Modeling, analysis and computing in nonlinear PDEs, 2014, Chateau Liblice

Compressible Navier-Stokes system with entropy transport

Martin Michálek

Department of Mathematical analysis MFF UK Department of Evolution Differential Equations of AV ČR, v.v.i.

25. 9. 2014

 $^{^{1}}$ Supported by grant GA13-00522S of the Grant Agency of the Czech Republic. \sim

Differential formulation

Let $\Omega \subseteq \mathbb{R}^3$ be in $\mathcal{C}^{0,1}$ and T > 0.

Differential formulation

Let $\Omega \subseteq \mathbb{R}^3$ be in $C^{0,1}$ and T > 0.

$$\frac{\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0,}{\partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) = \operatorname{div} \mathbb{S}(\mathbf{u}) - \nabla p(\rho, s) + \rho f,}$$
 in $(0, T) \times \Omega$.
$$\frac{\partial_t s + \mathbf{u} \cdot \nabla s = 0}{\partial_t s + \mathbf{u} \cdot \nabla s = 0}$$

Differential formulation

Let $\Omega \subseteq \mathbb{R}^3$ be in $\mathcal{C}^{0,1}$ and T > 0.

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) &= \operatorname{div} \mathbb{S}(\mathbf{u}) - \nabla p(\rho, s) + \rho f, \\ \partial_t s + \mathbf{u} \cdot \nabla s &= 0 \end{aligned} \end{aligned} \quad \text{in } (0, T) \times \Omega.$$

Initial and boundary conditions

 $\rho(0,x) = \rho_0(x), \ \rho \mathbf{u}(0,x) = m_0(x) \ \text{and} \ s(0,x) = s_0(x).$

No slip condition for velocity $(\mathbf{u}=0)$ on $\partial\Omega$ and

Differential formulation

Let $\Omega \subseteq \mathbb{R}^3$ be in $C^{0,1}$ and T > 0.

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) &= \operatorname{div} \mathbb{S}(\mathbf{u}) - \nabla p(\rho, s) + \rho f, \\ \partial_t s + \mathbf{u} \cdot \nabla s &= 0 \end{aligned} \end{aligned} \quad \text{in } (0, T) \times \Omega.$$

Initial and boundary conditions

 $\rho(0,x) = \rho_0(x), \ \rho \mathbf{u}(0,x) = m_0(x) \ \text{and} \ s(0,x) = s_0(x).$ No slip condition for velocity ($\mathbf{u} = 0$) on $\partial \Omega$ and

 $\blacksquare \mathbb{S}(u) = \mu(\nabla \mathbf{u} + \nabla \mathbf{u}') + (\eta - 2/3\mu) \operatorname{div} \mathbf{u} \mathbb{I},$

Differential formulation

Let $\Omega \subseteq \mathbb{R}^3$ be in $\mathcal{C}^{0,1}$ and T > 0.

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) &= \operatorname{div} \mathbb{S}(\mathbf{u}) - \nabla p(\rho, s) + \rho f, \\ \partial_t s + \mathbf{u} \cdot \nabla s &= 0 \end{aligned} \end{aligned} \quad \text{in } (0, T) \times \Omega.$$

Initial and boundary conditions

 $\rho(0,x) = \rho_0(x)$, $\rho \mathbf{u}(0,x) = m_0(x)$ and $s(0,x) = s_0(x)$. No slip condition for velocity $(\mathbf{u} = 0)$ on $\partial \Omega$ and

- $\blacksquare \mathbb{S}(\mathbf{u}) = \mu(\nabla \mathbf{u} + \nabla \mathbf{u}') + (\eta 2/3\mu) \operatorname{div} \mathbf{u} \mathbb{I},$
- $p(\rho, s) = \rho^{\gamma} \mathcal{T}(s)$, for \mathcal{T} continuous, non-negative and bijective.

