1)^{s_1}(x z_2)^{s_2} \dots (x z_\ell)^{s_\ell}$, where $\{\pi_j\}_{j=0}^n$ is the sequence of monic orthogonal polynomials with respect to $\mathcal L$

◮

$$
\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i-1} A_{i,h} f^{(h)}(z_i) + R_n(f), \qquad n = s_1 + \ldots + s_{\ell}
$$

 \blacktriangleright It has degree of exactness $2n - 1$ if and only if:

- 1. it is exact on \mathcal{P}_{n-1}
- 2. $\pi_n(x) = (x z_1)^{s_1}(x z_2)^{s_2} \dots (x z_\ell)^{s_\ell}$, where $\{\pi_j\}_{j=0}^n$ is the sequence of monic orthogonal polynomials with respect to $\mathcal L$

• quadrature $= \mathcal{L}(T_{n-1})$

◮

$\mathcal{L}(f)=\sum_{i}\sum_{i}\,A_{i,h}\,f^{(h)}(z_i)+R_n(f),\hspace{0.5cm}n=s_1+\ldots+s_\ell$ ℓ s_i-1 $i{=}1$ $h{=}0$

 \blacktriangleright It has degree of exactness $2n - 1$ if and only if:

- 1. it is exact on \mathcal{P}_{n-1}
- 2. $\pi_n(x) = (x z_1)^{s_1}(x z_2)^{s_2} \dots (x z_\ell)^{s_\ell}$, where $\{\pi_j\}_{j=0}^n$ is the sequence of monic orthogonal polynomials with respect to $\mathcal L$
- quadrature $= \mathcal{L}(T_{n-1})$
- \blacktriangleright T_{n−1} the interpolating polynomial of f in the nodes z_i of multiplicities s_i

◮

$$
\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i-1} A_{i,h} f^{(h)}(z_i) + R_n(f), \qquad n = s_1 + \ldots + s_{\ell}
$$

- 1. it is exact on \mathcal{P}_{n-1}
- 2. $\pi_n(x) = (x z_1)^{s_1}(x z_2)^{s_2} \dots (x z_\ell)^{s_\ell}$, where $\{\pi_j\}_{j=0}^n$ is the sequence of monic orthogonal polynomials with respect to $\mathcal L$
- quadrature $= \mathcal{L}(T_{n-1})$
- \blacktriangleright T_{n−1} the interpolating polynomial of f in the nodes z_i of multiplicities s_i
- \blacktriangleright Should we call it Gauss quadrature? (G1, G2 and G3)

 \blacktriangleright existence iff $\mathcal L$ is quasi definite on $\mathcal P_n$

- \blacktriangleright existence iff $\mathcal L$ is quasi definite on $\mathcal P_n$
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n

- \blacktriangleright existence iff $\mathcal L$ is quasi definite on $\mathcal P_n$
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n
- \blacktriangleright $J_n = W \text{diag}(\Lambda_1, \ldots, \Lambda_\ell) W^{-1}$ Jordan decomposition

- \blacktriangleright existence iff $\mathcal L$ is quasi definite on $\mathcal P_n$
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n

 \blacktriangleright $J_n = W \text{diag}(\Lambda_1, \ldots, \Lambda_\ell) W^{-1}$ - Jordan decomposition

$$
\blacktriangleright \quad f(\Lambda_i) = \begin{bmatrix} f(z_i) & f'(z_i) & \dots & \frac{f^{(s_i-1)}(z_i)}{(s_i-1)!} \\ & f(z_i) & \ddots & \vdots \\ & & \ddots & f'(z_i) \\ & & & \ddots \\ & & & f(z_i) \end{bmatrix}
$$

 \blacktriangleright

- \blacktriangleright existence iff $\mathcal L$ is quasi definite on $\mathcal P_n$
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n
- \blacktriangleright $J_n = W \text{diag}(\Lambda_1, \ldots, \Lambda_\ell) W^{-1}$ Jordan decomposition

