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The equations

Viscous barotropic flow
o + div(ou) = 0,
1 1

(ou); + div(ou ® u) + M—an(Q) = 7s divo

Newtonian fluid

o g (Vu—I—VuT) + Adiv ull

Isentropic pressure relation

p(o) = ao’



The equations

Lipschitz domain

Q Cc R’ tc[0,T], T — finite

Initial conditions

y+1 an | 2
00 € L7 (Q), o oo|uo|” de < C
07—

Goal: Construct and prove convergence of a numerical method



What is known analytically

o+ + div(ou) = 0,

1 1
+ div + —V = —A
(ou)¢ + div(ou ® u) - p(0) . U

e Lions proved existence of global weak solutions for v > %

e Feireisl et. al. proved existence for v > %

Proot is accomplished by sending o, 0 — 0 in

o+ + div(ou) =
(ou): + div(ou ® u) + V(p(o) + §0*) = Au

So, do the same for a numerical method and DONE?



What is known numerically

Gallouet et. al (2008-2012):

MAC Finite Volumes, Crouzeix-Raviart FEM, FVM for continuity

Karlsen-K. (2009-2011):

o+ + div(ou)
ur — Au + Vp(p)

)

0
f

Nedelec elements, Crouzeix-Raviart, FVM for continuity



What is known numerically

K. (2013):

o+ + div(ou) = 0,

: v > 3
(ou)t + div(ou ® u) + Vp(e) = Au

Crouzeix-Raviart finite elements

Now, things starts to become clear!



Why is this problem difficult”?

o¢ + div(pu) = 0,

1 1
d. _ _ —
(ou): + div(ou ® u) + i V(o) ReAu

Ma small Re large




Discretization of the

—uler equations

Let us look at the Fuler equations:

o+ + div(pu) = 0,

(ou)¢ + div(ou ® u) + Vp(o) =0

An Euler person will tell you that you should write

U, + div F(U) = 0



Discretization of the Euler equations

Now, you discretize this as any system of conservation laws
U+ d,F(U)-V,U=0

- Find eigenvalues and eigenvectors ot d, F' and upwind accordingly

In particular,

o and u are approximated similarly

- Same order polynomials
- No dual mesh
- No staggered grids



Discretization of the Euler equations

Now, let us look at the low Ma case
o+ + div(pu) = 0,

1
(ou): +div(ou ® u) + —Vp(e) =0

Eigenvalues are of the form:

)\ — Uu £ — p/(g)
The usual strategy will fail!

Instead, people now use methods where

div up ~~ p(Qh)
(un, 0n) € Pt x PY, dual meshes, staggered grid

Pressure is IMPLICIT!



Discretization of the incompressible NS

If Ma — 0, we get the incompressible NS

divu =0
uy + div(u ® u) + Vp = Au

The whole finite element community will tell you that you need
div V ~ Qn
To satisfy something called the Babuska-Brezzi conditions

Finite Differences — staggered grids
Finite Volumes — dual meshes

”Concentration should match divergence”



Sack to our equation

o+ + div(ou) = 0,
(ou)r + div(gu @ u) + Vp(o) = Au

- Transport is Euler type of terms
- Pressure and viscosity are incompressible Navier-Stokes type of terms

This is reflected in the derivation of the Energy

This couples through u

u? u?
/div(gu@u)u dr = /div(gu)j dr = /Qt? dx

This couples through div u

/Vp(g)u d:vz—/ p(o)divu dx = — / 0)o: dx



Sack to our equation

Nearly all discretizations in the literature gives up one of the two

Euler: The first is easy, the second requires work
NS: The second is designed to work, the first requires work

To perform a convergence proof, you will need both!

o+ + div(ou) = 0,
(ou)t + div(gu ® u) + Vp(o) = Au



The convergent method!

We will approximate

on € Qp- space of piecewise constants

up, € Vi- Crouzeix-Raviart finite element space

We will use the following upwind flux

Up(muun) = (mpun - v)|r = mo(up -v)" +m_(up -v)~

(up, - v)* :max/min{(),/uh-y dS}
r



The continuity method

Find of € Qy, such that
[ (Diehyon do =Y [ Up(kul)ion] dS(z) =0
Q = Jr

for all ¢y € Q.

For the convenience of analysis, the method is implicit

of —op !




Average upwinding

Fundamental 1idea:

at@h diVup(Qhuh) — Oa
Ormy, + divyp(mpy, @ up) + Vip(on) = Apup

mp = QthL2 up,|

Hence, momentum transport is handled exactly as density transport.

