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What is a polymer?

Polymer - a chemical compound or mixture of compounds
consisting of repeating structural units created through a process
of polymerization

Polymerization - a process of reacting monomer molecules
together in a chemical reaction to form polymer chains or
three-dimensional networks.

Depolymerization (fragmentation) - inverse of polymerization
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Explain their behaviour:
@ macroscale (velocity, pressure, density, temperature)

@ microscale (configuration of monomers, length, shape)
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Various approaches. FENE model

Navier-Stokes-Fokker-Planck system (finitely extensible
nonlinear elastic type model):

% + (u- Viu —vhsu + Vip = div,7(¥) 4,

divyu =10
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Various approaches. FENE model

Navier-Stokes-Fokker-Planck system (finitely extensible
nonlinear elastic type model):

%+(u-Vx)u—l/AxU+VxP:diVXT('l/’)Jrf’
divyu =20
AND
o
¢ T V)Y + Vg | (Veu)gy
 (la
= Vo (Vav+ U (5] ) +ebu

where 1(t, x, q) is a probability density function.
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Dumbbell models: polymer chains ~ dumbbell

Ulx1)

U(xy)

We describe polymer chains as two beads connected by a spring, g
is the vector connecting the beads. J
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FENE model - continuation

Extra stress tensor
/ ’q’2
() Z/Dq®q U'{ - Y(t,x,q)dq

Spring potentials U:

. . | 2
@ Hookean potential U (T) =4
o FENE U(@) :g|n(1—%), lq| < Vb
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Navier-Stokes-Fokker-Planck references:

1 Barrett, J.W., Schwab, C., Siili, E., Existence of global weak
solutions for some polymeric flow models. Math. Models
Methods Appl. Sci. 15 (2005).

2 Barrett, J.W., Siili, E., Existence of global weak solutions to
some regularized kinetic models of dilute polymers. SIAM
Multiscale Modelling and Simulation 6 (2007).

3 Barrett, J.W., Siili, E., Existence of global weak solutions to
dumbbell models for dilute polymers with microscopic cut-off.
Mathematical Models and Methods in Applied Sciences 18
(2008).

4 Arnold, A.; Carrillo, J. A.; Manzini, C. Refined long-time

asymptotics for some polymeric fluid flow models. Commun.
Math. Sci. 8 (2010)
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Modifications of the model

1 N. Masmoudi. Global existence of weak solutions to the
FENE dumbbell model of polymeric flows. Invent. Math., 191
(2013)

2 Bulitek, M.; Mdlek, J.; Siili, E. Existence of global weak
solutions to implicitly constituted kinetic models of
incompressible homogeneous dilute polymers. Comm. Partial
Differential Equations 38 (2013),
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Different approaches - Doi model

u
e
%
™~
b

We describe polymer chains as rigid rods J
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Various approaches. Doi model

Doi model for rod-like molecules
Ot — A+ Vyp—divr =0, divu=0
and
Oif = —u-Vyf =V, (P,.Vxunf)+ DA + D, Apf

Here V,, V-, A, denote gradient, divergence and Laplacian on S?
and P,.V,un = Vyun— (n-Vun)n denotes the projection of the
vector V,un on the tangent space in n. The last two terms on the
right-hand side describe the Brownian effects: translational and
rotational diffusion respectively.
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Doi model - continuation

A velocity gradient V, v distorts an isotropic distribution f which
leads to an increase in entropy. Thermodynamic consistency
requires that this is balanced by a stress tensor given by

T(t,x) = kaT/ (3n® n—id)f(t,x, n)dn. J
S2
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Doi model - references

1 Otto, Felix; Tzavaras, Athanasios, Continuity of velocity
gradients in suspensions of rod-like molecules. Comm. Math.
Phys. 277 (2008),

2 Bae, Hantaek; Trivisa, Konstantina, On the Doi model for the
suspensions of rod-like molecules: global-in-time existence.
Commun. Math. Sci. 11 (2013),

3 Bae, Hantaek; Trivisa, Konstantina, On the Doi model for the
suspensions of rod-like molecules in compressible fluids. Math.
Models Methods Appl. Sci. 22 (2012)
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Summary of the presented models

@ FENE model

@ Doi model

<

e Equation for macroscopic quantities v, p (Navier-Stokes), with
microscopic quantities appearing in the additive stress tensor

e Equation for microscopic quantities (Fokker-Planck)

What is still not captured?

