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Part I

Eulerian Formulation for Fluid-Structure Interactions
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fsi-2

Elastic ball falling in container with viscous fluid
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fsi-2

Elastic vessel walls with active growth
Pulsating flow
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Monolithic Models for FSI

Aims
We need a fully monolithic model for the coupled problem that allows for large
time-step integration with implicit methods, strongly coupled solvers (Newton &
multigrid), Galerkin formulation and gradient based methods for error estimation
and optimization.
Model that allows for problems with large deformation, large motion and even
contact.

Standard approaches
Partitioned approaches often fail, as they might require many sub-iterations for
stiffly coupled problems. No exact sensitivities.
ALE (based on transforming the fluid domain to a fixed reference framework)
does not do (our) job, as large motion and contact might lead to breakdown (if
we do not change the reference frame, which we do not want to do, as it would
break the strict monolithic character).
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Fully Eulerian Coordinates

One momentum equation in Eulerian coordinates (complete domain)

ρ(∂tv + v · ∇v)− div σσσ = ρf in Ω(t) = F(t) ∪ Γ(t) ∪ S(t)

Plus further equations (single domains)

div v = 0 in F(t), ∂tu + v · ∇u = v in S(t) (∗)

Material law depends on location and time

ρ(x, t) =
{
ρf x ∈ F(t)
Jρ0
s x ∈ S(t)

, σσσ(x, t) =
{
ρfνf (∇v +∇vT )− pI x ∈ F(t)
JF−1(2µEs + λs tr(Es)I)F−Ts x ∈ S(t)

Interface-tracking (where is the solid domain at time t, where the fluid part?)
with Initial Point Set (using Level-Sets is possible, but Initial Point Set gives us u
(equation (∗)) for free)

∂tΦ + ṽ · ∇Φ = 0 in Ω(t), Φ(x, 0) = x ⇒ x ∈
{
F(t) if Φ(x, t) 6∈ S(0)
S(t) if Φ(x, t) ∈ S(0)
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Once again

Summary
Momentum equation on the whole domain

ρ(∂tv + v · ∇v)− div σσσ = ρf in Ω(t) = F(t) ∪ Γ(t) ∪ S(t)

Material law depends on the coordinate
Interface tracking for deciding about x ∈ F(t) or x ∈ S(t)
Eulerian representation of the deformation to model stress & strain relation

Properties
Similar to multiphase flows
But: coupling of two different operators (not just jumping parameters)
Challenging: coupling of parabolic type equation with hyperbolic
This is an interface problem with a moving interface
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Part II

Discretization of Interface Problems
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Interface problem

Prototypical interface-problem (fixed interface)

− div(κ∇u) = f, κ(x) =
{
κ1 x ∈ Ω1

κ2 x ∈ Ωs

Solution is continuous but not differentiable.

(if the domains have smooth boundaries)

Q2-elements
Q1-elements

O(h)

O(h
1
2 )

‖∇(u− uh)‖

‖u− uh‖

mesh size h

10.10.010.001

1

0.1

0.01

0.001

0.0001

Possible approaches
Smoothing? Often used for multiphase flows
Fitted meshes
Generalized Finite elements (XFEM), enrichment of basis
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Locally modified parametric finite elements (short summary of another talk)

Locally Modified FEM

Idea
Fixed patch mesh
Split interface patches into eight triangles to resolve the interface

ΓhΩ1

Ω2

Γ

Use piecewise bilinear finite elements in regular patches, linear finite elements
in interface patches

S.Frei, T.Richter Locally Modified FEM 30.06.2014 9

Organize mesh in patches
Away from interface:
Slit patch in 4 quads
At interface:
Slit patch in 8 triangles

Mesh resolves the interface
Modifications are kept local
Each patch has the same number of unknowns
Each patch has the same connectivity in the system matrix

Realization
Iso-parametric Finite Element approch

TP : P̂ → P

No mesh-nodes are moved
Discretization can depend on the solution in an
implicit way

Locally Modified FEM: Implementation

Global mesh consists of patches
→ No mixed triangular-quadrilateral mesh needed

Patches as reference elements

T
P

On patches P ∈ Ωh define a parametric finite element space

Vh =
{
φ ∈ C(Ω̄)

