

Trygve Karper - Norwegian University of Science and Technology Liblice - 2014

The equations

Viscous barotropic flow

$$\varrho_t + \operatorname{div}(\varrho u) = 0,$$

$$(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \frac{1}{\operatorname{Ma}} \nabla p(\varrho) = \frac{1}{\operatorname{Re}} \operatorname{div} \sigma$$

Newtonian fluid

$$\sigma = \frac{\mu}{2} \left(\nabla u + \nabla u^T \right) + \lambda \operatorname{div} u \mathbb{I}$$

Isentropic pressure relation

$$p(\varrho) = a\varrho^{\gamma}$$

The equations

Lipschitz domain

$$\Omega \subset \mathbb{R}^3$$
 $t \in [0, T], T - \text{finite}$

Initial conditions

$$\varrho_0 \in L^{\gamma+1}(\Omega), \quad \int_{\Omega} \frac{a\varrho_0^{\gamma}}{\gamma - 1} + \varrho_0 |u_0|^2 \ dx \le C$$

Goal: Construct and prove convergence of a numerical method

What is known analytically

$$\varrho_t + \operatorname{div}(\varrho u) = 0,$$
$$(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \frac{1}{\operatorname{Ma}} \nabla p(\varrho) = \frac{1}{\operatorname{Re}} \Delta u$$

- Lions proved existence of global weak solutions for $\gamma > \frac{9}{5}$.
- Feireisl et. al. proved existence for $\gamma > \frac{3}{2}$.

Proof is accomplished by sending $\alpha, \delta \to 0$ in

$$\varrho_t + \operatorname{div}(\varrho u) = \alpha \Delta \varrho$$
$$(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \nabla(p(\varrho) + \delta \varrho^4) = \Delta u$$

So, do the same for a numerical method and DONE?

What is known numerically

Gallouet et. al (2008-2012):

$$\operatorname{div}(\varrho u) = 0$$
$$-\Delta u + \nabla p(\varrho) = f$$

MAC Finite Volumes, Crouzeix-Raviart FEM, FVM for continuity

Karlsen-K. (2009-2011):

$$\varrho_t + \operatorname{div}(\varrho u) = 0,$$

$$u_t - \Delta u + \nabla p(\varrho) = f$$

Nedelec elements, Crouzeix-Raviart, FVM for continuity

What is known numerically

K. (2013):

$$\varrho_t + \operatorname{div}(\varrho u) = 0,
(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \nabla p(\varrho) = \Delta u
\gamma > 3$$

Crouzeix-Raviart finite elements

Now, things starts to become clear!

Why is this problem difficult?

$$\varrho_t + \operatorname{div}(\varrho u) = 0,$$
$$(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \frac{1}{\operatorname{Ma}} \nabla p(\varrho) = \frac{1}{\operatorname{Re}} \Delta u$$

Ma small

Re large

Discretization of the Euler equations

Let us look at the Euler equations:

$$\varrho_t + \operatorname{div}(\varrho u) = 0,$$
$$(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \nabla p(\varrho) = 0$$

An Euler person will tell you that you should write

$$U_t + \operatorname{div} F(U) = 0$$

$$U = \begin{pmatrix} \varrho \\ \varrho u \end{pmatrix}$$

$$F(U) = \begin{pmatrix} 0 & \varrho u \\ p(\varrho) & \frac{\varrho u \otimes \varrho u}{\varrho} \end{pmatrix}$$

Discretization of the Euler equations

Now, you discretize this as any system of conservation laws

$$U_t + d_u F(U) \cdot \nabla_x U = 0$$

- Find eigenvalues and eigenvectors of $d_u F$ and upwind accordingly

In particular,

 ϱ and u are approximated similarly

- Same order polynomials
- No dual mesh
- No staggered grids

Discretization of the Euler equations

Now, let us look at the low Ma case

$$\varrho_t + \operatorname{div}(\varrho u) = 0,$$
$$(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \frac{1}{\epsilon} \nabla p(\varrho) = 0$$

Eigenvalues are of the form:

$$\lambda = u \pm \frac{1}{\epsilon} \sqrt{p'(\varrho)}$$

The usual strategy will fail!

Instead, people now use methods where

$$\operatorname{div} u_h \sim p(\varrho_h)$$

 $(u_h, \varrho_h) \in P^1 \times P^0$, dual meshes, staggered grid

Pressure is IMPLICIT!

