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Motivation 1: Electrowetting on Dielectric (EWOD)

H. Antil

Courtesy: R. H. Nochetto, B. Shapiro, S. Walker (2009)
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Motivation 2: Extrude-Swell Problem
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Motivation 3: Adaptive Optics and Ferrofluids

@ @
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W. Xiao and S. Hardt, 2010

A micro-channel is filled with lens liquid and there is a ferrofluid plug in
the channel whose position is controlled by the external magnetic fluid.

By manipulating the location of the ferrofluid plug (in their case moving
back and forth) one can get different lens shapes and the focal length of
the lens can be manipulated. It seems to be more effective than
electrowetting. P
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Model FBP (L.R. Scott and P. Saavedra (1991)

L =T = (z1, 1+ (1))

' 4 > Findye WL (0,1),yeha W} (),
AN ’/’ P> 2
—Ay =0 in§,
Q, y=~h on 0,

b

H. Antil

’

» Curvature: H[y] = (\/117/2
2l

> Impose |v|w1 0,1) < 1.

—KH Y]+ 0y =u

7(0) =~(1) =0.
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Model FBP (L.R. Scott and P. Saavedra (1991)

,4’ .~F‘Y = (21,1 +7(21))
A S

’ A ° 1
‘2 “\ - » Find ye WL (0,1), y € Wpl (Q),
r \ Lo’ p>2
deV(A[’y]V(erg)) =0
Q y=0
'+ ARV (y+g) = u
7(0) =~(1) =0.
»

» Lifting operator: g such that g|{m = h.

» Variable diffusion:

L+vy =z
A [’Y] = / 1+(a:2’y')2
—r2y T+v

> Impose |v|w1 (0,1) < 1.
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Well-Posedness
> Spaces: W := WL (I') x Wp1 Q) V=W@) x WL (Q)

» Find (v,y) € W, p > 2 such that

Baly+g,2AR] =0, zeW)(Q)
Br[v,€]+ Bo [y + 9,66 Ay]] =0, €€ Wl (D)

where

Bq [y, 2, A]] :/QVyA [v] Vz dz, Br [v,£] :/Fv’é’ dzy.

» Extension: &: Wi (I') — W, () is continuous provided p’ < 2
(p > 2).
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Well-Posedness
> Spaces: W := WL (I') x Wp1 Q) V=WD)x Wpl, ()

» Find (v,y) € W, p > 2 such that
Boly+g,2AN] =0, z€ W, (Q)
Brly, &1+ Ba [y +9,€6 AR = (u,6), €€ W (D)

where

Bq [y, 2, A]] :/vaA (] Vzdx,  Brl[y,¢ :/Fv’é’ dzy.

> Extension: £ : W} (I') — W, (2) is continuous provided p’ < 2
(p > 2).

» The above problem is well-posed if

sy <e Nl <€ (mlohv) - ()
» Improved regularity: We proved e EORGE
—1/p _2
veWSTVP () cetiE c WL (D). MAS6N

H. Antil 09/24/14 7



Contraction Argument
> Ball: By = {(7,9) € W: hylwy ) < Llylwpo) < Clalwy o}

» Operator T': B, — W gives (v, y) = T'(¥,y) where
> v € WL (T") solves

Br[v,§] = —Ba [y +¢,£& AR + (u,6)
> y € W2 () solves
Ba[y+g,2A[]] = 0.
» T maps B, into B, provided (A) holds;
> Equivalent norm: ||(%2/)||W = elylwy @) + |Z/|Wpl(9)-

» T is a contraction in the norm ||(7,y)||, provided (A) holds. Z
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Solvability
Solvability for v: We can find v € WL (I') which solves

because of Lax-Milgram and the estimate

1 yer
Y wa ) < sup fo ¢
0££€W(T) |’5‘W%(F)
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Solvability
Solvability for v: We can find v € WL (I') which solves

because of Lax-Milgram and the estimate

1 yer
Y wa ) < sup fo ¢
0££eWH(T) |’5‘W%(F)

Solvability for y: We can find y € Wr} (©2) which solves

Baly+g,2A0]] =0
because Meyer's argument and Banach-Ne&as theorem imply

Ba [y + 9.2 A[]]