@ polimerization

e fragmentation
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Monomers-polymers models, e.g. prion proliferation

1 is the distribution function of polymers of the length r > rg
solving the following equation

O, 1) + To(E)D0(E 1) = —B(r)b(t, r +2/ B(F)i(r, F)b(t, F) dF

e 7¢(t)0,Y(t, r) — the gain in length of polymer chains due to
polymerization with rate 7 > 0,

@ [(r) is the fragmentation rate, namely the length-dependent
likelihood of splitting of polymers to monomers

@ k(r,F) is the probablity that a polymer will split into two
polymers of length r and 7 — r,

e —[3(r)y(t,r) is the loss of polymers, subject to the splitting
rate 3(r)

@ the last term is the count of all the polymers of length r
resulting from the splitting of polymers of length greater
than r.



Equation for monomers

The function ¢(t, x) is the concentration of free monomers
satisfying the equation

3t¢(t X
—2/ / B(F)k(r, F)y(t, F) dF dr — ¢ tx)/ TY(t, r)dr.
0 2[°r[*n F)i(t, F) dF dr represents the monomers

gained when a polymer splits with at least one polymer
shorter than the minimum length ry

—o(t, x) frzo TY(t, r) dr — the loss of monomers as they are
polymerized
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References for monomers-polymers models

1 Greer, Meredith L.; Pujo-Menjouet, Laurent; Webb, Glenn F.
A mathematical analysis of the dynamics of prion
proliferation. J. Theoret. Biol. 242 (2006)

2 Calvez, Vincent; Lenuzza, Natacha; Oelz, Dietmar; Deslys,
Jean-Philippe; Laurent, Pascal; Mouthon, Franck; Perthame,
Benoit. Size distribution dependence of prion aggregates
infectivity. Math. Biosci. 217 (2009)
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New approach: we couple the equation describing fluid

flow with the equations capturing the process of
(de-)polymerization.

The length of polymer chains influences viscosity of the fluid. Then
the viscosity is not constant (non-newtonian fluid), but depends
also on microscopic quantities.

Results

| \

We show existence of weak solutions under the assumption of
polynomial growth conditions of the Cauchy stress tensor.
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Non-Newtonian-Smoluchowski fragmentation model,

joint work in progress with E. Suli and M. Buli¢ek

Consider in (0, T) x Q the equations for the fluid solvent

Oru(t, x)+dive(u(t,x) ® u(t, x)) + Vp(t,x)
— div,S(¢(t, x, r),Deu(t, x)) = f,
divyu(t, x) =0,

where the stress tensor is given by the formula
S(¥(t,x,r),Dyu(t, x)) := v((t, x, r),Dyu(t, x))Dyxu(t, x)

and v : Ry x Ry — R is the generalized viscosity which depends
on the shear rate and ¢ : (0, T) x 2 x Ry — Ry is the
distribution function of polymers.
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Non-Newtonian-Smoluchowski fragmentation model

¥ :(0,T) x Q xRy — Ry is the distribution function of polymers
solving the following equation

Or(t, x, r) + u(t, x)Vxb(t, x, r) + 7o(t, x)0,0(t, x, r)
— A(n)A(t, x,r) = —B(r, u,Dxu)ip(t, x,r)

+2 /OO B(F, u,Dyu)k(r, F)(t, x, F) dF,

@ 7 > 0 is the polimerization rate,

@ ((r,-,-) is the fragmentation rate of polymers of size r, which
depends also on macroscopic quantities, namely on the
velocity of the solvent and the shear rate,

@ A(r) = 0asr— oo
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Non-Newtonian-Smoluchowski fragmentation model - cont.

The function ¢(t, x) is the concentration of free monomers
satisfying

O0rp(t, x) + u(t, x)Vio(t, x) — AcAxo(t, x)
=— - dr.
(;S(t,x)/o TY(t, x, r)dr
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Conservation of mass

For showing

jt[/qu(t,x)dx—l—/Ooor/Qw(t,x,r)dxdr} =0

it is important that for x(r, ) — the probablity that a polymer will
split into two polymers of length r and 7 — r it holds