Discretization of the incompressible NS

If $Ma \to 0$, we get the incompressible NS

$$\operatorname{div} u = 0$$
$$u_t + \operatorname{div}(u \otimes u) + \nabla p = \Delta u$$

The whole finite element community will tell you that you need

$$\operatorname{div} V_h \sim Q_h$$

To satisfy something called the Babuska-Brezzi conditions

Finite Differences \mapsto staggered grids Finite Volumes \mapsto dual meshes

"Concentration should match divergence"

Back to our equation

$$\varrho_t + \operatorname{div}(\varrho u) = 0,$$
$$(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \nabla p(\varrho) = \Delta u$$

- Transport is Euler type of terms
- Pressure and viscosity are incompressible Navier-Stokes type of terms

This is reflected in the derivation of the Energy

This couples through u

$$\int \operatorname{div}(\varrho u \otimes u) u \ dx = \int \operatorname{div}(\varrho u) \frac{u^2}{2} \ dx = \int \varrho_t \frac{u^2}{2} \ dx$$

This couples through $\operatorname{div} u$

$$\int \nabla p(\varrho)u \ dx = -\int p(\varrho) \operatorname{div} u \ dx = -\int \frac{1}{\gamma - 1} p'(\varrho)\varrho_t \ dx$$

Back to our equation

Nearly all discretizations in the literature gives up one of the two

Euler: The first is easy, the second requires work

NS: The second is designed to work, the first requires work

To perform a convergence proof, you will need both!

$$\varrho_t + \operatorname{div}(\varrho u) = 0,$$
$$(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \nabla p(\varrho) = \Delta u$$

The convergent method!

We will approximate

 $\varrho_h \in Q_h$ - space of piecewise constants

 $u_h \in V_h$ - Crouzeix-Raviart finite element space

We will use the following upwind flux

$$Up(m_h u_h) = (m_h u_h \cdot \nu)|_{\Gamma} = m_+ (u_h \cdot \nu)^+ + m_- (u_h \cdot \nu)^-$$
$$(u_h \cdot \nu)^{\pm} = \max / \min \left\{ 0, \int_{\Gamma} u_h \cdot \nu \, dS \right\}$$

The continuity method

Find $\varrho_h^k \in Q_h$ such that

$$\int_{\Omega} (D_t \varrho_h^k) \phi_h \ dx - \sum_{\Gamma} \int_{\Gamma} \operatorname{Up}(\varrho_h^k u_h^k) [\phi_h] \ dS(x) = 0$$

for all $\phi_h \in Q_h$.

For the convenience of analysis, the method is implicit

$$D_t \varrho_h^k = \frac{\varrho_h^k - \varrho_h^{k-1}}{\Delta t}$$

Average upwinding

Fundamental idea:

$$\partial_t \varrho_h + \operatorname{div}_{\mathrm{up}}(\varrho_h u_h) = 0,$$

$$\partial_t m_h + \operatorname{div}_{\mathrm{up}}(m_h \otimes u_h) + \nabla_h p(\varrho_h) = \Delta_h u_h$$

$$m_h = \varrho_h \Pi_h^Q[u_h]$$

Hence, momentum transport is handled exactly as density transport.

$$\int \operatorname{div}_{\mathrm{up}}(m_h \otimes u_h) u_h \ dx = \int \operatorname{div}_{\mathrm{up}}(\varrho_h u_h) \frac{\left(\Pi_h^Q[u_h]\right)^2}{2} \ dx$$
+ Numerical diffusion

On the down-side

$$\partial_t \varrho_h + \operatorname{div}_{\mathrm{up}}(\varrho_h u_h) = 0,$$

$$\partial_t m_h + \operatorname{div}_{\mathrm{up}}(m_h \otimes u_h) + \nabla_h p(\varrho_h) = \Delta_h u_h$$

$$m_h = \varrho_h \Pi_h^Q[u_h]$$

Transport operator is singular (if div $V_h \sim Q_h$)

More diffusive

The method reads

Find $\varrho_h^k \in Q_h$ such that

$$\int_{\Omega} (D_t \varrho_h^k) \phi_h \ dx - \sum_{\Gamma} \int_{\Gamma} \operatorname{Up}(\varrho_h^k u_h^k) [\phi_h] \ dS(x) = 0$$

for all $\phi_h \in Q_h$.