7
(Hg [Uh])
/divup(mh R up )up dr = /divup(ghuh) 5 dx

+ Numerical diffusion




On the down-side

. ,, ivup(Qhuh) = 0,

[, © wn) } Vip(en) = Ay

[ 9imy, + divy,
my, = on 1L [un]

Transport operator is singular (if div V), ~ Qp)

0.8

More diffusive

0.% I



The method reads

Find Qﬁ € (Jp, such that
| (Dechion dz =3 [ Un(ekub)ion] dsiw) =0
Q = Jr

for all th = Qh

Find u’fL c Vj, such that
/Q<D?m,’z>vh dr =3 / Up(mful) M9 o]
I

+/ Viun Vo, — plor) divuy, de =0
Q
my, = o1} [up]

for all vy, € Vj



o prove convergence....

Due to a technical issue:

Up(opup) = % (up-v+e)T + (up-v—c)7]

+%[(uh-u—l—c)_+(uh-u—c)_}

If up, - v 1s small, we still add ditfusion

It is needed to control

S / on)? dS(a)

Needed only for convergence...



Main result

Let {(on,un)}n>0 be a sequence of solutions of the method.

As, h — 0, o, — o0 and up — u, where (o, u) satisfies

o+ + div(ou) = 0,
(ou)t + div(ou ® u) + Vp(o) = Au

in the sense of distributions.



The energy

With the design of the method, it is rather easy to prove

2 k
Ek :/Q’fb‘ﬂgulﬁ‘ | p(@h) dx
Q v —1

the energy identity

D.E"* + / Vihuy|* de + Numerical diff = 0
Q

Hence, the method is unconditionally stable



How to prove convergence?

I like to write the methods in consistency form

/Q(Dtgh)¢ — onup Vo dzdt = Py (¢)

/ (Dimp)v —mp @ up : Vo 4+ Viyupr Vo — plop) dive de = Py (v)
Q
.. and then try to control the weak error terms P; and ;.

This is extremely convenient for analysis of nonlinear problems



Consistency formulation of the continuity equation

Start by setting ¢, = II?[¢] in

L(DtQh)¢h dr — Z/FUP(QhUh)[%] dS(x) _

Now, observe that
| Dienon do = [ (Duon)o da
Q Q

Next, we write

Z/ Up(onun)|on] d Z/ Up(onun)d+ dS(z)
:‘Z/MUP ontn) (94 — 6) dS(x)
== | onlun )04 =) = lenl(wn )" (0 — 0) dS(a)

. /Q ALLEDS / onl(un - v) (¢4 — 6) dS(x)



Consistency formulation of the continuity equation

Thus, we see that

P (¢)

/S;(DtQh)gb — opup Vo dr = Z/ |(un - v)~ (I [¢] — ¢) dS(=)

To control this error, you will need the numerical diffusion
T
Z/ Z/PN(QT)[Qh]Q’Uh | dS(z)dt < C
r Y0 p JI

The easy bound: Pi(¢) < \/EHngHLoc

The better bound: P (¢) < hE 3 E HV¢HL4(O T:L5 (Q)



For this method, one can prove

/Q (Dyon)é — onunVé dudt = Py(6)

/ (Dimp)v —mp @ up : Vo 4+ Vyupr Vo — plop) dive de = Py (v)
Q

where the weak errors satisty

| vquL‘l(O,T;L% ()

Py (v) < hY||V| Lo 0,707 ()

Now, we can try to use the existence framework on our method



Convergence of the continuity equation

We have that
/ (Dion)d — onun Vo dx = Py ()
Q

Control in time on p; + control in space on uy gives

onup, — ou as h — 0

Thus, there is no problems with passing to the limit

/()T/Qg(ﬁbtJrqub) da;dt:/QQqu(O?,) A



The momentum eqguation

We have that

/ (Dymp)v —mp @ up, : Vo 4+ Vyupr Vo — p(op) dive de = Py (v)
Q

Again, control in time on p; + space on uyp,

mp — 0U
mp Q up — 0u KU

We can pass to the limit to conclude

T T
— / / ouv: + ou @ u : Vu dxdt + / / VuVu dzdt
0 JO 0 JO

T
:/ /p(g) div v dmdt—/ 00t (0, +) dx
0 Jo Q



Here is where things become difficult

Is p(0) = p(o) 77

Well, what do we know about gp”

on € L=(0,T; L7(R)) = p(on) € L=(0,T; L1(Q))

Hence, we do not even know if p(oy) € L>(0,T; L*(Q))

and we definitely don’t know that p;, — o

There is no time to show you both, let us do the first!



Higher integrabllity

Let us return to the consistency formulation

/ (Dymp)v —mp @ up, - Vo 4+ Vyupr Vo — p(op) dive de = Py (v)
Q

Set v = B|oy|, where B|| is the Bogovskii operator
div Blon] = on,  |VBlen|llzr < llenllr,  [|Blgnllle < lignllw—1.

Then, we have that

i3 T
/ / p(on)on dxdt = bounded terms —I—/ / Dimpv dxdt
0 JQ 0 JO

T
= bounded terms — / / mpB|D;op] dedt < C
0 JO



Thank youl!