 \blacktriangleright $f(\Lambda_i) =$ ſ $\mathbf{1}$ $f(z_i)$ $f'(z_i)$... $\frac{f^{(s_i-1)}(z_i)}{(s_i-1)!}$ $f(z_i)$ $\hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} f^{\prime}(z_i)$ $f(z_i)$

> $\mathbf{e}_1^Tf(J_n)\mathbf{e}_1 = \mathbf{e}_1^T W \operatorname{diag}(f(\Lambda_1), \dots, f(\Lambda_\ell)) W^{-1}\mathbf{e}_1^T = \sum_{i=1}^N \mathbf{e}_i$ ℓ i $\!=$ $\!1$ s \sum $\frac{i-1}{\cdot}$ $h\hspace{-.1cm}=\hspace{-.1cm}0$ $B_{i,h}f^{(h)}(z_i)$

 \blacktriangleright

- \blacktriangleright existence iff $\mathcal L$ is quasi definite on $\mathcal P_n$
- uniqueness: π_n is unique. ℓ is the number of different zeros of π_n , and s_i is the multiplicity of z_i as a zero of π_n
- \blacktriangleright $J_n = W \text{diag}(\Lambda_1, \ldots, \Lambda_\ell) W^{-1}$ Jordan decomposition

 \blacktriangleright $f(\Lambda_i) =$ ſ $\mathbf{1}$ $f(z_i)$ $f'(z_i)$... $\frac{f^{(s_i-1)}(z_i)}{(s_i-1)!}$ $f(z_i)$ $\hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} f^{\prime}(z_i)$ $f(z_i)$

> $\mathbf{e}_1^Tf(J_n)\mathbf{e}_1 = \mathbf{e}_1^T W \operatorname{diag}(f(\Lambda_1), \dots, f(\Lambda_\ell)) W^{-1}\mathbf{e}_1^T = \sum_{i=1}^N \mathbf{e}_i$ ℓ i $\!=$ $\!1$ s \sum $\frac{i-1}{\cdot}$ $h\hspace{-.1cm}=\hspace{-.1cm}0$ $B_{i,h}f^{(h)}(z_i)$

$$
\blacktriangleright \ m_0 \mathbf{e}_1^T f(J_n) \mathbf{e}_1 = \mathcal{L}(f), \text{ for all } f \in \mathcal{P}_{2n-1}
$$

 \blacktriangleright Let *L* be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n

- \blacktriangleright Let *L* be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n
- There exists a unique monic polynomial π_n of degree *n* which is orthogonal to \mathcal{P}_{n-1}

- \blacktriangleright Let *L* be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n
- \blacktriangleright There exists a unique monic polynomial π_n of degree *n* which is orthogonal to \mathcal{P}_{n-1}
- $\mathcal{L}(\pi_n^2) = 0 \Rightarrow$ there is *n*-weight quadrature Q_n whose degree of exactness is at least $2n$

- \blacktriangleright Let *L* be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n
- \blacktriangleright There exists a unique monic polynomial π_n of degree *n* which is orthogonal to \mathcal{P}_{n-1}
- $\mathcal{L}(\pi_n^2) = 0 \Rightarrow$ there is *n*-weight quadrature Q_n whose degree of exactness is at least $2n$
- \blacktriangleright Problem 1: If we only know the moments m_0, \ldots, m_{2n} , we cannot determine the degree of exactness. If $m_{2n+1} = Q_n(x^{2n+1})$ then the degree of exactness of Q_n is at least $2n + 1$. If $Q_n(x^{2n+1}) \neq m_{2n+1}$ then the degree of exactness is $2n.$ And so on.