∣∣ φ ◦ T−1P ∈ QP
}

with a local transformation TP ∈ [QP ]2 and QP
the space of piecewise Q1 elements on 4 subelements
on regular patches
the space of piecewise P1 elements on 8 subtriangles
on interface patches

S.Frei, T.Richter Locally Modified FEM 30.06.2014 12
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Locally Modified FEM

Theorem (A priori estimate & condition number)

Let Γ ⊂ Ω be a smooth interface Γ ∈ C2 and let

u ∈ H1
0 (Ω) ∩H2(Ω1 ∪ Ω2), ‖u‖H2(Ω1∪Ω2) ≤ cs‖f‖.

Then, for the modified finite element solution uh ∈ Vh it holds

‖∇(u− uh)‖Ω ≤ chP ‖f‖, ‖u− uh‖Ω ≤ ch2
P ‖f‖

cond2(A) ≤ ch−2
P

with c > 0 not depending on the interface location within the elements.

O(h2)

O(h)
‖∇(u− uh)‖

‖u− uh‖

modified finite elements

mesh size h

10.10.010.001

1

0.1

0.01

0.001

0.0001

1e-05

Lagrange basis

scaled hierarchical basis

10.80.60.40.20

1e+07

1e+06

100000

10000

1000

[S. Frei, T.R. “A locally modified parametric finite element method for interface problems”, SIAM
J. Numer. Anal, accepted 2014]
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Parabolic interface problem with moving interface

Consider:
∂tu− div(κ∇u) = f in Q = Q1 ∪G ∪Q2 ⊂ Rd+1

Space-time domain:

Q = {(x, t), t ∈ [0, T ], x ∈ Ω1(t) ∪ Γ(t) ∪ Ω2(t)}.

Problem of standard discretization

Limited regularity in time, if x ∈ S(tm−1) and
x ∈ F(tm)

um(x)− um−1(x)
k

∼?

What happens at the boundary, if
x ∈ Ω(tm−1) but x 6∈ Ω(tm)
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Galerkin discretization in time

1 First, derive variational formulation in time

u ∈ X : (∂tu, φ)Q + (κ∇u,∇φ)Q︸ ︷︷ ︸
=:B(u,φ)

= (f, φ)Q, φ ∈ Y

where

(f, g)Q :=
∫ T

0
(f, g)Ω(t) dt.

2 Approximate by choosing discrete subspaces Xk ⊂ X and Yk ⊂ Y. Well known
examples:

Piece-wise constant (in time) Xk and Yk leads to variant of backward Euler
Piece-wise linear continuous Xk and piece-wise constant (discontinuous) Yk leads to
variant of trapecoidal rule

What does variant mean? Equivalent for linear autonomous problems.
3 Last step, approximate discrete formulation with numerical quadrature rule (of

sufficient order, e.g. box-rule for backward Euler, trapecoidal rule for trapecoidal
rule):

B(uk, φk) ≈ Bk(uk, φk)

Compute (decouples to a time-stepping scheme)

Bk(uk, φk) = (f, φk)Q
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Space-Time Galerkin Approach

Discretize with continuous piece-wise
linear trial- and discontinuous piece-wise
constant test-functions
Use functions, that are linear in
alignement with domain

Temporal basis functions depend on space and time!

Equivalent to a local ALE-approach with standard basis (piece-wise linear plus
constant) on reference elements:

Mapping T̂m(tm) = id is identity at time tm.
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(Equivalent) “ALE”-Approach
Introduce mapping:

Tm : Q̂m := [tm−1, tm]× Ωm → Qm := {(x, t), t ∈ [tm−1, tm], x ∈ Ω(t)}.

And gradient
Fm := ∇Tm, Jm := det(Fm).

