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Initial situation for a given body Ω ⊂ R3

  

forces

Γ
N

Γ
D

reference configuration deformed configuration

φ (Ω)

φ

Ω

body force: given by a density f : Ω→ R3

surface force: given by a density g : ΓN → R3

deformation: ϕ : Ω̄→ R3

ϕ = id + u with the pointwise displacement u : Ω̄→ R3

stress tensor: mapping from Ω̄ to R3×3
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Notations:
λ, µ > 0: material dependend Lamé - constants
(alternatively: Young’s modulus E , Poisson’s ratio ν)
deformation gradient: F := ∇ϕ = I +∇u =: F(u)
Cof A := (det A)A−T for regular A ∈ R3×3

dev A := A− 1
3tr (A)I for A ∈ R3×3

Stress tensors:
first Piola - Kirchhoff stress tensor P
Kirchhoff stress tensor τ = PFT

Strain tensors:
B := FFT (left Cauchy - Green)
C := FTF (right Cauchy - Green)
linear elasticity:

ε(u) :=
1

2

(
∇u + (∇u)T

)
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LSFEM for linear elasticity [Cai, Starke (2004)]
Stress - strain relation:

σ = 2µ ε(u) + λ tr (ε(u))I =: Cε(u) (invertible for finite λ)

Inverse stress - strain relation:

ε(u) =
1

2µ

(
σ − λ

3λ+ 2µ
tr (σ)I

)
=: Alin(σ)

λ→∞→ 1

2µ
dev σ

Minimize the (linear) least squares functional:

Flin(σ,u; f) = ‖divσ + f‖2
L2(Ω) + ‖Alin(σ)− ε(u)‖2

L2(Ω)

proof of continuity and ellipticity of Flin(τ , v; 0) in
V := HΓN

(div,Ω)3 × H1
ΓD

(Ω)3 is given:

Flin(τ , v; 0) . ‖ε(v)‖2
L2(Ω) + ‖τ‖2

L2(Ω) + ‖div τ‖2
L2(Ω) . ‖(τ , v)‖2

V

Flin(τ , v; 0) & ‖ε(v)‖2
L2(Ω) + ‖τ‖2

L2(Ω) + ‖div τ‖2
L2(Ω) & ‖(τ , v)‖2

V
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Purposes:

Extension of the approach of linear to nonlinear elasticity, i.e.
in particular

using the Least Squares Finite Element Method
mixed formulation (approximate displacements and stresses)
using nonlinear kinematics (strain tensor is nonlinear in u)
using nonlinear material laws (stress - strain relation is
nonlinear)

Desirable properties:

reliability in the incompressible limit
(no Poisson locking as Poisson’s ratio ν → 1

2 )
equivalence of the (nonlinear and linearized) least squares
functional to the error, i.e.

F(Ph,uh) h ‖(P− Ph,u− uh)‖2
V .
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First order system in hyperelasticity:

Given:
frame - indifferent material with stored energy function
ψ : Ω̄× R3×3

sym → R

Strong formulation:

Seek u and the first Piola - Kirchhoff stress tensor P with

− div P = f in Ω

P = ∂Fψ(x,C) in Ω (hyperelastic material law)

and boundary conditions

u = uD on ΓD , P · n = g on ΓN .
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Homogeneous isotropic materials:

It exists ψ̃ : R3 → R with

ψ(C) = ψ̃(I1(C), I2(C), I3(C))

and I1(C) = tr (C), I2(C) = tr (Cof C), I3(C) = det C, C = FTF.

P = ∂Fψ(C) =
∂ψ̃

∂I1
∂FI1(C) +

∂ψ̃

∂I2
∂FI2(C) +

∂ψ̃

∂I3
∂FI3(C)

= 2
∂ψ̃

∂I1
F + 2

∂ψ̃

∂I2
F (tr (C)I− C) + 2(det F)2 ∂ψ̃

∂I3
F−T .