25. 9. 2014

Weak solutions

Weak formulation of the system

Weak solutions

Weak formulation of the system

For any $\eta \in \mathcal{D}((0,T) \times \Omega)$ (or $\eta \in \mathcal{D}((0,T) \times \Omega)^3$)

$$\begin{split} &\int_{(0,T)\times\Omega}\rho\partial_t\eta+\int_{(0,T)\times\Omega}\rho\mathbf{u}\nabla\eta=0\\ &\int_{(0,T)\times\Omega}\rho\mathbf{u}\partial_t\eta+\int_{(0,T)\times\Omega}\rho\mathbf{u}\otimes\mathbf{u}\nabla\eta+\int_{(0,T)\times\Omega}p(\rho,s)\operatorname{div}\eta\\ &-\mu\int_{(0,T)\times\Omega}\nabla\mathbf{u}\nabla\eta-\int_{(0,T)\times\Omega}(\lambda+\mu)\operatorname{div}\mathbf{u}\operatorname{div}\eta=0\\ &\int_{(0,T)\times\Omega}s\partial_t\eta+\int_{(0,T)\times\Omega}s\mathbf{u}\nabla\eta-\int_{(0,T)\times\Omega}s\operatorname{div}\mathbf{u}\eta=0 \end{split}$$

$$\frac{\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0,}{\partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) = \operatorname{div} \mathbb{S}(\nabla \mathbf{u}) - \nabla \rho(\rho, s) + \rho f,}$$
 in $\partial \Omega$.
$$\frac{\partial_t s + \mathbf{u} \cdot \nabla s = 0}{\partial_t s + \mathbf{u} \cdot \nabla s}$$

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) &= \operatorname{div} \mathbb{S}(\nabla \mathbf{u}) - \nabla \rho(\rho, s) + \rho f, \\ \partial_t s + \mathbf{u} \cdot \nabla s &= 0 \end{aligned} \right\} \quad \text{in } \partial \Omega.$$

■ P. L. Lions, 1998, for $p(\rho, s) = \rho^{\gamma} e^{s}$ and $\gamma > 9/5$

$$\frac{\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0,}{\partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) = \operatorname{div} \mathbb{S}(\nabla \mathbf{u}) - \nabla \rho(\rho, s) + \rho f,}$$
 in $\partial \Omega$.
$$\frac{\partial_t s + \mathbf{u} \cdot \nabla s = 0}{\partial_t s + \mathbf{u} \cdot \nabla s}$$

■ P. L. Lions, 1998, for $p(\rho, s) = \rho^{\gamma} e^{s}$ and $\gamma > 9/5$ - stability of weak solutions,

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) &= \operatorname{div} \mathbb{S}(\nabla \mathbf{u}) - \nabla \rho(\rho, s) + \rho f, \\ \partial_t s + \mathbf{u} \cdot \nabla s &= 0 \end{aligned} \end{aligned} \quad \text{in } \partial \Omega.$$

- P. L. Lions, 1998, for $p(\rho, s) = \rho^{\gamma} e^{s}$ and $\gamma > 9/5$ stability of weak solutions,
- E. Feireisl, 2004, for $p(\rho, \vartheta) = \rho^{\gamma} + \vartheta \rho$, $\gamma > 3/2$ and equation for thermal energy of parabolic type instead of the transport equation

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) &= \operatorname{div} \mathbb{S}(\nabla \mathbf{u}) - \nabla \rho(\rho, s) + \rho f, \\ \partial_t s + \mathbf{u} \cdot \nabla s &= 0 \end{aligned} \end{aligned} \quad \text{in } \partial \Omega.$$

- P. L. Lions, 1998, for $p(\rho, s) = \rho^{\gamma} e^{s}$ and $\gamma > 9/5$ stability of weak solutions,
- E. Feireisl, 2004, for $p(\rho, \vartheta) = \rho^{\gamma} + \vartheta \rho$, $\gamma > 3/2$ and equation for thermal energy of parabolic type instead of the transport equation
 - existence of weak solutions.

