Polymeric multi-scale models

Agnieszka Świerczewska-Gwiazda

University of Warsaw, Institute of Applied Mathematics and Mechanics

MORE Workshop, Liblice 23.09.2014

Polymer - a chemical compound or mixture of compounds consisting of repeating structural units created through a process of polymerization

Polymer - a chemical compound or mixture of compounds consisting of repeating structural units created through a process of polymerization

Polymerization - a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks.

Polymer - a chemical compound or mixture of compounds consisting of repeating structural units created through a process of polymerization

Polymerization - a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks.

Depolymerization (fragmentation) - inverse of polymerization

Polymer - a chemical compound or mixture of compounds consisting of repeating structural units created through a process of polymerization

Polymerization - a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks.

Depolymerization (fragmentation) - inverse of polymerization

GOALS

Explain their behaviour:

• macroscale (velocity, pressure, density, temperature)

GOALS

Explain their behaviour:

- macroscale (velocity, pressure, density, temperature)
- microscale (configuration of monomers, length, shape)

GOALS

Explain their behaviour:

- macroscale (velocity, pressure, density, temperature)
- microscale (configuration of monomers, length, shape)

Various approaches. FENE model

Navier-Stokes-Fokker-Planck system (finitely extensible nonlinear elastic type model):

$$\frac{\partial u}{\partial t} + (u \cdot \nabla_x)u - \nu \Delta_x u + \nabla_x p = \operatorname{div}_x \tau(\psi) + f,$$
$$\operatorname{div}_x u = 0$$

AND

$$\frac{\partial \psi}{\partial t} + (u \cdot \nabla_{x})\psi + \nabla_{q} \cdot \left[(\nabla_{x}u)q\psi \right]$$
$$= \nabla_{q} \cdot \left(\nabla_{q}\psi + U'\left(\frac{|q|^{2}}{2}\right) \right) + \varepsilon \Delta_{x}\psi$$

where $\psi(t, x, q)$ is a probability density function.

Various approaches. FENE model

Navier-Stokes-Fokker-Planck system (finitely extensible nonlinear elastic type model):

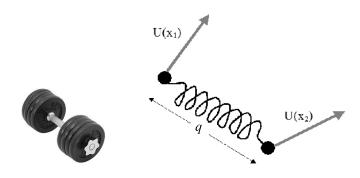
$$\frac{\partial u}{\partial t} + (u \cdot \nabla_x)u - \nu \Delta_x u + \nabla_x p = \operatorname{div}_x \tau(\psi) + f,$$
$$\operatorname{div}_x u = 0$$

AND

$$\frac{\partial \psi}{\partial t} + (u \cdot \nabla_{x})\psi + \nabla_{q} \cdot \left[(\nabla_{x}u)q\psi \right]$$
$$= \nabla_{q} \cdot \left(\nabla_{q}\psi + U'\left(\frac{|q|^{2}}{2}\right) \right) + \varepsilon \Delta_{x}\psi$$

where $\psi(t, x, q)$ is a probability density function.

Dumbbell models: polymer chains \sim dumbbell



We describe polymer chains as two beads connected by a spring, q is the vector connecting the beads.

FENE model - continuation

Extra stress tensor

$$au(\psi) = \int_D q \otimes q \ U'\left(\frac{|q|^2}{2}\right) \psi(t,x,q) dq$$

Spring potentials U:

- Hookean potential $U\left(\frac{|q|^2}{2}\right) = \frac{|q|^2}{2}$
- FENE $U\left(rac{|q|^2}{2}
 ight)=rac{b}{2}\ln\left(1-rac{|q|^2}{b}
 ight),\;|q|\leq\sqrt{b}$

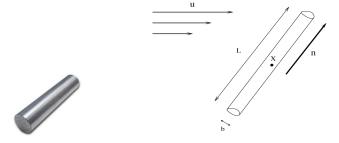
Navier-Stokes-Fokker-Planck references:

- 1 Barrett, J.W., Schwab, C., Süli, E., Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15 (2005).
- 2 Barrett, J.W., Süli, E., Existence of global weak solutions to some regularized kinetic models of dilute polymers. SIAM Multiscale Modelling and Simulation 6 (2007).
- 3 Barrett, J.W., Süli, E., Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Mathematical Models and Methods in Applied Sciences 18 (2008).
- 4 Arnold, A.; Carrillo, J. A.; Manzini, C. Refined long-time asymptotics for some polymeric fluid flow models. Commun. Math. Sci. 8 (2010)

