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What is a polymer?

Polymer - a chemical compound or mixture of compounds
consisting of repeating structural units created through a process
of polymerization

Polymerization - a process of reacting monomer molecules
together in a chemical reaction to form polymer chains or
three-dimensional networks.
Depolymerization (fragmentation) - inverse of polymerization
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GOALS

Explain their behaviour:

macroscale (velocity, pressure, density, temperature)

microscale (configuration of monomers, length, shape)
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Various approaches. FENE model

Navier-Stokes-Fokker-Planck system (finitely extensible
nonlinear elastic type model):

∂u

∂t
+ (u · ∇x)u − ν∆xu +∇xp = divxτ(ψ) + f ,

divxu = 0

AND
∂ψ

∂t
+ (u · ∇x)ψ +∇q ·

[
(∇xu)qψ

]
= ∇q ·

(
∇qψ + U ′

(
|q|2

2

))
+ ε∆xψ

where ψ(t, x , q) is a probability density function.
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Dumbbell models: polymer chains ∼ dumbbell

q

We describe polymer chains as two beads connected by a spring, q
is the vector connecting the beads.
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FENE model - continuation

Extra stress tensor

τ(ψ) =

∫
D
q ⊗ q U ′

(
|q|2

2

)
ψ(t, x , q) dq

Spring potentials U:

Hookean potential U
(
|q|2

2

)
= |q|2

2

FENE U
(
|q|2

2

)
= b

2 ln
(

1− |q|2
b

)
, |q| ≤

√
b
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Navier-Stokes-Fokker-Planck references:

1 Barrett, J.W., Schwab, C., Süli, E., Existence of global weak
solutions for some polymeric flow models. Math. Models
Methods Appl. Sci. 15 (2005).

2 Barrett, J.W., Süli, E., Existence of global weak solutions to
some regularized kinetic models of dilute polymers. SIAM
Multiscale Modelling and Simulation 6 (2007).

3 Barrett, J.W., Süli, E., Existence of global weak solutions to
dumbbell models for dilute polymers with microscopic cut-off.
Mathematical Models and Methods in Applied Sciences 18
(2008).

4 Arnold, A.; Carrillo, J. A.; Manzini, C. Refined long-time
asymptotics for some polymeric fluid flow models. Commun.
Math. Sci. 8 (2010)
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Modifications of the model

1 N. Masmoudi. Global existence of weak solutions to the
FENE dumbbell model of polymeric flows. Invent. Math., 191
(2013)

2 Buĺıček, M.; Málek, J.; Süli, E. Existence of global weak
solutions to implicitly constituted kinetic models of
incompressible homogeneous dilute polymers. Comm. Partial
Differential Equations 38 (2013),
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Different approaches - Doi model

We describe polymer chains as rigid rods
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Various approaches. Doi model

Doi model for rod-like molecules

∂tu −∆xu +∇xp − divτ = 0, divu = 0

and

∂t f = −u · ∇x f −∇n · (Pn⊥∇xu nf ) + D∆x f + Dr∆nf

Here ∇n,∇n·,∆n denote gradient, divergence and Laplacian on S2

and Pn⊥∇xun = ∇xun − (n · ∇xun)n denotes the projection of the
vector ∇xun on the tangent space in n. The last two terms on the
right-hand side describe the Brownian effects: translational and
rotational diffusion respectively.

Agnieszka Świerczewska Polymeric multi-scale models



Doi model - continuation

A velocity gradient ∇xv distorts an isotropic distribution f which
leads to an increase in entropy. Thermodynamic consistency
requires that this is balanced by a stress tensor given by

τ(t, x) = νkBT

∫
S2

(3n ⊗ n − id)f (t, x , n) dn.
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Doi model - references

1 Otto, Felix; Tzavaras, Athanasios, Continuity of velocity
gradients in suspensions of rod-like molecules. Comm. Math.
Phys. 277 (2008),

2 Bae, Hantaek; Trivisa, Konstantina, On the Doi model for the
suspensions of rod-like molecules: global-in-time existence.
Commun. Math. Sci. 11 (2013),

3 Bae, Hantaek; Trivisa, Konstantina, On the Doi model for the
suspensions of rod-like molecules in compressible fluids. Math.
Models Methods Appl. Sci. 22 (2012)
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Summary of the presented models

FENE model

Doi model

Structure

Equation for macroscopic quantities v , p (Navier-Stokes), with
microscopic quantities appearing in the additive stress tensor

Equation for microscopic quantities (Fokker-Planck)

What is still not captured?

