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Asphalt binder

glue in the asphalt concrete (very sticky)
almost incompressible (compared to asphalt concrete)
mixture of a large number of hydrocarbons
exhibits viscoelastic behavior
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Incompressible viscoelastic fluid like models

Balance equations:

divv = 0,

ρ

(
∂v

∂t
+ [∇v]v

)
= divT, T = TT.

Relation for the Cauchy stress tensor T has to be specified.

T = −pI + S,

rate-type fluid models – S satisfies evolutionary equation.
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Standard viscoelastic rate-type fluid models

The Cauchy stress tensor in the form T = −pI + S

Maxwell

S = G(B− I)

O
B +

1

τ
(B− I) = 0

τ =
µ

G

Oldroyd-B

S = 2µ2D +G(B− I)

O
B +

1

τ
(B− I) = 0

τ1 =
µ1

G

Burgers

S + λ1

O
S +λ2

OO
S = η1D + η2

O
D

O
S:= Ṡ− LS− SLT, L := ∇v, D := 1

2(L + LT)
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Thermodynamical framework for derivation of viscoelastic
models

Experimental data for asphalt binder show interesting phenomena
that can not be captured by these standard linear viscoelastic models.

Rajagopal and Srinivasa (2000), second law of thermodynamics
automatically satisfied
based on the knowledge how the material stores the energy
(given by the Helmholtz potential) and how the material
dissipates the energy (given by the rate of the entropy
production)
derivation of model by Rajagopal and Srinivasa (2000) was
modified and new non-linear model was obtained
capable of capturing experimental data of viscoelastic fluids
models reduce to standard Oldroyd-B model
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Natural configuration

Using natural configuration the deformation is split into purely
elastic and dissipative part.

X x

Xκp(t)

κR(B) κt(B)

κp(t)(B)

χκR

FκR

Fκp(t)

G

FκR =
∂χκR
∂X

, L = ḞκRF
−1
κR

Bκp(t) = Fκp(t)F
T
κp(t)

, Lκp(t) = ĠG−1, Dκp(t) =
Lκp(t) + LT

κp(t)

2

Ḃκp(t) = LBκp(t) + Bκp(t)L
T − 2Fκp(t)Dκp(t)F

T
κp(t)
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Two constitutive relations for scalars are prescribed: thermodynamic
potential (Helmholtz free energy ψ) and rate of entropy production
ξ.
Helmholtz free energy ψ – incompressible neo-Hookean

ψ =
G

2ρ

(
trBκp(t) − 3

)
Rate of entropy production ξ Rajagopal, Srinivasa (2000) used

0 ≤ ξ̃ = 2µ1Dκp(t) ·Bκp(t)Dκp(t) .

We tried several scalars.

Reduced thermodynamic identity; incompressibility conditions

ξ = T ·D− ρψ̇; trD = trDκp(t) = 0.
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Quadratic model with one natural configuration

0 ≤ ξ̃ = 2µ2D ·D + 2µ1Dκp(t) ·Dκp(t)

⇓

T = −pI + 2µ2D +GBd
κp(t)

,

O
Bκp(t) +

1

τ
Bκp(t)B

d
κp(t)

= 0.

Bd
κp(t)

= Bκp(t) −
1

3

(
trBκp(t)

)
I

it linearizes to standard Oldroyd-B model
it can be shown that detBκp(t) = 1 and trBκp(t) ≥ 2

it captures one of the experiments
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TD compatible Oldroyd-B model

Incompressible total deformation detFκR = detGdetFκp(t) = 1
but compressible elastic and dissipative response
detG = 1/detFκp(t) 6= 1

Helmholtz free energy ψ – compressible neo-Hookean

ψ =
G

2ρ

(
trBκp(t) − 3− ln detBκp(t)

)
Rate of entropy production ξ

0 ≤ ξ̃ = 2µ2|D|2 + 2µ1Dκp(t)Bκp(t) ·Dκp(t) .