Modifications of the model

- 1 N. Masmoudi. Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math., 191 (2013)
- 2 Bulíček, M.; Málek, J.; Süli, E. Existence of global weak solutions to implicitly constituted kinetic models of incompressible homogeneous dilute polymers. Comm. Partial Differential Equations 38 (2013),

Different approaches - Doi model



We describe polymer chains as rigid rods

Various approaches. Doi model

Doi model for rod-like molecules

$$\partial_t u - \Delta_x u + \nabla_x p - \operatorname{div} \tau = 0, \quad \operatorname{div} u = 0$$

and

$$\partial_t f = -u \cdot \nabla_x f - \nabla_n \cdot (P_{n^{\perp}} \nabla_x u \, nf) + D\Delta_x f + D_r \Delta_n f$$

Here $\nabla_n, \nabla_n, \Delta_n$ denote gradient, divergence and Laplacian on S^2 and $P_{n^\perp}\nabla_x un = \nabla_x un - (n\cdot\nabla_x un)n$ denotes the projection of the vector $\nabla_x un$ on the tangent space in n. The last two terms on the right-hand side describe the Brownian effects: translational and rotational diffusion respectively.

Doi model - continuation

A velocity gradient $\nabla_x v$ distorts an isotropic distribution f which leads to an increase in entropy. Thermodynamic consistency requires that this is balanced by a stress tensor given by

$$\tau(t,x) = \nu k_B T \int_{S^2} (3n \otimes n - \mathrm{id}) f(t,x,n) \, dn.$$

Doi model - references

- 1 Otto, Felix; Tzavaras, Athanasios, Continuity of velocity gradients in suspensions of rod-like molecules. Comm. Math. Phys. 277 (2008),
- 2 Bae, Hantaek; Trivisa, Konstantina, On the Doi model for the suspensions of rod-like molecules: global-in-time existence. Commun. Math. Sci. 11 (2013),
- 3 Bae, Hantaek; Trivisa, Konstantina, On the Doi model for the suspensions of rod-like molecules in compressible fluids. Math. Models Methods Appl. Sci. 22 (2012)

Summary of the presented models

- FENE model
- Doi model

Structure

- Equation for macroscopic quantities v, p (Navier-Stokes), with microscopic quantities appearing in the additive stress tensor
- Equation for microscopic quantities (Fokker-Planck)

What is still not captured?

- polimerization
- fragmentation

Monomers-polymers models, e.g. prion proliferation

 ψ is the distribution function of polymers of the length $r>r_0$ solving the following equation

$$\partial_t \psi(t,r) + \tau \phi(t) \partial_r \psi(t,r) = -\beta(r) \psi(t,r) + 2 \int_r^\infty \beta(\tilde{r}) \kappa(r,\tilde{r}) \psi(t,\tilde{r}) d\tilde{r}$$

- $\tau\phi(t)\partial_r\psi(t,r)$ the gain in length of polymer chains due to polymerization with rate $\tau>0$,
- $\beta(r)$ is the fragmentation rate, namely the length-dependent likelihood of splitting of polymers to monomers
- $\kappa(r, \tilde{r})$ is the probablity that a polymer will split into two polymers of length r and $\tilde{r}-r$,
- $-\beta(r)\psi(t,r)$ is the loss of polymers, subject to the splitting rate $\beta(r)$
- the last term is the count of all the polymers of length r
 resulting from the splitting of polymers of length greater
 than r.

Equation for monomers

The function $\phi(t,x)$ is the concentration of free monomers satisfying the equation

$$\partial_t \phi(t,x) = 2 \int_0^{r_0} r \int_r^{\infty} \beta(\tilde{r}) \kappa(r,\tilde{r}) \psi(t,\tilde{r}) d\tilde{r} dr - \phi(t,x) \int_{r_0}^{\infty} \tau \psi(t,r) dr.$$

- $2\int_0^{r_0} r \int_r^\infty \beta(\tilde{r}) \kappa(r,\tilde{r}) \psi(t,\tilde{r}) d\tilde{r} dr$ represents the monomers gained when a polymer splits with at least one polymer shorter than the minimum length r_0
- $-\phi(t,x)\int_{r_0}^{\infty} \tau \psi(t,r)\,dr$ the loss of monomers as they are polymerized