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) &= \operatorname{div} \mathbb{S}(\nabla \mathbf{u}) - \nabla \rho(\rho, s) + \rho f, \\ \partial_t s + \mathbf{u} \cdot \nabla s &= 0 \end{aligned} \right\} \quad \text{in } \partial \Omega.$$

- P. L. Lions, 1998, for $p(\rho, s) = \rho^{\gamma} e^{s}$ and $\gamma > 9/5$ stability of weak solutions,
- E. Feireisl, 2004, for $p(\rho, \vartheta) = \rho^{\gamma} + \vartheta \rho$, $\gamma > 3/2$ and equation for thermal energy of parabolic type instead of the transport equation
 - existence of weak solutions.
- It is possible to obtain a stability result for $p(\rho, s) = (\rho/s)^{\gamma}$, $\gamma > 3/2$ with $s_0 \subseteq [1/C, C]$ for some C > 0.

A priori estimates

We are able to control by $\|\rho_0\|_{L^{\gamma}}$, $\|(\rho \mathbf{u})_0\|_{L^{2\gamma/(\gamma+1)}}$ and $\|s_0\|_{L^{\infty}(\Omega)}$ quantities

A priori estimates

We are able to control by $\|\rho_0\|_{L^{\gamma}}$, $\|(\rho \mathbf{u})_0\|_{L^{2\gamma/(\gamma+1)}}$ and $\|s_0\|_{L^{\infty}(\Omega)}$ quantities

 \bullet ρ in $L^{\infty}((0,T);L^{\gamma})$,

A priori estimates

We are able to control by $\|\rho_0\|_{L^{\gamma}}$, $\|(\rho \mathbf{u})_0\|_{L^{2\gamma/(\gamma+1)}}$ and $\|s_0\|_{L^{\infty}(\Omega)}$ quantities

- $\blacksquare \rho \text{ in } L^{\infty}((0,T);L^{\gamma}),$
- ρ **u** in $L^{\infty}((0,T); L^{2\gamma/(\gamma+1)})$, **u** ∈ $L^{2}((0,T); W_{0}^{1,2})$,

A priori estimates

We are able to control by $\|\rho_0\|_{L^{\gamma}}$, $\|(\rho \mathbf{u})_0\|_{L^{2\gamma/(\gamma+1)}}$ and $\|s_0\|_{L^{\infty}(\Omega)}$ quantities

- $\blacksquare \rho \text{ in } L^{\infty}((0,T);L^{\gamma}),$
- ρ **u** in $L^{\infty}((0,T); L^{2\gamma/(\gamma+1)})$, **u** ∈ $L^{2}((0,T); W_{0}^{1,2})$,
- s satisfies $\inf_{\Omega} s_0 \leq \inf_{\Omega} s \leq \sup_{\Omega} s \leq \sup_{\Omega} s_0$.

A priori estimates

We are able to control by $\|\rho_0\|_{L^{\gamma}}$, $\|(\rho \mathbf{u})_0\|_{L^{2\gamma/(\gamma+1)}}$ and $\|s_0\|_{L^{\infty}(\Omega)}$ quantities

- $\blacksquare \rho \text{ in } L^{\infty}((0,T);L^{\gamma}),$
- ρ **u** in $L^{\infty}((0,T); L^{2\gamma/(\gamma+1)})$, **u** ∈ $L^{2}((0,T); W_{0}^{1,2})$,
- s satisfies $\inf_{\Omega} s_0 \leq \inf_{\Omega} s \leq \sup_{\Omega} s \leq \sup_{\Omega} s_0$.

Estimates on ρ can be improved in space. One can test the momentum equation by $Bog(\rho^{\beta})$ which leads to $\rho \in L^{\gamma+\varepsilon}$.