0<B= inf sup
0AVEWE (@ ozzen, ) YWz @ l2lw @) P
/GEORGE
for all p € (P, P), P > 2. MASGR
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Optimal Control Problem

> Given |g[w1(q) < €and A > 0, consider the minimization of
functional

1 2 A 2
T (vysu) = 51y = vall ey + 5 lullze )

subject to the state constraints that (v,y) € WL (I') x Wz} (Q)
solve the previous free boundary problem

and the control constraints

U € Upa = {u € L* (D) tflull pory £ € (n, glw;m))} :
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Optimal Control Problem

> Given |g[w1(q) < €and A > 0, consider the minimization of
functional

1 2 A 2
T (vysu) = 51y = vall ey + 5 lullze )

subject to the state constraints that (v,y) € WL (I') x Wz} Q)

solve the previous free boundary problem

and the control constraints

U € Upa = {u € L* (D) tflull pory £ € (n, glw;m))} :

> Note |g|WI}(Q) < € implies

|7|W010(F) <L PIGEORGE
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Control-to-state map

» Control-to-state map:

A :uad - W (’Yay) :A[UL

» v e WL () solves
Br[y,§)+ Ba [y + 9, €6 AR = (u,€) Ve € Wi (D)
> y € W2 () solves
Baly+g,5AN0] =0 Vze W, ()

» Using A, the reduced optimization problem:
in j =J(A .
Join j(u) := J(Afu],w)

Then use infimizing sequence argument to show existence of optimal

control.
» A is Fréchet differentiable; P
P1/GEORGE
> A is twice continuously Fréchet differentiable. LAASON
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Adjoint Based Optimization

» The first order necessary optimality condition:
0<(j'(w),u—1u), Yu€lUuy

The definition of cost functional j(u) = %fol Iy(w) —val? + 3 fol u?
yields

(J'(@), h) :/0 (’7_7d>7u(a)h+)\/o ah.

» The adjoint equations imply
j'(u) =5+ A,
whence

0< 3+ \a,u—1u), Yu€lUy z
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Second Order Sufficient Conditions

» The control-to-state map A is twice continuously Fréchet
differentiable:

1 1 1
J(@)h? = / (ra(@)h)? + / (7 = 7)Y ()R + A / 2,

» Second order sufficient condition: For |g|Wz}(Q) < e small enough
we get

"

A _ Jr _
Sl —algay <" (@)(w—a)°, Vu € Uaa.

» Strict convexity (local uniqueness): This further implies the
existence of § > 0 such that for all u € Uyq, ||u — a||L2(F) <9,

, g LA _
(' (w) = 5'(@),u— ) 2 Jllu = all oy -
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Strong Solutions: Second Order Regularity

» State variables:

19wz < llgllwz@). w1 <L

» Adjoint variables:

15lwz0,1) + ”FHWE,(Q) Sy = vallz2o.1)-

» Contraction argument in a suitable ball in W2 (0,1) x W2(Q).
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Finite element discretization

» Discrete spaces:
> V;, space of C° piecewise linear finite elements over a shape-regular
quasi uniform mesh of Q of meshsize h;
> S, space of C° piecewise linear finite elements over a compatible
partition of I of meshsize h;

» Discrete optimal control problem: find minimizers
(G,U) € Sy x Vy, of

In(G,U) := *HG %tHLz(r)+ |U||L2(r)

subject to the
discrete free boundary problem
and the control constraints u € U,y = Uyg N'Sy,.

> State system: The discrete inf-sup holds along with the existence
of discrete state variables (Saavedra-Scott’ 91);

» Adjoint system: The discrete inf-sup holds for the adjoint systemI /E/G EORGE
which is thus well posed.
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Finite element discretization (continued)

» Discrete first order optimality condition:

(TH(0),U=T)>0 YU € Uyg;

» Characterization of 7/ (U):

Th(U) =S+ \U;

» Optimal control: There exists a discrete optimal control U € Uy
which minimizes the discrete reduced functional.