References for monomers-polymers models

- 1 Greer, Meredith L.; Pujo-Menjouet, Laurent; Webb, Glenn F. A mathematical analysis of the dynamics of prion proliferation. J. Theoret. Biol. 242 (2006)
- 2 Calvez, Vincent; Lenuzza, Natacha; Oelz, Dietmar; Deslys, Jean-Philippe; Laurent, Pascal; Mouthon, Franck; Perthame, Benoît. Size distribution dependence of prion aggregates infectivity. Math. Biosci. 217 (2009)

New approach: we couple the equation describing fluid flow with the equations capturing the process of (de-)polymerization.

Idea

The length of polymer chains influences viscosity of the fluid. Then the viscosity is not constant (non-newtonian fluid), but depends also on microscopic quantities.

Results

We show existence of weak solutions under the assumption of polynomial growth conditions of the Cauchy stress tensor.

Non-Newtonian-Smoluchowski fragmentation model, joint work in progress with E. Süli and M. Bulíček

Consider in $(0, T) \times \Omega$ the equations for the fluid solvent

$$\begin{split} \partial_t u(t,x) + &\operatorname{div}_x (u(t,x) \otimes u(t,x)) + \nabla_x p(t,x) \\ &- \operatorname{div}_x \mathbf{S}(\psi(t,x,r), \mathbf{D}_x u(t,x)) = f, \\ &\operatorname{div}_x u(t,x) = 0, \end{split}$$

where the stress tensor is given by the formula

$$S(\psi(t,x,r),D_xu(t,x)) := \nu(\psi(t,x,r),D_xu(t,x))D_xu(t,x)$$

and $\nu: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is the generalized viscosity which depends on the shear rate and $\psi: (0,T) \times \Omega \times \mathbb{R}_+ \to \mathbb{R}_+$ is the distribution function of polymers.

Non-Newtonian-Smoluchowski fragmentation model

 $\psi:(0,T)\times\Omega\times\mathbb{R}_+\to\mathbb{R}_+$ is the distribution function of polymers solving the following equation

$$\partial_{t}\psi(t,x,r) + u(t,x)\nabla_{x}\psi(t,x,r) + \tau\phi(t,x)\partial_{r}\psi(t,x,r) - A(r)\Delta_{x}\psi(t,x,r) = -\beta(r,u,\mathbf{D}_{x}u)\psi(t,x,r) + 2\int_{r}^{\infty}\beta(\tilde{r},u,\mathbf{D}_{x}u)\kappa(r,\tilde{r})\psi(t,x,\tilde{r}) d\tilde{r},$$

- $\tau > 0$ is the polimerization rate,
- $\beta(r,\cdot,\cdot)$ is the fragmentation rate of polymers of size r, which depends also on macroscopic quantities, namely on the velocity of the solvent and the shear rate,
- $A(r) \rightarrow 0$ as $r \rightarrow \infty$

Non-Newtonian-Smoluchowski fragmentation model - cont.

The function $\phi(t,x)$ is the concentration of free monomers satisfying

$$\partial_t \phi(t,x) + u(t,x) \nabla_x \phi(t,x) - A_0 \Delta_x \phi(t,x)$$

= $-\phi(t,x) \int_0^\infty \tau \psi(t,x,r) dr$.

Conservation of mass

For showing

$$\frac{d}{dt}\left[\int_{\Omega}\phi(t,x)\,dx+\int_{0}^{\infty}r\int_{\Omega}\psi(t,x,r)\,dx\,dr\right]=0$$

it is important that for $\kappa(r, \tilde{r})$ – the probablity that a polymer will split into two polymers of length r and $\tilde{r}-r$ it holds

$$\int_0^{\tilde{r}} \kappa(r,\tilde{r}) dr = 1, \quad \int_0^{\tilde{r}} r \kappa(r,\tilde{r}) dr = \frac{\tilde{r}}{2}.$$

Toy model for situation A(r) = 0, big amount of monomers and small amount of polymers