⇒ τ = PFT = 2
∂ψ̃

∂I1
B + 2

∂ψ̃

∂I2

(
tr (B)B− B2

)
+ 2 det B

∂ψ̃

∂I3
I =:= G(B).
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Inverse stress - strain relation

Assumptions:
P(u = 0) = 0 (no displacement ⇒ no stress)
P′(0)[v] = 2µ ε(v) + λ tr (ε(v))I = Cε(v)
(consistency with linear elasticity)

Consequences for G(B(u)) = P(u)(F(u))T :

G′(B(0))[B′(0)[v]] = P′(0)[v](F(0))T + P(0)(∇v)T

⇔ G′(I)[2ε(v)] = P′(0)[v] = Cε(v)

for all v in a neighborhood of u = 0.

G′(I) = 1
2C is an isomorphism ⇒ G is locally invertible in a

neighborhood of u = 0 (resp. in a neighborhood of B = I)

G−1(τ ) = G−1(PFT ) = B is well - defined in a neighborhood
of τ = 0.
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Inverse first order system and least squares formulation

Inverse formulation of the FOS:

R(P,u) :=

(
ω1 (div P + f)

ω2

(
A(PF(u)T )− B(u)

)) =

(
0
0

)
in Ω

with scaling parameters ω1, ω2 > 0 and A := G−1 for compressible
materials (case λ <∞).
Least squares functional:

For (P,u) ∈W q(div; Ω)3 ×W 1,p(Ω)3 we define

F(P,u) := ‖R(P,u)‖2
L2(Ω)

= ω2
1‖div P + f‖2

L2(Ω) + ω2
2‖A(PF(u)T )− B(u)‖2

L2(Ω).
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Sketch of further steps

Linearized least squares functional for fixed (P(k),u(k)):

Seek correction term (Q(k), v(k)) ∈W q
ΓN

(div; Ω)3 ×W 1,p
ΓD

(Ω)3,
such that

F lin(Q(k), v(k)) := ‖R(P(k),u(k)) +R′(P(k),u(k))[Q(k), v(k)]‖2
L2(Ω)

is minimized.

Necessary condition d
dtF

lin(Q(k) + tQ̂, v(k) + tv̂)|t = 0 = 0
leads to a (standard) variational formulation.
Solve the corresponding discrete problem:

Elements: Raviart - Thomas elements RT 1 for P and
continuous piecewise quadratic elements for u(

P
(k+1)
h ,u

(k+1)
h

)
=
(

P
(k)
h ,u

(k)
h

)
+ α(k)

(
Q

(k)
h , v

(k)
h

)
(α(k): parameter in backtracking line search damping strategy)
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Neo - Hooke material

ψ̃NH(I1, I3) := αI1 + βI3 − γ ln(
√
I3) with α, β, γ > 0.

Consistency with linear elasticity leads to

ψNH(C) =
µ

2
tr (C) +

λ

4
det C−

(
µ+

λ

2

)
ln(
√

det C)

⇒ PFT = ∂FψNH(C)FT = µB +

(
λ

2
(det B− 1)− µ

)
I =: GNH(B).

G′NH(B)[E] = µE + λ
2 (Cof B : E)I satisfies G′NH(I) = 1

2C.

Open questions:

Direct evaluation of ANH(τ ) for given τ = PF(u)T possible ?
Well - posedness of ANH(τ ) for λ→∞ ?
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Neo - Hooke material

ψ̃NH(I1, I3) := αI1 + βI3 − γ ln(
√
I3) with α, β, γ > 0.

Consistency with linear elasticity leads to

ψNH(C) =
µ

2
tr (C) +

λ

4
det C−

(
µ+

λ

2

)
ln(
√

det C)

⇒ PFT = ∂FψNH(C)FT = µB +

(
λ

2
(det B− 1)− µ

)
I =: GNH(B).

G′NH(B)[E] = µE + λ
2 (Cof B : E)I satisfies G′NH(I) = 1

2C.

Open questions:

Direct evaluation of ANH(τ ) for given τ = PF(u)T possible ?
Well - posedness of ANH(τ ) for λ→∞ ?

Mixed LSFEM Based on Inverse Stress - Strain Relations in Hyperelasticity Benjamin Müller 16/ 33



Well - posedness of ANH for λ→∞:

For finite λ and given stress τ we seek the corresponding strain B
with GNH(B) = τ .