polimerization

fragmentation
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Monomers-polymers models, e.g. prion proliferation

ψ is the distribution function of polymers of the length r > r0
solving the following equation

∂tψ(t, r) + τφ(t)∂rψ(t, r) = −β(r)ψ(t, r) + 2

∫ ∞

r
β(r̃)κ(r , r̃)ψ(t, r̃) dr̃

τφ(t)∂rψ(t, r) – the gain in length of polymer chains due to
polymerization with rate τ > 0,

β(r) is the fragmentation rate, namely the length-dependent
likelihood of splitting of polymers to monomers

κ(r , r̃) is the probablity that a polymer will split into two
polymers of length r and r̃ − r ,

−β(r)ψ(t, r) is the loss of polymers, subject to the splitting
rate β(r)

the last term is the count of all the polymers of length r
resulting from the splitting of polymers of length greater
than r .

Agnieszka Świerczewska Polymeric multi-scale models



Equation for monomers

The function φ(t, x) is the concentration of free monomers
satisfying the equation

∂tφ(t, x)

= 2

∫ r0

0
r

∫ ∞

r
β(r̃)κ(r , r̃)ψ(t, r̃) dr̃ dr − φ(t, x)

∫ ∞

r0

τψ(t, r) dr .

2
∫ r0

0 r
∫∞
r β(r̃)κ(r , r̃)ψ(t, r̃) dr̃ dr represents the monomers

gained when a polymer splits with at least one polymer
shorter than the minimum length r0

−φ(t, x)
∫∞
r0
τψ(t, r) dr – the loss of monomers as they are

polymerized
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References for monomers-polymers models

1 Greer, Meredith L.; Pujo-Menjouet, Laurent; Webb, Glenn F.
A mathematical analysis of the dynamics of prion
proliferation. J. Theoret. Biol. 242 (2006)

2 Calvez, Vincent; Lenuzza, Natacha; Oelz, Dietmar; Deslys,
Jean-Philippe; Laurent, Pascal; Mouthon, Franck; Perthame,
Benôıt. Size distribution dependence of prion aggregates
infectivity. Math. Biosci. 217 (2009)
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New approach: we couple the equation describing fluid
flow with the equations capturing the process of
(de-)polymerization.

Idea

The length of polymer chains influences viscosity of the fluid. Then
the viscosity is not constant (non-newtonian fluid), but depends
also on microscopic quantities.

Results

We show existence of weak solutions under the assumption of
polynomial growth conditions of the Cauchy stress tensor.
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Non-Newtonian-Smoluchowski fragmentation model,
joint work in progress with E. Süli and M. Buĺıček

Consider in (0,T )× Ω the equations for the fluid solvent

∂tu(t, x)+divx(u(t, x)⊗ u(t, x)) +∇xp(t, x)

− divxSSS(ψ(t, x , r),DDDxu(t, x)) = f ,

divxu(t, x) = 0,

where the stress tensor is given by the formula

SSS(ψ(t, x , r),DDDxu(t, x)) := ν(ψ(t, x , r),DDDxu(t, x))DDDxu(t, x)

and ν : R+ × R+ → R+ is the generalized viscosity which depends
on the shear rate and ψ : (0,T )× Ω× R+ → R+ is the
distribution function of polymers.
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Non-Newtonian-Smoluchowski fragmentation model

ψ : (0,T )×Ω×R+ → R+ is the distribution function of polymers
solving the following equation

∂tψ(t, x , r) + u(t, x)∇xψ(t, x , r) + τφ(t, x)∂rψ(t, x , r)

− A(r)∆xψ(t, x , r) = −β(r , u,DDDxu)ψ(t, x , r)

+ 2

∫ ∞

r
β(r̃ , u,DDDxu)κ(r , r̃)ψ(t, x , r̃) dr̃ ,

τ > 0 is the polimerization rate,

β(r , ·, ·) is the fragmentation rate of polymers of size r , which
depends also on macroscopic quantities, namely on the
velocity of the solvent and the shear rate,

A(r)→ 0 as r →∞
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Non-Newtonian-Smoluchowski fragmentation model - cont.