Navier-Stokes size-structured model:

$$\begin{split} \frac{\partial u(t,x)}{\partial t} + &\operatorname{div}_{x}(u(t,x) \otimes u(t,x)) + \nabla_{x} p(t,x) \\ &= &\operatorname{div}_{x} \mathbf{S}(\psi, D_{x} u(t,x)) + f(t,x), \\ &\operatorname{div}_{x} u(t,x) = 0, \end{split}$$

with Dirichlet BC for u AND

$$\mathbf{S}(\psi, D_{\mathsf{X}}u(t, \mathsf{X})) := \nu\left(\int_{0}^{\infty} \gamma(r)\psi(t, \mathsf{X}, r)dr, |D_{\mathsf{X}}u(t, \mathsf{X})|\right) D_{\mathsf{X}}u(t, \mathsf{X}),$$

 $\nu \in C(\mathbb{R}; \mathbb{R})$ where $\psi(t, x, r)$ is the function representing density of the polymer molecules of length r at time t at x.

Toy model for situation A(r) = 0, big amount of monomers and small amount of polymers

Navier-Stokes size-structured model:

$$\begin{split} \frac{\partial u(t,x)}{\partial t} + &\operatorname{div}_{x}(u(t,x) \otimes u(t,x)) + \nabla_{x} p(t,x) \\ &= &\operatorname{div}_{x} \mathbf{S}(\psi, D_{x} u(t,x)) + f(t,x), \\ &\operatorname{div}_{x} u(t,x) = 0, \end{split}$$

with Dirichlet BC for u AND

$$\mathbf{S}(\psi, D_{\mathsf{X}} u(t, \mathsf{X})) := \nu \left(\int_0^\infty \gamma(r) \psi(t, \mathsf{X}, r) dr, |D_{\mathsf{X}} u(t, \mathsf{X})| \right) D_{\mathsf{X}} u(t, \mathsf{X}),$$

 $\nu \in C(\mathbb{R}; \mathbb{R})$ where $\psi(t, x, r)$ is the function representing density of the polymer molecules of length r at time t at x.

Size-structure of a polymer molecule

 $\psi(t,x,r)$ is the function representing density of polymer molecules of length r at time t at x.

$$\partial_t \psi(t, x, r) + \operatorname{div}_{x}(u(t, x)\psi(t, x, r))$$

$$= \tau(r)\partial_r \psi(t, x, r) - \beta(r)\psi(t, x, r) + 2\int_r^{\infty} \beta(\tilde{r})\kappa(r, \tilde{r})\psi(t, x, \tilde{r})d\tilde{r}$$

• $\beta(r)$ - the rate of fragmentation

Size-structure of a polymer molecule

 $\psi(t, x, r)$ is the function representing density of polymer molecules of length r at time t at x.

$$\partial_t \psi(t,x,r) + \mathrm{div}_x (u(t,x)\psi(t,x,r))$$

$$=\tau(r)\partial_r\psi(t,x,r)-\beta(r)\psi(t,x,r)+2\int_r^\infty\beta(\tilde{r})\kappa(r,\tilde{r})\psi(t,x,\tilde{r})d\tilde{r}$$

- $\beta(r)$ the rate of fragmentation
- $\kappa(r, \tilde{r})$ the fragmentation kernel represents the proportion of individuals of size r born from a given dividing individual of size \tilde{r}

Size-structure of a polymer molecule

 $\psi(t, x, r)$ is the function representing density of polymer molecules of length r at time t at x.

$$\partial_t \psi(t,x,r) + \operatorname{div}_x(u(t,x)\psi(t,x,r))$$

$$=\tau(r)\partial_r\psi(t,x,r)-\beta(r)\psi(t,x,r)+2\int_r^\infty\beta(\tilde{r})\kappa(r,\tilde{r})\psi(t,x,\tilde{r})d\tilde{r}$$

- $\beta(r)$ the rate of fragmentation
- $\kappa(r, \tilde{r})$ the fragmentation kernel represents the proportion of individuals of size r born from a given dividing individual of size \tilde{r}

Weak sequential stability

It is essential to show that

$$\int_0^\infty \gamma(r)\psi^n(t,x,r)dr \to \int_0^\infty \gamma(r)\psi(t,x,r)dr$$

a.e. in Q_T . For this purpose consider the reduced problem for $\mu: [0,T] \times \mathbb{R}_+ \to \mathbb{R}_+$ (without the transport term)

$$\frac{\partial}{\partial t}\mu(t,r) = \tau(r)\frac{\partial}{\partial r}\mu(t,r) - \beta(r)\mu(t,r) + 2\int_{z}^{\infty}\beta(r)\kappa(r,\tilde{r})\mu(t,\tilde{r})d\tilde{r}$$
$$\mu(0,z) = \mu_{0}$$