Splitting B, τ into its trace and deviatoric part and inserting it in
GNH(B) = τ results in

µdev B = dev τ

µ

(
1

3
trB− 1

)
+
λ

2
(det B− 1) =

1

3
tr τ .

(∗)

Using
det(A1 + A2) = det A1 + Cof A1 : A2 + A1 : Cof A2 + det A2 and
(∗)1 results in

det B =
1

27
(trB)3 +

1

3µ2
(trB)tr (Cof (dev τ )) +

1

µ3
det(dev τ )
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Well - posedness of ANH for λ→∞:

Inserting det B into (∗)2 results in a cubic equation

(trB)3 + S trB + T = 0

with

S :=
9

µ2
tr (Cof (dev τ )) +

18µ

λ

T := 27

(
1

µ3
det(dev τ )− 1− 2µ

λ
− 2

3λ
tr τ

)
.

For the discriminant D :=
(
S
3

)3
+
(
T
2

)2
> 0 the cubic equation is

uniquely solvable through

trB =
3

√
−T

2
+
√
D +

3

√
−T

2
−
√
D.
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Well - posedness of ANH for λ→∞:

Theorem (M., Starke)

Assume that the discriminant D of the cubic equation is positive.
Then the mapping B = ANH(τ ), defined by (∗), is well - defined in
the incompressible limit λ→∞. Its inverse does not exist in this
case.

Proof:

Well - posedness of ANH for λ→∞: X
For τ 2 := τ 1 + cI with given matrix τ 1 and c ∈ R \ {0} it
holds τ 1 6= τ 2 and dev τ 1 = dev τ 2

⇒ dev B1 = dev B2 and trB1 = trB2 ⇒ B1 = B2.

⇒ ANH is not injective and therefore not invertible for λ =∞
2
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Continuity and ellipticity of FNH(P,u) near the origin

For mixed boundary conditions and small δ > 0 we set:

Π∞ := {Q ∈W∞(div; Ω)3 : ‖Q‖L∞(Ω) ≤ δ} ∩ (PN + W 4
ΓN

(div; Ω))3

U∞ := {u ∈W 1,∞(Ω)3 : ‖∇u‖L∞(Ω) ≤ δ} ∩ (uD + W 1,4
ΓD

(Ω)3)

with PN ∈W∞(div; Ω)3 and uD ∈W 1,∞(Ω)3.

Lemma (M., Starke)

If δ > 0 is chosen sufficiently small, then there is a ρ ∈ [0, 1) such
that

‖R′(Q, v)[Q̂, v̂]−R′(0, 0)[Q̂, v̂]‖L2(Ω) ≤ ρ‖R′(0, 0)[Q̂, v̂]‖L2(Ω)

for all (Q, v) ∈ Π∞ ×U∞ and (Q̂, v̂) ∈ HΓN
(div ; Ω)3 × H1

ΓD
(Ω)3.
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Continuity and ellipticity of FNH(P,u) near the origin

Theorem (M., Starke)

If δ > 0 is chosen sufficiently small, then

‖R(Q̂, v̂)−R(Q, v)‖2
L2(Ω) . ‖Q̂−Q‖2

H(div ; Ω) + ‖v̂ − v‖2
H1(Ω)

‖R(Q̂, v̂)−R(Q, v)‖2
L2(Ω) & ‖Q̂−Q‖2

H(div ; Ω) + ‖v̂ − v‖2
H1(Ω)

holds uniformly for λ→∞ and all Q, Q̂ ∈ Π∞ and v, v̂ ∈ U∞.

Consequence:

FNH(Ph,uh) . ‖Ph − P‖2
H(div; Ω) + ‖uh − u‖2

H1(Ω)

FNH(Ph,uh) & ‖Ph − P‖2
H(div; Ω) + ‖uh − u‖2

H1(Ω)

i.e. FNH(Ph,uh) is an a - posteriori error estimator.
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Well - posedness of the linearized problem

Linearized least squares functional:

F lin
NH(Q, v;R(P(k),u(k))) := ‖R(P(k),u(k)) +R′(P(k),u(k))[Q, v]‖2

L2(Ω)

Corresponding bilinear form and linear form:

a((Q, v), (Q̂, v̂)) =
(
R′(P(k),u(k))[Q, v],R′(P(k),u(k))[Q̂, v̂]