Find $u_h^k \in V_h$ such that

$$\int_{\Omega} (D_t^h m_h^k) v_h \, dx - \sum_{\Gamma} \int_{\Gamma} \operatorname{Up}(m_h^k u_h^k) [\Pi_h^Q[v_h]]$$

$$+ \int_{\Omega} \nabla_h u_h \nabla_h v_h - p(\varrho_h^k) \operatorname{div} v_h \, dx = 0$$

$$m_h^k = \varrho_h^k \Pi_h^Q[u_h^k]$$

for all $v_h \in V_h$

To prove convergence....

Due to a technical issue:

$$Up(\varrho_h u_h) = \frac{\varrho_+}{2} \left[(u_h \cdot \nu + c)^+ + (u_h \cdot \nu - c)^+ \right] + \frac{\varrho_-}{2} \left[(u_h \cdot \nu + c)^- + (u_h \cdot \nu - c)^- \right]$$

If $u_h \cdot \nu$ is small, we still add diffusion

It is needed to control

$$\sum_{\Gamma} \int_{\Gamma} [\varrho_h]^2 \ dS(x)$$

Needed only for convergence...

Main result

Let $\{(\varrho_h, u_h)\}_{h>0}$ be a sequence of solutions of the method.

As, $h \to 0$, $\varrho_h \to \varrho$ and $u_h \rightharpoonup u$, where (ϱ, u) satisfies

$$\varrho_t + \operatorname{div}(\varrho u) = 0,$$
$$(\varrho u)_t + \operatorname{div}(\varrho u \otimes u) + \nabla p(\varrho) = \Delta u$$

in the sense of distributions.

The energy

With the design of the method, it is rather easy to prove

$$E^{k} = \int_{\Omega} \varrho_{h}^{k} \left| \Pi_{h}^{Q} u_{h}^{k} \right|^{2} + \frac{p(\varrho_{h}^{k})}{\gamma - 1} dx$$

the energy identity

$$D_t E^k + \int_{\Omega} |\nabla_h u_h^k|^2 dx + \text{Numerical diff} = 0$$

Hence, the method is unconditionally stable

How to prove convergence?

I like to write the methods in consistency form

$$\int_{\Omega} (D_t \varrho_h) \phi - \varrho_h u_h \nabla \phi \ dx dt = P_1(\phi)$$

$$\int_{\Omega} (D_t m_h) v - m_h \otimes u_h : \nabla v + \nabla_h u_h \nabla v - p(\varrho_h) \operatorname{div} v \ dx = P_2(v)$$

... and then try to control the weak error terms P_1 and P_2 .

This is extremely convenient for analysis of nonlinear problems

Consistency formulation of the continuity equation

Start by setting $\phi_h = \Pi_h^Q[\phi]$ in

$$\int_{\Omega} (D_t \varrho_h) \phi_h \ dx - \sum_{\Gamma} \int_{\Gamma} \operatorname{Up}(\varrho_h u_h) [\phi_h] \ dS(x) = 0$$

Now, observe that

$$\int_{\Omega} (D_t \varrho_h) \phi_h \ dx = \int_{\Omega} (D_t \varrho_h) \phi \ dx$$

Next, we write

$$\sum_{\Gamma} \int_{\Gamma} \operatorname{Up}(\varrho_{h} u_{h})[\phi_{h}] dS = -\sum_{E} \int_{\partial E} \operatorname{Up}(\varrho_{h} u_{h})\phi_{+} dS(x)$$

$$= -\sum_{E} \int_{\partial E} \operatorname{Up}(\varrho_{h} u_{h})(\phi_{+} - \phi) dS(x)$$

$$= -\sum_{E} \int_{\partial E} \varrho_{h}(u_{h} \cdot \nu)(\phi_{+} - \phi) - [\varrho_{h}](u_{h} \cdot \nu)^{-}(\phi_{+} - \phi) dS(x)$$

$$= -\int_{\Omega} \varrho_{h} u_{h} \nabla \phi dx + \sum_{\Gamma} \int_{\Gamma} [\varrho_{h}](u_{h} \cdot \nu)^{-}(\phi_{+} - \phi) dS(x)$$

Consistency formulation of the continuity equation

Thus, we see that

$$\int_{\Omega} (D_t \varrho_h) \phi - \varrho_h u_h \nabla \phi \ dx = \sum_{E} \int_{\partial E} [\varrho_h] (u_h \cdot \nu)^- (\Pi_h^Q[\phi] - \phi) \ dS(x)$$

To control this error, you will need the numerical diffusion

$$\sum_{k} \int_{0}^{T} \sum_{\Gamma} \int_{\Gamma} P''(\varrho_{\dagger}) [\varrho_{h}]^{2} |u_{h} \cdot \nu| \ dS(x) dt \leq C$$