A priori estimates

We are able to control by $\|\rho_0\|_{L^{\gamma}}$, $\|(\rho \mathbf{u})_0\|_{L^{2\gamma/(\gamma+1)}}$ and $\|s_0\|_{L^{\infty}(\Omega)}$ quantities

- $\blacksquare \rho \text{ in } L^{\infty}((0,T);L^{\gamma}),$
- \bullet ρ **u** in $L^{\infty}((0,T);L^{2\gamma/(\gamma+1)})$, $\mathbf{u} \in L^{2}((0,T);W_{0}^{1,2})$,
- \blacksquare s satisfies $\inf_{\Omega} s_0 < \inf_{\Omega} s < \sup_{\Omega} s < \sup_{\Omega} s_0$.

Estimates on ρ can be improved in space. One can test the momentum equation by $Bog(\rho^{\beta})$ which leads to $\rho \in L^{\gamma+\varepsilon}$.

Weak stability

Let $(\rho_n, \mathbf{u}_n, s_n)$ be a weak solution of NSwET with $p(\rho, s) = (\rho/s)^{\gamma}$. Let the sequence be uniformly bounded in spaces given by a priori estimates and $\rho_n \in L^2(L^2(\Omega))$ (not uniformly). Then the weak limit (ρ, \mathbf{u}, s) is also a weak solution.

Transport equation

If
$$s \in L^2((0,T); \underline{L^p}(\Omega))$$
 and $\mathbf{u} \in L^2((0,T); \underline{W^{1,p/(p-1)}}(\Omega))$ satisfy
$$\partial_t s + \mathbf{u} \cdot \nabla s = 0 \quad \text{in } \mathcal{D}'(\Omega)$$

Transport equation

If
$$s \in L^2((0,T); \underline{L^p}(\Omega))$$
 and $\mathbf{u} \in L^2((0,T); \underline{W^{1,p/(p-1)}}(\Omega))$ satisfy
$$\partial_t s + \mathbf{u} \cdot \nabla s = 0 \quad \text{in } \mathcal{D}'(\Omega)$$

$$\begin{array}{c} \text{then} \\ \partial_t B(s) + \mathbf{u} \cdot \nabla B(s) = 0 \quad \text{in } \mathcal{D}'(\Omega) \end{array}$$

for any suitable function *B*.

Transport equation

If
$$s \in L^2((0,T); \underline{L^p(\Omega)})$$
 and $\mathbf{u} \in L^2((0,T); \underline{W^{1,p/(p-1)}(\Omega)})$ satisfy
$$\partial_t s + \mathbf{u} \cdot \nabla s = 0 \quad \text{in } \mathcal{D}'(\Omega)$$
 then
$$\partial_t B(s) + \mathbf{u} \cdot \nabla B(s) = 0 \quad \text{in } \mathcal{D}'(\Omega)$$

for any suitable function B.

Continuity equation

If
$$\rho \in L^2((0,T); \underline{L^p}(\Omega))$$
 and $\mathbf{u} \in L^2((0,T); \underline{W^{1,p/(p-1)}}(\Omega))$ satisfy
$$\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0 \quad \text{in } \mathcal{D}'(\Omega)$$

Transport equation

If $s \in L^2((0,T); L^p(\Omega))$ and $\mathbf{u} \in L^2((0,T); W^{1,p/(p-1)}(\Omega))$ satisfy

$$egin{aligned} \partial_t s + \mathbf{u} \cdot
abla s &= 0 & \text{in } \mathcal{D}'(\Omega) \ &\quad &\quad &\quad &\quad &\quad & \\ then &\quad &\quad &\quad & \partial_t B(s) + \mathbf{u} \cdot
abla B(s) &= 0 & \text{in } \mathcal{D}'(\Omega) \end{aligned}$$

for any suitable function B.

Continuity equation

If $\rho \in L^2((0,T); L^p(\Omega))$ and $\mathbf{u} \in L^2((0,T); W^{1,p/(p-1)}(\Omega))$ satisfy

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0 \quad \text{in } \mathcal{D}'(\Omega)$$
 then
$$\partial_t B(\rho) + \operatorname{div}(B(\rho)\mathbf{u}) = (B'(\rho)\rho - B(\rho))\operatorname{div}\mathbf{u} \quad \text{in } \mathcal{D}'(\Omega)$$

Problems with renormalization

Question

Why is the case $\gamma > 9/5$ easier?