- \blacktriangleright Let *L* be quasi-definite on \mathcal{P}_{n-1} , but not on \mathcal{P}_n
- \blacktriangleright There exists a unique monic polynomial π_n of degree *n* which is orthogonal to \mathcal{P}_{n-1}
- $\mathcal{L}(\pi_n^2) = 0 \Rightarrow$ there is *n*-weight quadrature Q_n whose degree of exactness is at least $2n$
- \blacktriangleright Problem 1: If we only know the moments m_0, \ldots, m_{2n} , we cannot determine the degree of exactness. If $m_{2n+1} = Q_n(x^{2n+1})$ then the degree of exactness of Q_n is at least $2n + 1$. If $Q_n(x^{2n+1}) \neq m_{2n+1}$ then the degree of exactness is $2n.$ And so on.
- \blacktriangleright Problem 2: The construction of Q_{n+1} . Monic polynomial π_{n+1} of degree $n+1$ which is orthogonal to \mathcal{P}_n either does not exist or there are infinitely many of them. So Q_{n+1} either does not exist or it is not unique.

 \blacktriangleright *L* is defined by sequence of moments 1, 3, 8, 20, 52, 156, *i*, ...

- \blacktriangleright *L* is defined by sequence of moments 1, 3, 8, 20, 52, 156, *i*, ...
- \blacktriangleright *L* is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 4i$.

- \blacktriangleright *L* is defined by sequence of moments 1, 3, 8, 20, 52, 156, *i*, ...
- \blacktriangleright *L* is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 4i$.
- \blacktriangleright $\pi_0 = 1$, $\pi_1(x) = x 3$, $\pi_2(x) = x^2 4x + 4$, $\pi_3(x) = x^3 7x^2 + 20x 24$.

- \blacktriangleright $\mathcal L$ is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, \ldots
- \blacktriangleright \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 - 4i$.
- \blacktriangleright $\pi_0 = 1$, $\pi_1(x) = x 3$, $\pi_2(x) = x^2 4x + 4$, $\pi_3(x) = x^3 7x^2 + 20x 24$.
- The zeros of π_2 are $x_1 = x_2 = 2$, which means that the 2-point Gauss quadrature does not exist. In other words, the nonlinear system

$$
A_1 z_1^k + A_2 z_2^k = m_k, \quad k = 0, 1, 2, 3,
$$

has no solution in ^C

- \blacktriangleright $\mathcal L$ is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, \ldots
- \blacktriangleright \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 - 4i$.
- \blacktriangleright $\pi_0 = 1$, $\pi_1(x) = x 3$, $\pi_2(x) = x^2 4x + 4$, $\pi_3(x) = x^3 7x^2 + 20x 24$.
- The zeros of π_2 are $x_1 = x_2 = 2$, which means that the 2-point Gauss quadrature does not exist. In other words, the nonlinear system

$$
A_1 z_1^k + A_2 z_2^k = m_k, \quad k = 0, 1, 2, 3,
$$

has no solution in ^C

 \blacktriangleright The zeros of π_3 are $x_1 = 3$, $x_2 = 2 - 2i$ and $x_3 = 2 + 2i$, which means that 3-point Gauss quadrature exists

- \blacktriangleright $\mathcal L$ is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, \ldots
- \blacktriangleright \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 - 4i$.
- \blacktriangleright $\pi_0 = 1$, $\pi_1(x) = x 3$, $\pi_2(x) = x^2 4x + 4$, $\pi_3(x) = x^3 7x^2 + 20x 24$.
- \blacktriangleright The zeros of π_2 are $x_1 = x_2 = 2$, which means that the 2-point Gauss quadrature does not exist. In other words, the nonlinear system

$$
A_1 z_1^k + A_2 z_2^k = m_k, \quad k = 0, 1, 2, 3,
$$

has no solution in ^C

 \blacktriangleright The zeros of π_3 are $x_1 = 3$, $x_2 = 2 - 2i$ and $x_3 = 2 + 2i$, which means that 3-point Gauss quadrature exists

$$
\begin{array}{c} \n\blacktriangleright \quad J_3 = \left[\begin{array}{ccc} 3 & i & 0 \\ i & 1 & 2i \\ 0 & 2i & 3 \end{array} \right] \end{array}
$$