The function φ(t, x) is the concentration of free monomers
satisfying

∂tφ(t, x) + u(t, x)∇xφ(t, x)− A0∆xφ(t, x)

=− φ(t, x)

∫ ∞

0
τψ(t, x , r) dr .
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Conservation of mass

For showing

d

dt

[∫
Ω
φ(t, x) dx +

∫ ∞

0
r

∫
Ω
ψ(t, x , r) dx dr

]
= 0

it is important that for κ(r , r̃) – the probablity that a polymer will
split into two polymers of length r and r̃ − r it holds∫ r̃

0
κ(r , r̃) dr = 1,

∫ r̃

0
rκ(r , r̃) dr =

r̃

2
.
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Toy model for situation A(r) = 0, big amount of
monomers and small amount of polymers

Navier-Stokes size-structured model:

∂u(t, x)

∂t
+divx(u(t, x)⊗ u(t, x)) +∇xp(t, x)

= divxS(ψ,Dxu(t, x)) + f (t, x),

divxu(t, x) = 0,

with Dirichlet BC for u AND

S(ψ,Dxu(t, x)) := ν

(∫ ∞

0
γ(r)ψ(t, x , r)dr , |Dxu(t, x)|

)
Dxu(t, x),

ν ∈ C (R;R) where ψ(t, x , r) is the function representing density of
the polymer molecules of length r at time t at x .
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Size-structure of a polymer molecule

ψ(t, x , r) is the function representing density of polymer molecules
of length r at time t at x .

∂tψ(t, x , r) + divx(u(t, x)ψ(t, x , r))

= τ(r)∂rψ(t, x , r)− β(r)ψ(t, x , r) + 2

∫ ∞

r
β(r̃)κ(r , r̃)ψ(t, x , r̃)dr̃

β(r) - the rate of fragmentation

κ(r , r̃) - the fragmentation kernel - represents the proportion
of individuals of size r born from a given dividing individual of
size r̃
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Weak sequential stability

It is essential to show that∫ ∞

0
γ(r)ψn(t, x , r)dr →

∫ ∞

0
γ(r)ψ(t, x , r)dr

a.e. in QT . For this purpose consider the reduced problem for
µ : [0,T ]× R+ → R+ (without the transport term)

∂

∂t
µ(t, r) = τ(r)

∂

∂r
µ(t, r)− β(r)µ(t, r) + 2

∫ ∞

z
β(r)κ(r , r̃)µ(t, r̃)dr̃

µ(0, z) = µ0
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Dual problem to the reduced problem

The dual problem (backward in time) to the reduced problem

∂tϕ(t, r)

= ∂r (τ(r)ϕ(t, r)) + β(r)ϕ(t, r)− 2

∞∫
0

β(r̃)κ(r̃ , r)ϕ(t, r̃)dr̃

ϕ(T1, z) = γ(r)

where T1 ∈ [0,T ] and

d

dt

∫ ∞

0
µ(t, r)ϕ(t, r)dr = 0
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We multiply the original equation for ψ

∂tψ + divx(uψ) = ∂r (τψ)− βψ + 2

∫ ∞

r
β(r̃)κ(r , r̃)ψ(t, x , r̃) dr̃

by the solution to the dual problem to the reduced problem,
namely by ϕ and integrate over (0,∞) w.r.t. r to obtain

∂t

(∫ ∞

0
ϕψ dr

)
−
∫ ∞

0
ψ∂tϕ dr + u · ∇x

(∫ ∞

0
ϕψ dr

)
=

∫ ∞

0
ϕτ∂rψ dr −

∫ ∞

0
ϕβψ dr + 2

∫ ∞

0
ψ

∫ ∞

0
β(r̃)κ(r̃ , r)ϕ(t, r) dr̃ dr
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Denoting

gϕ(t, x) :=

∫ ∞

0
ϕ(t, r)ψ(t, x , r) dr

we get

∂tgϕ + u · ∇xgϕ =∫ ∞

0
ψ

(
∂tϕ− ∂r (τϕ)− ϕβ + 2

∫ ∞

0
β(r̃)κ(r̃ , r)ϕ(t, r̃) dr̃

)
dr

which is the homogeneous linear transport equation

∂tgϕ + u · ∇xgϕ = 0

for which the renormalization techniques can be used.
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What was essential in this procedure?

Reduced problem for µ : [0,T ]× R+ → R+ (without the transport
term)

∂tµ(t, r) = τ(r)∂rµ(t, r)− β(r)µ(t, r) + 2

∞∫
r

β(r)κ(r , r̃)µ(t, r̃)dr̃

µ(0, z) = µ0

τ, β are independent of x
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Integral operators

∂tψ(t, x) + u(t, x) · ∇xψ(t, x) =

∫
γ(x , y)ψ(t, x)dy ,

ψ(0, x) = ψ̄(x).

The equation for a renormalized quantity β(ψ) is not a linear
equation anymore.
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Thank you for your attention!
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