//@(r,F)drzl, /m(r,F)dr:r.
0 0 2
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Toy model for situation A(r) = 0, big amount of

monomers and small amount of polymers

Navier-Stokes size-structured model:

du(t,x)
ot

+divy(u(t, x) ® u(t,x)) + Vip(t, x)
= div,S(v, Dxu(t, x)) + f(t, x),

divyu(t,x) =0,
with Dirichlet BC for u
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Toy model for situation A(r) = 0, big amount of

monomers and small amount of polymers

Navier-Stokes size-structured model:

du(t,x)
ot

+divy(u(t, x) ® u(t,x)) + Vip(t, x)
= div,S(v, Dxu(t, x)) + f(t, x),

divyu(t,x) =0,
with Dirichlet BC for u AND

S(v, Dyu(t,x)) :=v (/000 ~v(r)(t, x, r)dr, |Dxu(t,x)|> D, u(t,x),

v € C(R;R) where v(t, x, r) is the function representing density of
the polymer molecules of length r at time t at x.
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Size-structure of a polymer molecule

(t, x, r) is the function representing density of polymer molecules
of length r at time t at x.

Orp(t, x, r) + dive(u(t, x)(t, x,r))

= 7(r)orp(t,x,r) — B(r)yY(t, x, r +2/ B(F Y(t, x, F)dF
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Size-structure of a polymer molecule

(t, x, r) is the function representing density of polymer molecules
of length r at time t at x.

Orp(t, x, r) + dive(u(t, x)(t, x,r))

= 7(r)orp(t,x,r) — B(r)yY(t, x, r +2/ B(F Y(t, x, F)dF

@ [(3(r) - the rate of fragmentation
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Size-structure of a polymer molecule

(t, x, r) is the function representing density of polymer molecules
of length r at time t at x.

Orp(t, x, r) + dive(u(t, x)(t, x,r))

= 7(r)orp(t,x,r) — B(r)yY(t, x, r +2/ B(F Y(t, x, F)dF

@ [(3(r) - the rate of fragmentation

@ k(r,F) - the fragmentation kernel - represents the proportion
of individuals of size r born from a given dividing individual of
size 7
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Weak sequential stability

It is essential to show that

/OO y(r)w"(t, x, r)dr — /000 y(r)w(t, x, r)dr

0

a.e. in Q1. For this purpose consider the reduced problem for
w: [0, T] x Ry — Ry (without the transport term)

;)t,u(t, r)= T(r);)ru(t, r)— w(t, r +2/ B(r)s(r, F)u(t, F)dF
(O,Z) = Mo
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Dual problem to the reduced problem

The dual problem (backward in time) to the reduced problem

at(p(ta r)
= 0,(r()e(t. 1) + B()e(tsr) — 2 [ BAIR(F (e, P
0

©(T1,2) =~(r)

where T7 € [0, T] and

Agnieszka Swierczewska Polymeric multi-scale models



Dual problem to the reduced problem

The dual problem (backward in time) to the reduced problem
8tcp(t, r)
= 0,(r()e(t. 1) + B()e(tsr) — 2 [ BAIR(F (e, P
0
<)0(7-132) = y(r)

where T7 € [0, T] and

d oo

a :U’(t7 I’)(,O(t, r)erO
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We multiply the original equation for v

Bet + divie(uh) = 9,(r) — Bib + 2 /OO B(F)w(r, FYo(t, x, F) dF

by the solution to the dual problem to the reduced problem,
namely by ¢ and integrate over (0,00) w.r.t. r to obtain

O¢ </Ooo<pwdr> —/Om@b@tgpdr—I—u-VX </Ooogm/1dr>

:/Ooogm-@rwdr—/ooogoﬁz/}dr—f—Z/ z/)/ B(F )e(t, r)dFdr
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Denoting -
go(ex) = [ ettt r)dr
we get
Otgp + U - Vxgp =
/Ooo VY <6th — 0r(Tp) — B +2 /OOO B(F)k(F, r)e(t, F) dF> dr
which is the homogeneous linear transport equation
0t8p +Uu-Vig, =0

for which the renormalization techniques can be used.
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What was essential in this procedure?

Reduced problem for  : [0, T] x Ry — R4 (without the transport
term)

o0

Orpe(t, r) = 7(r)0rp(t, r) — B(r)u(t, r) + 2/B(r)/£(r, F)u(t, F)dF

r

H(Ov Z) = Ho

7, 3 are independent of x |
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Integral operators

Fep(t, x) + u(t, x) - Vxip(t, x) = /v(x,y)w(hX)dy,
(0, x) = P(x).

The equation for a renormalized quantity £5(¢) is not a linear
equation anymore.
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Thank you for your attention!
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