- \blacktriangleright $\mathcal L$ is defined by sequence of moments 1, 3, 8, 20, 52, 156, i, \ldots
- \blacktriangleright \blacktriangleright \mathcal{L} is quasi definite on \mathcal{P}_3 : $\Delta_0 = 1$, $\Delta_1 = -1$, $\Delta_2 = -4$, $\Delta_3 = 2128 - 4i$.
- \blacktriangleright $\pi_0 = 1$, $\pi_1(x) = x 3$, $\pi_2(x) = x^2 4x + 4$, $\pi_3(x) = x^3 7x^2 + 20x 24$.
- \blacktriangleright The zeros of π_2 are $x_1 = x_2 = 2$, which means that the 2-point Gauss quadrature does not exist. In other words, the nonlinear system

$$
A_1 z_1^k + A_2 z_2^k = m_k, \quad k = 0, 1, 2, 3,
$$

has no solution in ^C

 \blacktriangleright The zeros of π_3 are $x_1 = 3$, $x_2 = 2 - 2i$ and $x_3 = 2 + 2i$, which means that 3-point Gauss quadrature exists

$$
\blacktriangleright \hspace*{0.2cm} J_3 = \left[\begin{array}{ccc} 3 & i & 0 \\ i & 1 & 2i \\ 0 & 2i & 3 \end{array} \right]
$$

 \blacktriangleright J_3 is diagonalizable, J_2 is not diagonalizable.

Instead of 2-point we have 2-weight Gauss quadrature of the form: $A_1 f(2) + A_2 f'(2)$. It is easy to check that the nonlinear system

$$
A_1 \cdot 1 + A_2 \cdot 0 = 1
$$

\n
$$
A_1 z_1 + A_2 \cdot 1 = 3
$$

\n
$$
A_1 z_1^2 + A_2 (2z_1) = 8
$$

\n
$$
A_1 z_1^3 + A_2 (3z_1^2) = 20
$$

has unique solution (in C): $A_1 = 1, A_2 = 1, z_1 = 2$. So the quadrature $f(2) + f'(2)$ has degree of exactness 3. Its degree of exactness would be higher if and only if $m_4 = 2^4 + 4 \cdot 2^3 = 48$. But in that case we would have $\Delta_2 = 0$, i.e. $\mathcal L$ would not be quasi definite on \mathcal{P}_2 .

 \blacktriangleright

Instead of 2-point we have 2-weight Gauss quadrature of the form: $A_1 f(2) + A_2 f'(2)$. It is easy to check that the nonlinear system

$$
A_1 \cdot 1 + A_2 \cdot 0 = 1
$$

\n
$$
A_1 z_1 + A_2 \cdot 1 = 3
$$

\n
$$
A_1 z_1^2 + A_2 (2z_1) = 8
$$

\n
$$
A_1 z_1^3 + A_2 (3z_1^2) = 20
$$

has unique solution (in C): $A_1 = 1, A_2 = 1, z_1 = 2$. So the quadrature $f(2) + f'(2)$ has degree of exactness 3. Its degree of exactness would be higher if and only if $m_4 = 2^4 + 4 \cdot 2^3 = 48$. But in that case we would have $\Delta_2 = 0$, i.e. $\mathcal L$ would not be quasi definite on \mathcal{P}_2 .

The functional \mathcal{L}_1 whose first five moments are

$$
m_0 = 1, m_1 = 3, m_2 = 8, m_3 = 20, m_4 = 48,
$$

is not quasi-definite on \mathcal{P}_2 . If $m_5 = 2^5 + 5 \cdot 2^4 = 112$ then the quadrature $f(2) + f'(2)$ would have degree of exactness at least 5.

THANK YOU FOR YOUR ATTENTION!