Problems with renormalization

Question

Why is the case $\gamma > 9/5$ easier?

Answer

One can show that $\rho \in L^2((0,T);L^2(\Omega))$ and we can renormalize "for free".

Makeshift density and isentropic case

We can take $\tilde{\rho_n} = \frac{\rho_n}{s_n}$, then $p_n = \tilde{\rho_n}^{\gamma}$.

Makeshift density and isentropic case

We can take $\tilde{\rho}_n = \frac{\rho_n}{s_n}$, then $p_n = \tilde{\rho}_n^{\gamma}$. Also

$$\left. \begin{array}{l} \partial_t \rho_n + \operatorname{div}(\rho_n \mathbf{u}_n) = 0, \\[0.2cm] \partial_t \frac{1}{s_n} + \mathbf{u}_n \cdot \nabla \frac{1}{s_n} = 0 \end{array} \right\} \quad \text{in } \mathcal{D}'(\Omega)$$

implies

$$\partial_t \tilde{\rho}_n + \operatorname{div}(\tilde{\rho}_n \mathbf{u}_n) = 0 \quad \text{in } \mathcal{D}'(\Omega).$$

Makeshift density and isentropic case

We can take $\tilde{\rho_n} = \frac{\rho_n}{s_n}$, then $p_n = \tilde{\rho_n}^{\gamma}$. Also

$$\left. \begin{array}{l} \partial_t \rho_n + \text{div}(\rho_n \mathbf{u}_n) = 0, \\[0.2cm] \partial_t \frac{1}{s_n} + \mathbf{u}_n \cdot \nabla \frac{1}{s_n} = 0 \end{array} \right\} \quad \text{in } \mathcal{D}'(\Omega)$$

implies

$$\partial_t \tilde{\rho}_n + \operatorname{div}(\tilde{\rho}_n \mathbf{u}_n) = 0 \quad \text{in } \mathcal{D}'(\Omega).$$

Due to the isentropic theory we have $\tilde{\rho}_n \to \tilde{\rho}$ strongly in $\mathcal{C}([0,T];L^{\gamma}(\Omega))$. And therefore

$$\rho \leftarrow \rho_n = s_n \tilde{\rho}_n \rightharpoonup s \tilde{\rho}$$

and (ρ, \mathbf{u}, s) satisfies the weak form of the momentum equation for $p(\rho, s) = (\rho/s)^{\gamma}$.

Passing to limit in the transport equation

For any $\eta \in \mathcal{D}((0,T) \times \Omega)$ we have

$$\int_{(0,T)\times\Omega} s_n \partial_t \eta + \int_{(0,T)\times\Omega} s_n \mathbf{u}_n \nabla \eta - \int_{(0,T)\times\Omega} s_n \operatorname{div} \mathbf{u}_n \eta = 0.$$

Passing to limit in the transport equation

For any $\eta \in \mathcal{D}((0,T) \times \Omega)$ we have

$$\int_{(0,T)\times\Omega} s_n \partial_t \eta + \int_{(0,T)\times\Omega} s_n \mathbf{u}_n \nabla \eta - \int_{(0,T)\times\Omega} s_n \operatorname{div} \mathbf{u}_n \eta = 0.$$

Letting $n \to \infty$ we obtain

$$\int_{(0,T)\times\Omega} s\partial_t \eta + \int_{(0,T)\times\Omega} \overline{s_n \mathbf{u}_n} \nabla \eta - \int_{(0,T)\times\Omega} \overline{s_n \operatorname{div} \mathbf{u}_n} \eta = 0.$$