)
L2(Ω)

F ((Q̂, v̂)) = −
(
R(P(k),u(k)),R′(P(k),u(k))[Q̂, v̂]

)
L2(Ω)

Wanted property:

F lin
NH(Q̂, v̂; 0) = ‖R′(P(k),u(k))[Q̂, v̂]‖2

L2(Ω) h ‖(Q̂, v̂)‖2
V

for all Q̂ ∈ HΓN
(div; Ω)3 and v̂ ∈ H1

ΓD
(Ω)3.
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Proof of
”
wanted property“

Let (P(k),u(k)) ∈ Π∞ ×U∞, (Q̂, v̂) ∈ HΓN
(div; Ω)3 × H1

ΓD
(Ω)3.

Then it follows by our lemma

‖R′(P(k),u(k))[Q̂, v̂]−R′(0, 0)[Q̂, v̂]‖L2(Ω) ≤ ρ‖R′(0, 0)[Q̂, v̂]‖L2(Ω)

with ρ < 1 and therefore

‖R′(P(k),u(k))[Q̂, v̂]‖L2(Ω) ≤ (1 + ρ)‖R′(0, 0)[Q̂, v̂]‖L2(Ω)

‖R′(P(k),u(k))[Q̂, v̂]‖L2(Ω) ≥ (1− ρ)‖R′(0, 0)[Q̂, v̂]‖L2(Ω).

Since R′(0, 0)[Q̂, v̂] =

(
div Q

2
(
Alin(Q̂)− ε(v̂)

)) it holds

‖R′(0, 0)[Q̂, v̂]‖L2(Ω) h Flin(Q̂, v̂; 0).
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Proof of
”
wanted property“

Altogether

F lin
NH(Q̂, v̂; 0) = ‖R′(P(k),u(k))[Q̂, v̂]‖2

L2(Ω)

h ‖R′(0, 0)[Q̂, v̂]‖2
L2(Ω)

h Flin(Q̂, v̂; 0)

h ‖(Q̂, v̂)‖2
V

with V := HΓN
(div; Ω)3 × H1

ΓD
(Ω)3.
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Numerical example 1:
Cook’s membrane 2d (plane strain)

Densities of forces: f ≡ 0, g = (0, γ)T with γ ∈ R

constraints on ΓD :

u = 0 (left)

constraints on ΓN :

P · n = 0 (top, bottom)

P · n = g (right)
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Numerical example 1
Lamé constants: µ = 1, λ =∞, load value: γ = 0.05

scaling parameters: ω1 = 102, ω2 = 1

reference solution: u2(48, 60) = 4.7010 for nt = 47616

0 20 40 60
0

10

20

30

40

50

60

x
1

x
2

 

 

nt FNH(Ph,uh) (order) u2(48, 60)

186 2.9972 · 10−2 4.5092

275 1.4042 · 10−2 (1.94) 4.6120

390 6.7178 · 10−3 (2.11) 4.6586

559 3.2427 · 10−3 (2.02) 4.6810

821 1.5525 · 10−3 (1.92) 4.6921

1211 7.3322 · 10−4 (1.93) 4.6974

1796 3.3695 · 10−4 (1.97) 4.6999

2622 1.4855 · 10−4 (2.16) 4.7011
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Numerical example 2: Cook’s membrane 3d

boundary conditions, Lamé constants and forces as in
the first example

Ω now expanded in x3 - direction (thickness d = 10)

nt 880 1550 3435
order 1.4187 0.9164

u2(48, 60, 10) 5.3001 5.5505 5.6559
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Plot of the normal components of the stress tensor on the left clamped boundary        
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Summary

General:
extension of a LSFEM approach from linear elasticity to
geometrically nonlinear elasticity
first Piola - Kirchhoff stress tensor is approximated next to the
displacement
⇒ no post - processing is necessary and better stress
approximations can be achieved (cp. talk of Prof. Starke)

Neo - Hooke:
one approach covers compressible, quasi - incompressible and
full incompressible materials
analysis under strong regularity assumptions and close to the
origin (Neo - Hooke)
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Thank you for your attention
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