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Homogenization in general

I operator with rapidly oscillating variables

− divA
(x
ε
, u(x),∇u(x)

)
= g(x) in Ω

A periodic in first variable

I equations on a domain with a shrinking microstructure

− div(A(x , u(x),∇u(x)) = g(x) in Ωε

W
¶

¶

The aim is to establish equation without the dependence on the
microstructure whose solution is a good approximation of the
solution of an initial problem.



System of interest

ε ratio of the microscopic length and the characteristic length of
the porous medium

−ε divT (εDuε) +∇pε = f in Ωε

div uε = 0 in Ωε (GSε)

uε = 0 on ∂Ωε

Here T : Rd×d
sym → Rd×d

sym is nonlinear.



Generalization of the power law

well-known power law T (ξ) = |ξ|p−2ξ (p 6= 2 non-Newtonian fluid)

generalized power law T (ξ) = ϕ′(|ξ|)ξ
|ξ|

ϕ : [0,∞)→ [0,∞) is N-function if ∃ϕ′ such that

1. ϕ′ is (right)continuous, non-decreasing,

2. ϕ′(0) = 0,

3. ϕ′(t) > 0 for t > 0.

∆2-condition ∃c>0 ∀t > 0 : ϕ(2t) ≤ cϕ(t)
examples:
ϕ(t) = tp

p p>0, ϕ(t) = t2

log(t+e) , ϕ(t) = (t + 1) log(t + 1)− t



Sobolev-Orlicz spaces

Let Ω ⊂ Rd be open.
Orlicz space

Lϕ(Ω) = {u ∈ L1
loc(Ω),

∫
Ω
ϕ(|u|) <∞}

‖u‖ϕ = inf

{
λ > 0;

∫
Ω
ϕ

(
|u|
λ

)
≤ 1

}
Sobolev-Orlicz space

W 1,ϕ(Ω) = {u ∈ Lϕ(Ω): ∇u ∈ Lϕ(Ω)}
‖u‖1,ϕ = ‖u‖ϕ + ‖∇u‖ϕ

W 1,ϕ
0(,div)(Ω) = C∞0(,div)(Ω)

‖·‖1,ϕ



Geometry of a porous medium

Y = (0, 1)d , d = 2, 3
YS solid part of Y , YS ∈ C 2

YF fluid part of Y
YS

YF

a periodic repetition of
Y ε
k = ε(Y + k), k ∈ Zd

fluid part of a porous medium Ω ∈ C 0,1

Ωε = Ω \ ∪k∈ZdY ε
S
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Known results

Tartar ’80 derivation of Darcy’s law v = K (f−∇p) via
homogenization of Stokes problem

Nguetseng ’89 introduction and using of 2-s convergence

Allaire ’91 obstacle size affects the form of the homog-
enized system

Allaire ’92 homogenization of unsteady Stokes system

Bourgeat, Mikelić ’96 homogenization of stationary p-NS system,
the convective term vanishes

Nnang, Tachago ’13 2-s convergence in Orlicz setting



The homogenized system

Theorem
Let u0,P, π be a unique weak solution of

− divy T (|Dyu
0(x , y)|)+∇yπ(x , y) = f(x)−∇xp(x) in Ω× YF

divy u
0 = 0 in Ω× Y , divx

∫
Y
u0 = 0 in Ω

u0 = 0 in Ω× YS ,

∫
Y
u0 = 0 on ∂Ω.

Then as ε→ 0

uε
2−s−−⇀ u0, εDuε

2−s−−⇀ Dyu
0, p̃ε(extended pε)

2−s−−⇀ p.



Two-scale convergence I

Definition
We say that a sequence {v ε} ⊂ Lϕ(Ω) converges in Lϕ(Ω)

1. weakly two-scale to some v0 ∈ Lϕ(Ω× Y )(v ε
2−s−−⇀ v0) if for

any w ∈ Lϕ
∗
(Ω;Cper (Y )) (wε(x) := w

(
x , xε

)
)

lim
ε→0

∫
Ω
v ε(x)wε(x) dx =

∫
Ω

∫
Y
v0(x , y)w(x , y) dy ds.

2. strongly two-scale to some v0 ∈ Lϕ(Ω× Y )(v ε
2−s−−⇀ v0) if for

any κ > 0 and w ∈ Lϕ(Ω;Cper (Y )) with
‖v0 − w‖Lϕ(Ω× Y ) ≤ κ

2 there exists α > 0 such that for any
ε ∈ (0, α) ‖v ε − wε‖Lϕ(Ω) ≤ κ



Two-scale convergence II

Theorem
From any bounded sequence in Lϕ(Ω) one can extract a weakly
two-scale convergent subsequence in Lϕ(Ω).

Lemma
Let {vε}, {ε∇vε} be bounded in Lϕ(Ω)⇒∃v ∈Lϕ(Ω;W 1,ϕ

per (Y )),

{vεk} : vε
2−s−−⇀ v , εk∇xvεk

2−s−−⇀ ∇yv.