H. Antil 09/24/14 16



A Priori Error Estimates for State and Adjoint Variables

» State variables:
ly = Ylwi) + 17— Glwr o
Sh (|'7|W§o(0,1) + |y|Wg(sz)) +llu=Ullp20,1)
» Adjoint variables:

Ir = Rlwa o) + s = Slwi o)

< b (Ishwao.n + Irlwae) + vz o + lwgce ) +lw = Ul

H. Antil 09/24/14 17



A Priori Error Estimates for the Control
Theorem. Let both A and \g|W;<Q) be sufficiently small. If h < hq, then

- 4y - -
7= Ul 20,0 < 51150 = SO 120,19 »

where s(U) is the solution of the continuous adjoint equation with

(v(U),y(U)) solutions of the continuous state equations with control U, and

S(U) is the solution of the discrete adjoint equations.

H. Antil 09/24/14 18



A Priori Error Estimates for the Control
Theorem. Let both A and \g|W;<Q) be sufficiently small. If h < hq, then

= 4, - ~
u = UHL2(0,1) < XHS(U) - S(U)HL2(0,1) J

I

where S(U_) is the solution of the continuous adjoint equation with
(v(U),y(U)) solutions of the continuous state equations with control U, and

S(U) is the solution of the discrete adjoint equations.

Proof.

%HU - ﬁH;(o,n < <*7I(U) - jl(ﬂ)v U-— ﬂ>L2(0,1)><L2(0,1) =RHS

)+ (T4(0),U —a) + (J'(@),u - T).

e RHS =(J'(U) - 7,(U),U —
N e’
<0
o (Jn(0),U =) = (Tn(U), Py — a) + (In(U), U — Pya)
=0 <0
. g|U_a||2LQ(01) AU + s(U) = AU + S(U )U—a):<s(U)—S(U)U—’>/
———— ——— y
=7'(0) =7,(0) MASON
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Rates of Convergence

Corollary. If h < hg, then there is a constant Cy > 1, depending on

|’y|I/V2 0, 1 |y|W2 Q) || Hw2 0, 1 (O 1) SUCh that
7 é| WL (0, 1)+|y Y|W1 )
+[5 = Sl +I7 *R|W;(Q)+)‘H1_L*U||L2(o,1) < Coh.
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Rates of Convergence

Corollary. If h < hg, then there is a constant Cy > 1, depending on
Vw2 0,10 [Ylwz@). ||SHW12(0,1)' | 7"||W;(Q): 17all2(0,1). such that

+ )\Hﬂ - [7||L2(0,1) < Coh.

o [|s(U) - S(U)HLz(o,l) <[s(0) - S(UHWB(OJ)

e Foru=U =U we get

||3(17) - S(Ij)HL2(O,1) < Cih

H. Antil 09/24/14 19



Simulations: Data

e Target function ~vy4:

Figure : The inverted hat function indicates the desired state v4 and the
colors indicate the state y corresponding to the configuration 4. This profile
~a is not achievable because v € W2 (0,1).

e Admissible controls:

Uga = {u € L(0,1) :[lufl 201 < 3}

e Surface tension: Kk ~ 1

H. Antil 09/24/14 20



Simulations: Unconstrained Case

79 ] a (%.9) | a
X =00, u € [0,0] A=1le—1, a € (—0.675277,0)
///’
N4

A=1le—2, ue (—2.65675,0)

Figure : The optimal state solution (¥, %), the applied control 4 in solid blue,
and the previous control in dashed red for comparison. Each picture displays
the corresponding value of A from A = oo to A = le-2.
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Unconstrained Case (continued)

7.9 ] u u
AN=1e—3, ue (—538,093) | A\=1e—5, u € (—17.63,6.07)
/ \
€ (—9.78,4.96) € (—33.1146, 6.73)

Figure : The optimal state solution (¥, %), the applied control % in solid blue,
and the previous control in dashed red for comparison. Each picture displays
the corresponding value of A from A\ = 1e-3 to \ = 1e-6.
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Simulations: Constrained Case

)] u (1,9 ] u
=1, u € (—.0780707,0) A=1e—2, uc (—265713,0)

A=1le—1, ue€ (-0.665452,0) | A =1le—3, uc (-5.37,0.93)

Figure : The optimal state solution (¥, 7), the applied control @ in solid blue,
and the previous control in dashed red for comparison. The pictures show the
corresponding value of A, from A = 1 to A = 1e-3, as well as the smallest and
largest value of control. Notice that there is no visual difference between the
optimal control for A = 1e-3, le-4 and le-5 (not displayed). This is because

the control constraints are active. Pﬁﬁaonas

UNIVERSITY
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Motivation: Stokes FBP

—div(e) = f, div(u) =0 in
u=g on Tintet U 'wanl
ov =20 on oyt
u-v= O7 ov = kKHv on Ffrcc7

where o = n (Vu + VuT) — pI is the stress tensor, 7 is viscosity, £ is
surface tension.