Dual problem to the reduced problem

The dual problem (backward in time) to the reduced problem

$$\partial_{t}\varphi(t,r)$$

$$=\partial_{r}(\tau(r)\varphi(t,r)) + \beta(r)\varphi(t,r) - 2\int_{0}^{\infty}\beta(\tilde{r})\kappa(\tilde{r},r)\varphi(t,\tilde{r})d\tilde{r}$$

$$\varphi(T_{1},z) = \gamma(r)$$

where $T_1 \in [0, T]$ and

$$\frac{d}{dt} \int_0^\infty \mu(t,r) \varphi(t,r) dr = 0$$

Dual problem to the reduced problem

The dual problem (backward in time) to the reduced problem

$$\begin{split} &\partial_t \varphi(t,r) \\ &= \partial_r(\tau(r)\varphi(t,r)) + \beta(r)\varphi(t,r) - 2\int\limits_0^\infty \beta(\tilde{r})\kappa(\tilde{r},r)\varphi(t,\tilde{r})d\tilde{r} \\ &\varphi(T_1,z) = \gamma(r) \end{split}$$

where $T_1 \in [0, T]$ and

$$\frac{d}{dt}\int_0^\infty \mu(t,r)\varphi(t,r)dr=0$$

We multiply the original equation for ψ

$$\partial_t \psi + \operatorname{div}_{\mathsf{x}}(u\psi) = \partial_r(\tau\psi) - \beta\psi + 2\int_r^\infty \beta(\tilde{r})\kappa(r,\tilde{r})\psi(t,\mathsf{x},\tilde{r}) d\tilde{r}$$

by the solution to the dual problem to the reduced problem, namely by φ and integrate over $(0,\infty)$ w.r.t. r to obtain

$$\begin{split} &\partial_t \left(\int_0^\infty \varphi \psi \, dr \right) - \int_0^\infty \psi \partial_t \varphi \, dr + u \cdot \nabla_x \left(\int_0^\infty \varphi \psi \, dr \right) \\ &= \int_0^\infty \varphi \tau \partial_r \psi \, dr - \int_0^\infty \varphi \beta \psi \, dr + 2 \int_0^\infty \psi \int_0^\infty \beta(\tilde{r}) \kappa(\tilde{r}, r) \varphi(t, r) \, d\tilde{r} \, dr \end{split}$$

Denoting

$$g_{\varphi}(t,x) := \int_0^\infty \varphi(t,r)\psi(t,x,r)\,dr$$

we get

$$\begin{split} \partial_t g_{\varphi} + u \cdot \nabla_x g_{\varphi} &= \\ \int_0^\infty \psi \left(\partial_t \varphi - \partial_r (\tau \varphi) - \varphi \beta + 2 \int_0^\infty \beta(\tilde{r}) \kappa(\tilde{r}, r) \varphi(t, \tilde{r}) \, d\tilde{r} \right) dr \end{split}$$

which is the homogeneous linear transport equation

$$\partial_t g_{\varphi} + u \cdot \nabla_{\mathsf{X}} g_{\varphi} = 0$$

for which the renormalization techniques can be used.

What was essential in this procedure?

Reduced problem for $\mu:[0,T]\times\mathbb{R}_+\to\mathbb{R}_+$ (without the transport term)

$$\partial_t \mu(t,r) = \tau(r)\partial_r \mu(t,r) - \beta(r)\mu(t,r) + 2\int_r^\infty \beta(r)\kappa(r,\tilde{r})\mu(t,\tilde{r})d\tilde{r}$$
$$\mu(0,z) = \mu_0$$

 τ, β are independent of x

Integral operators

$$\partial_t \psi(t,x) + u(t,x) \cdot \nabla_x \psi(t,x) = \int \gamma(x,y) \psi(t,x) dy,$$

$$\psi(0,x) = \bar{\psi}(x).$$

The equation for a renormalized quantity $\beta(\psi)$ is not a linear equation anymore.

Thank you for your attention!