The easy bound: $P_1(\phi) \leq \sqrt{h} \|\nabla \phi\|_{L^{\infty}}$

The better bound: $P_1(\phi) \leq h^{\frac{1}{2} - 3\frac{4-\gamma}{4\gamma}} \|\nabla \phi\|_{L^4(0,T;L^{\frac{12}{5}}(\Omega))}$

For this method, one can prove

$$\int_{\Omega} (D_t \varrho_h) \phi - \varrho_h u_h \nabla \phi \, dx dt = P_1(\phi)$$

$$\int_{\Omega} (D_t m_h) v - m_h \otimes u_h : \nabla v + \nabla_h u_h \nabla v - p(\varrho_h) \operatorname{div} v \, dx = P_2(v)$$

where the weak errors satisfy

$$P_{1}(\phi) \leq h^{\frac{1}{2} - 3\frac{4 - \gamma}{4\gamma}} \|\nabla \phi\|_{L^{4}(0,T;L^{\frac{12}{5}}(\Omega))}$$

$$P_{2}(v) \leq h^{\alpha} \|\nabla v\|_{L^{\infty}(0,T;L^{\gamma}(\Omega))}$$

Now, we can try to use the existence framework on our method

Convergence of the continuity equation

We have that

$$\int_{\Omega} (D_t \varrho_h) \phi - \varrho_h u_h \nabla \phi \ dx = P_1(\phi)$$

Control in time on ϱ_h + control in space on u_h gives

$$\varrho_h u_h \rightharpoonup \varrho u$$
 as $h \to 0$

Thus, there is no problems with passing to the limit

$$\int_0^T \int_{\Omega} \varrho(\phi_t + u\nabla\phi) \ dxdt = \int_{\Omega} \varrho_0\phi(0,\cdot) \ dx$$

The momentum equation

We have that

$$\int_{\Omega} (D_t m_h) v - m_h \otimes u_h : \nabla v + \nabla_h u_h \nabla v - p(\varrho_h) \operatorname{div} v \, dx = P_2(v)$$

Again, control in time on ϱ_h + space on u_h ,

$$m_h \rightharpoonup \varrho u$$

$$m_h \otimes u_h \rightharpoonup \varrho u \otimes u$$

We can pass to the limit to conclude

$$-\int_{0}^{T} \int_{\Omega} \varrho u v_{t} + \varrho u \otimes u : \nabla v \, dx dt + \int_{0}^{T} \int_{\Omega} \nabla u \nabla v \, dx dt$$
$$= \int_{0}^{T} \int_{\Omega} \overline{p(\varrho)} \operatorname{div} v \, dx dt - \int_{\Omega} \varrho_{0} u_{0} v(0, \cdot) \, dx$$

Here is where things become difficult

Is
$$\overline{p(\varrho)} = p(\varrho)$$
 ??

Well, what do we know about ϱ_h ?

$$\varrho_h \in L^{\infty}(0,T;L^{\gamma}(\Omega)) \Rightarrow p(\varrho_h) \in L^{\infty}(0,T;L^1(\Omega))$$

Hence, we do not even know if $\overline{p(\varrho_h)} \in L^{\infty}(0, T; L^1(\Omega))$ and we definitely don't know that $\varrho_h \to \varrho$

There is no time to show you both, let us do the first!

Higher integrability

Let us return to the consistency formulation

$$\int_{\Omega} (D_t m_h) v - m_h \otimes u_h : \nabla v + \nabla_h u_h \nabla v - p(\varrho_h) \operatorname{div} v \, dx = P_2(v)$$

Set $v = B[\varrho_h]$, where B[] is the Bogovskii operator

$$\operatorname{div} B[\varrho_h] = \varrho_h, \qquad \|\nabla B[\varrho_h]\|_{L^p} \le \|\varrho_h\|_{L^p}, \qquad \|B[q_h]\|_{L^q} \le \|q_h\|_{W^{-1,q}}$$

Then, we have that

$$\int_{0}^{T} \int_{\Omega} p(\varrho_{h})\varrho_{h} \ dxdt = \text{bounded terms} + \int_{0}^{T} \int_{\Omega} D_{t}m_{h}v \ dxdt$$
$$= \text{bounded terms} - \int_{0}^{T} \int_{\Omega} m_{h}B[D_{t}\varrho_{h}] \ dxdt \leq C$$

Thank you!!