Transform space-time formulation (now, û and φ̂ are standard basis)

Bm(u, φ) = (∂tu, φ)Qm + (κ∇u,∇φ)Qm

=
(
Jm(∂tû− ∂tTm · ∇̂û), φ̂

)
Q̂m

+
(
JmκF

−1
m ∇̂ûF−Tm , ∇̂φ̂

)
Q̂m

Approximate

Bk,m(u, φ) =
(
J̄m(∂tû− ∂tTm · ∇̂û), φ̂

)
Q̂m

+
(
J̄mκF̄

−1
m ∇̂ûF̄−Tm , ∇̂φ̂

)
Q̂m

With J̄m, F̄m, ∂tTm piece-wise constant:

F̄m :=
1
2

(Fm(tm−1) + Fm(tm)︸ ︷︷ ︸
=I

), J̄m :=
1
2

(Jm(tm−1) + Jm(tm)︸ ︷︷ ︸
=1

).

Equivalent to time-stepping scheme:(
J̄m(um−ûm−1), φ

)
Ω(tm)

−
1
2
(
J̄m∂tTm·∇um, φ

)
Ω(tm)

−
1
2
(
J̄m∂tTm·∇ûm−1, φ

)
Ω(tm)

+. . .
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Galerkin Discretization in Time

Theorem

[Frei, R., ’14] Let the space-time domain Q ⊂ Rd+1 be smooth and splitted
Q = Q1 ∪Γ∪Q2 with smooth interface Γ. Further, let Tm : Q̂m → Qm be such, that

sup
t

(
‖∂αt Tm(t)‖W2−α,∞ + ‖∂βt T

−1
m (t)‖W2−β,∞

)
≤ c α, β = 0, 1, 2,

Next, let the solution to the parabolic interface problem be given with

‖∂2
t u‖Q1∪Q2 + ‖∂t div(κ∇u)‖Q1∪Q2 ≤ c

(
‖f‖Q + ‖∂tf‖Q1∪Q2

)
.

Then, for the Galerkin approximation of trapecoidal rule type in time it holds

‖u− uk‖Q ≤ ck2‖∂tf‖Q1∪Q2 .

Similar result for ‖u(T )− uk(T )‖Ω(T ) requires

‖∂tu‖H2(Q1∪Q2) + ‖∂ttu‖H1(Q1∪Q2) <∞

Assumptions on mapping limits interface velocity (CFL like condition)



Part I - Eulerian Formulation for Fluid-Structure Interactions Part II - Discretization of Interface Problems

Proof

1 Split error ek := u− uk into interpolation error ηk := u− iku and approximation
error ξk := iku− uk:

‖ek‖2Q = (ek, ηk)Q + (ek, ξk)Q

2 Interpolation error straightforward

(ek, ηk)Q ≤ ch2‖f‖H1(Q)‖ek‖Q.

3 Introduce dual solutions z ∈ Y and zk ∈ Yk

(ek, φk)Q = Bk(φk, zk), ‖∇zk‖Q ≤ ‖ek‖Q.

4 Then,

(ek, ξk) = Bk(ξk, zk) = Bk(iku, zk)−

=B(u,zk) G.O.︷ ︸︸ ︷
Bk(uk, zk) ±Bk(u, zk)

= − Bk(u− iku, zk) + Bk(u, zk)−B(u, zk)

5 Stability estimate & approximation

Bk(ηk, zk) ≤ ck2‖∂t div(κ∇u)‖L2(Q1∪Q2)‖ek‖Q,[
Bk −B

]
(u, zk) ≤ ck2‖u‖H2(Q1∪Q2)‖ek‖Q
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First Results

Discretization error of space-time Galerkin approach with piece-wise constant
(backward Euler like) and piece-wise linears (trapecoidal rule like)

O(k2)

O(k)
θ = 1 (BE)

θ = 0.5 (CN)

modified time discretization

time step size k

10.10.01

0.1

0.01

0.001

0.0001

1e-05

Linear interpolation
Summed formula

Exact

O(k2)

O(k)

Integration

time step size k

10.10.01

0.1

0.01

0.001

0.0001

1e-05

Correct interpolation is important!

(ûm−1, φm)Ωm

Projection only necessary close to interface and for explicit parts!
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Conclusion

The Fully Eulerian model for FSI is monolithic and can handle large deformation,
motion and contact
But, it is of interface-capturing type and an interface problem with the usual
difficulties.

Spatial discretization is handable, but a fitted or generalized finite element
technique must be used for optimal order convergence

Temporal discretization (of high order) is a difficult topic. We require special
space-time approaches or implicit transformations that give rise to new
nonlinearities and non-standard terms.
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