Passing to limit in the transport equation

For any $\eta \in \mathcal{D}((0, T) \times \Omega)$ we have

$$\int_{(0,T)\times\Omega} s_n \partial_t \eta + \int_{(0,T)\times\Omega} s_n \mathbf{u}_n \nabla \eta - \int_{(0,T)\times\Omega} s_n \operatorname{div} \mathbf{u}_n \eta = 0.$$

Letting $n \to \infty$ we obtain

$$\int_{(0,T)\times\Omega} s\partial_t \eta + \int_{(0,T)\times\Omega} \overline{s_n \mathbf{u}_n} \nabla \eta - \int_{(0,T)\times\Omega} \overline{s_n \operatorname{div} \mathbf{u}_n} \eta = 0.$$

■ Due to the Arzela-Ascoli theorem $s_n \to s \in \mathcal{C}([0, T]; L^p_{\omega}(\Omega))$ for all $p \in [1, \infty)$ and therefore

$$s_n \mathbf{u}_n \rightharpoonup s \mathbf{u}$$
 in $L^2((0,T); L^{2^*}(\Omega))$.

$$p - \nabla \triangle^{-1} \nabla \colon \mathbb{S}(\mathbf{u})$$

$$\rho - \nabla \triangle^{-1} \nabla \colon \mathbb{S}(\mathsf{u})$$

Let us take as a test function $\phi \approx \nabla \triangle^{-1} \sigma_n$ in the momentum equation for $(\rho_n, \mathbf{u}_n, s_n)$. Then take $\phi \approx \nabla \triangle^{-1} \sigma$ for the limit of momentum equations.

$$\rho - \nabla \triangle^{-1} \nabla \colon \mathbb{S}(\mathsf{u})$$

Let us take as a test function $\phi \approx \nabla \triangle^{-1} \sigma_n$ in the momentum equation for $(\rho_n, \mathbf{u}_n, s_n)$. Then take $\phi \approx \nabla \triangle^{-1} \sigma$ for the limit of momentum equations.

■ Let $\sigma_n \rightharpoonup^* \sigma$ in $L^{\infty}((0,T) \times \Omega)$ with $\partial_t \sigma_n + \operatorname{div}(\sigma_n \mathbf{u}_n) = \kappa_n$ for κ_n bounded in $L^2((0,T); L^2(\Omega))$.

$$p - \nabla \triangle^{-1} \nabla \colon \mathbb{S}(\mathsf{u})$$

Let us take as a test function $\phi \approx \nabla \triangle^{-1} \sigma_n$ in the momentum equation for $(\rho_n, \mathbf{u}_n, s_n)$. Then take $\phi \approx \nabla \triangle^{-1} \sigma$ for the limit of momentum equations.

■ Let $\sigma_n \rightharpoonup^* \sigma$ in $L^{\infty}((0,T) \times \Omega)$ with $\partial_t \sigma_n + \operatorname{div}(\sigma_n \mathbf{u}_n) = \kappa_n$ for κ_n bounded in $L^2((0,T); L^2(\Omega))$.

Then after passing to a subsequence, if needed, we obtain

$$\lim_{n \to \infty} \int_0^T \int_{\mathbb{R}^3} \phi \eta \left(\tilde{\rho}_n^{\gamma} - (2\mu + \lambda) \operatorname{div} \mathbf{u}_n \right) \sigma_n \, \mathrm{d}x \, \mathrm{d}t$$
$$= \int_0^T \int_{\mathbb{R}^3} \phi \eta \left(\overline{\tilde{\rho}_n^{\gamma}} - (2\mu + \lambda) \operatorname{div} \mathbf{u} \right) \sigma \, \mathrm{d}x \, \mathrm{d}t$$

for any $\eta \in \mathcal{D}(\Omega)$ and $\phi \in \mathcal{D}((0, T))$.

Open questions

Open questions

■ What should be a suitable approximation scheme?

Open questions

- What should be a suitable approximation scheme?
- Do we have pointwise convergence for ρ_n or s_n ?