P‘ GEORGE

UNIVERSITY
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Problem Formulation

>

H. Antil

Sobolev domain: Q ¢ R? is of class W2~ /%, with s > d.

Stokes equations:

—div (o (u,p)) = f, div(u)=g inQ,
where

o =2ne(u) —Ip, e(u)

Navier boundary condition (slip with friction):
u-v=¢, LTu+To(u,p)v=1 on 9,

where 5 > 0 is the friction coefficient and T'=1 — v ® v is the
projection operator into the tangent plane of 9$2;

Slip boundary condition: assume 8 =0 (and ¢ = 0). misowﬁ
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References: Stokes with Slip BC

H. Antil
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Sobolev Regularity of the Domain

H. Antil

>

—1/s

Basic regularity:  is of class W7 for s > d (dimension).

Regularity of unit normal: v € W. /% c C°

Meaning of trace u - v: If w € W} (Q), with s’ <r <s, then
uloq € W}‘”’“(ag) and

w-ve W (o0);

Lipschitz regularity: If Q is Lipschitz, then w - v is not in a useful
Sobolev space;

Piola transform P: This is instrumental to flatten the domain 2
and preserve the normals. The minimal regularity of P seems to be

W2(Q) for s > d, which implies that the regularity W27 for Qis
nearly optimal. £
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Function Spaces

» Kernel of Stokes operator:

Z(Q) = {z(z) = Azt+b:x € Q, A= -A" eR™! beR" zv|,, =0}

» Velocity space:

V(@) = {v e W @)/2(@) i v-v =0}

» Pressure space:
Lp(Q) = L (Q)/R;

» Stokes space: for s’ <r <s, s >d, let

X (Q) = V() x Ly(). P
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Variational Formulation of Slip BC: Main Result

Theorem. Let DQ be is class ‘/1/,371/5 for s > d, and &’ <r<s. Then,
for every F € X,/ (2)*, there exists a unique (u,p) € X,.(2) such that

Sa (u,p) (v,q) = F (v,q) VY (v,9) € X/(Q)

and

1w, ) g0y < Cormmr (1F]x, ) 10l o)

where the Stokes operator Sq in € reads

Sa (u,p) (v,q) := /Qe(u) te(v) — pdiv (v) 4+ ¢gdiv (u).

H. Antil 09/24/14 30



Step 1: Domain Decomposition Technique

H. Antil

Cover the domain with finite number of balls B(x;,d;/2):

Associate to covering a smooth partition of unity {¢;}¥ ;.

Let {0:}%_, be smooth cut-off functions so that supp 0; C B(x;,6;),
pi =1 on B(z;,0;/2).

Use Piola transform P = VU /det VU to write transformed vector
fields:

(v,q) = (Pv,q) o ¥~ = (v,q)
(v,q) — (P‘lv,q> oW = (v,q) Z

Key property: V-vyds =v-vgds.
09/24/14 31



Remaining Steps

H. Antil

Space decomposition: This step requires 2 to be of class V[/ffl/S

with s > d;

Operator localization: Write the local operator formally as an
invertible part plus a compact perturbation;

Pseudo-inverse: Show that SSTZSQ = Ix, (o) plus compact
perturbation;

Injectivity: Show that both Sq and S are injective;

Index theory of Fredholm operators: Conclude that S, is
bijective;

09/24/14 32



Space Decomposition

Projection map
P X (Qi) = X (Q), Q; =R% or R
(v,q) = 9iPi (v, q)

R,

i

Restriction map
: X () = X0 (Qu)

(v,q) = P (01, 019)
continuous only when Piola matrix is in W2 ().