Lemma
Let v ε

2−s−−⇀ v0 in Lϕ(Ω) then lim infε→0 ‖v ε‖Lϕ(Ω) ≥ ‖v0‖Lϕ(Ω×Y ).



Weak solution

Let f ∈ Lϕ
∗
(Ω). uε ∈W 1,ϕ

0,div(Ω) is a weak solution of (GSε) if

∀v ∈W 1,ϕ
0,div(Ωε)

ε

∫
Ωε

T (εDuε)Dv =

∫
Ωε

fv

Apriori estimates

∃c1, c2>0 ∀ε :

∫
Ωε

ϕ(|εDuε|) ≤ c1

∫
Ωε

ϕ∗(|f|)∫
Ωε

ϕ∗ (T (εDuε)) ≤ c2

∫
Ωε

ϕ∗(|f|).



Extensions I

I uε = 0 on ∂Ωε ⇒ uε extended by zero in Ω \ Ωε is bounded
uniformly with respect to ε in W 1,ϕ

0,div(Ω)

I Extension of pε is not obvious. We want this extension to be
bounded in Lϕ

∗
(Ω)!

Extension solved by L. Tartar who introduced and applied the
restriction operator.
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Restriction operator

Lemma
There exists a restriction operator Rε : W 1,ϕ

0 (Ω)→W 1,ϕ
0 (Ωε) with

properties:

Rε is linear

Rε(w)=w for w∈W 1,ϕ
0 (Ωε) extended by 0 on Ω \ Ωε

divw=0 in Ω⇒ divRε(w)=0 in Ωε

‖Rε(w)‖ϕ;Ωε ≤ c (‖w‖ϕ;Ω + ε‖∇w‖ϕ;Ω)

‖∇Rε(w)‖ϕ;Ωε ≤ c

(
1

ε
‖w‖ϕ;Ω + ‖∇w‖ϕ;Ω

)



Extensions II

Define Gε ∈ (W 1,ϕ
0 (Ω))∗

〈Gε, v〉(W 1,ϕ
0 (Ω))∗,W 1,ϕ

0 (Ω)
=〈∇pε,Rεv〉(W 1,ϕ

0 (Ωε))∗,W 1,ϕ
0 (Ωε)

.

There is p̃ε ∈ Lϕ(Ω) such that Gε = ∇p̃ε and

I p̃ε = pε in Ωε

I p̃ε = 1
|Y ε

Fi
|
∫
Y ε
Fi

pε in each Y ε
Si

I ‖p̃ε‖Lϕ∗ ≤ c
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Sketch of the proof
After applying extensions

ε

∫
Ω
T (εDuε)Dv −

∫
Ω
p̃ε div v =

∫
Ω
fv ∀v ∈W 1,ϕ

0 (Ω).

Choose w ∈ D(Ω;C∞per (Y )), divy w = 0 in Ω, put
v(x) := w

(
x , xε

)
ε→ 0 and apply

uε
2−s−−⇀ u0 in Lϕ(Ω)

εDuε
2−s−−⇀ Dyu

0 in Lϕ(Ω)

T (εDuε)
2−s−−⇀ T 0 in Lϕ

∗
(Ω)

p̃ε ⇀ p in Lϕ
∗
(Ω)

to obtain ∫
Ω

∫
Y
T 0Dyw −

∫
Ω

∫
Y
p divw =

∫
Ω

∫
Y
fw.

Minty’s argument: T 0(x , y) = T (Dyu0) = ϕ′(|Dyu0|) Dyu0

|Dyu0|
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Nonstationary Stokes

uεt − ε divT (εDuε) +∇pε = f in (0,T )× Ωε

div uε = 0 in (0,T )× Ωε

uε(0) = aε in Ωε

uε = 0 on ∂Ωε

assumptions

1. a restriction on N−function which allows
Lϕ((0,T )× Y ) = Lϕ(I ; Lϕ(Ω))

2. an embedding Lϕ(Ω) ↪→ L2(Ω)

3. more regular uniformly bounded data ⇒ ‖uεt‖L2((0,T )×Ω) ≤ c
consequences

I uεt
2−s−−⇀ u0

t in L2((0,T )× Ω)
I ‖uεt ‖L∞(0,T ;L2(Ω)) ≤ c ⇒ ‖Pε‖Lϕ∗ ((0,T )×Ω) ≤ c
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Homogenized nonstationary NS

u0
t − divy T (Dyu

0) +∇yπ = f −∇xp in (0,T )× Ω× YF

u0(0) = a0 in Ω× Y

divy u
0 = 0 in (0,T )× Ω× Y

divx

∫
Y
u0 = 0 in (0,T )× Ω

u0 = 0 in (0,T )× Ω× YS

Thank you for attention!
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