> Given (u,p) € X,(2), we have

Eo,

i

k k k
(w,p) =D @i (w,p) =Y @i (0w, 0p) = Y 0:PiP; " (oiw, 0ip)
=1 i=1

i=1

k
= ZR% Eo; (u,p).
i—1 ——

€Xr(Q;)

which implies X, (Q) = 2% | Ry, X, (Q)).
» Similarly for the dual space

k
X ()" =D Ry X Q).
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Operator Decomposition

Sa (u,p) Ry, (v,q) = (Se; (piu, pip) + Ky, (u,p)) Pi (v,q)
= ‘§l Ep, ) )
S Ewp)va)
Invertible
+ Ci&p, (u) (v) + Ky, (w,p) Pi (v,q)

Compact
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Fredholm operator

Consider the operator

k
Shi= Y RuS R

i=1
Then i
ShSa =TIx, @)+ RoS; ' (Cily, + PIK:) -
= compact
Similarly

SQS;B = identity + compact.

Therefore So has a pseudo-inverse (equivalently Fredholm), which implies

dim Ns, < 0o, codim Rs, < c0.
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Sq and 8 are Injective

» Problem satisfies the Brezzi's theorem for Hilbert space case. This ensures
the uniqueness of solution for

2<r<s.

> Let 7o = s’ < 2 and (u,p) € Xr ().

» Consider the homogeneous problem

Sa(u,p) =0,
we need to show that (u,p) = 0.
> Recall B
S= & +CH+K,, .
~ N——
invertible compact
whence

Si(U,P) = 7(Ci + IC%)(u,p).

> We improve the integrability of (u,p) to some r; > 2, to conclude.
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Index Theory of Fredholm Operators

Let A: X — Y has a pseudo-inverse. A is bijective if and only if 4 and A
are injective.
Summary:

» Using index theory we have shown the well-posedness of the Stokes
problem with slip boundary condition.

> under mild domain regularity i.e. C*, earlier result Amrouche '11
ctt domain.

» We have provided a constructive approach based on domain
decomposition.

» Navier condition: Extend to 8 > 0.

“dimension independent”

H. Antil 09/24/14 37



The Stokes Free Boundary Problem

T
‘—.\\
’
’ \
¢ \
\ y
sov =aHy?
A .
s\_ﬂ’
.y:
b —dive =f »
divu=0
u=20
h
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H. Antil

Implicit Variational Formulation:

(T*H(Q) + 8 (u,p; Q) = F(), (v,9)) =0
u-v=>0

u=0

where

T*H(Q)(v) = (H(Q), Tv), = /i/r?’-lv -vds,

S (u,p; Q) (v,q) == / ne(u) : e(v) —

Q

F(Q) (v,q) ::/Qf-v—i—qux.

~

Reformulation in Reference Domain: Q) — Q,

09/24/14

V(v,q) € D(Q)
onT
on .

pdiv (v) + ¢div (u) dz,

nnnnnnnnnn



Implicit Function Theory: IFT

H. Antil

v

Nonlinear PDE: Write problem above as a nonlinear problem
N (@, p,w; f) =0

in suitable Sobolev spaces for velocity-pressure (@, p) and boundary
parametrization w;

Differentiability: Show that the modified equations are Fréchet
differentiable.

Reference configuration: Verify that the problem is invertible at
w = 0 (flat interface).

Apply IFT: This gives a differentiable control-to-state map for free.

09/24/14 40



Conclusions and Extensions

Conclusions:
» Optimal control of model FBP with surface tension: Show first
and second order optimality conditions.

» Discrete optimal control of a model FBP: Show optimal error
estimates for state, adjoint, and control variables.

» Stokes with slip boundary condition: Show existence of solution

for domains of class Wf_l/s C COY¢ (significant improvement over
existing literature, i.e. C1! regularity).

» Stokes FBP: Develop an abstract framework and apply it to Stokes.

Extensions and Open Problems:
» FEM analysis for Stokes FBP
» Optimal control for Stokes FBP
» Other FBPs.
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Electrowetting on Dielectric (EWOD)

Courtesy: R. H. Nochetto, B. Shapiro, S. Walker (2009)

@ H. Antil, D. Wegner, M. Hintermiiller, R. H. Nochetto, and T. M. Surowiec.

Instantaneous/optimal control of a semi-discrete EWOD with
complementarity-based contact pinning conditions.

In Progress.
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