Oldroyd-B model

T = −pI + 2µ2D +G(Bκp(t)−I),
O
Bκp(t) +

1

τ
(Bκp(t) − I) = 0.
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Experiment Krishnan, Narayan (2007)

experiment with asphalt binder
torsional rheometer, height h = 1 mm, radius R = 4 mm
upper plate rotates with constant angular velocity ω
corresponding torque M is measured
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This experiment is fitted in cylindrical coordinates under the
assumption that v = (0, ωrz/h, 0).
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Experiment Narayan et al. (2012)

ω =
{0.5rad s−1 0s ≤ t ≤ 0.5s

0rad s−1 0.5s < t ≤ 2.0s.

corresponding torque and normal force are measured
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Two relaxation mechanisms
Experiments show that ashpalt binders have two different relaxation
mechanisms which can be captured by

κR κt

κp1(t)

κp2(t)

G1

G2

FκR

Fκp1(t)

Fκp2(t)T = −pI+ 2µ3D+G1B
d
κp1(t)

+G2B
d
κp2(t)

,

O
Bκp1(t)

+
1

τ1
Bκp1(t)

Bd
κp1(t)

= 0,

O
Bκp2(t)

+
1

τ2
Bκp2(t)

Bd
κp2(t)

= 0.

reduces to standard Burgers model if the elastic responses are linearized

T = −pI + 2µ3D + S,

S + (τ1 + τ2)
O
S +τ1τ2

OO
S = 2(τ1G1 + τ2G2)D + 2τ1τ2(G1 +G2)

O
D .
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Our fit for experiment Narayan et al. (2012)
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Full simulation in deforming domains

problem computed on a fixed mesh ⇒ the weak formulation
transformed by ϕ̂ from the physical domain in Ωx to
computational domain Ωχ using arbitrary Langrangian-Eulerian
description

ϕ̂ : x = χ+ û

F̂ = I+∇χû

Ĵ = det F̂

Ωχ Ωx

new variable û – arbitrary deformation of the domain and the
mesh, for material points the relation dû/dt = v holds
monolithic approach is used which means that the problem is
solved as one big coupled system of equations including the
deformation of the mesh
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discretization in time ∂y(x, t)

∂t
= f (y(x, t)) approximated by

conditionally stable (> 2nd order) Glowinski time scheme

1.
yn+θ(x) − yn(x)

θ∆tn
= f

(
yn+θ(x))

)
,

2. yn+1−θ =
1 − θ

θ
yn+θ +

2θ − 1

θ
yn,

3.
yn+1(x) − yn+1−θ(x)

θ∆tn
= f

(
yn+1(x))

)
.

discretization in space, quadrilaterals, refined near boundary
pressure p / velocity v / deformation u / tensor Bκp(t)

approximated by Pdisc
1 / Q2 / Q2 / Q2

Newton method & UMFPACK
based on J. Hron’s code, tests with benchmarks
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Pressing of viscoelastic material
rectangular piece of material, width 3m, height 1m
material is on the ground: it can fully slip in the x-direction, but
it can not flow in the y-direction
all other sides of the rectangle are free
at t = 0 the material is at rest, and it is suddenly pushed in the
middle at the top with a constant normal stress Tyy = -5 kPa
for ∆t = 0.5 s

vy = 0, Txy = 0

Tn = 0 1m1m

3m

1m
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Experimental order of convergence

problem computed with Oldroyd-B model and τ = 0.8 s
using four different mesh sizes h and four different time steps
∆t

compared Ek(h,∆t) and uy(h,∆t) in the middle of the top
side at t = 0.6 s
experimental order of convergence estimated by fitting both
solutions Ek and uy by

a0 + a1h
b1 + a2∆tb2
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and obtained

uy = − 0.10463466− 0.0368 h1.108 − 3.6160 ∆t2.812

Ek = 92.075101 + 44.735 h0.997 + 313.522 ∆t1.876

values to which the solutions converge and experimental order of
convergence.
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Applying shear stress on a square from the viscoelastic
material

Txy = 500 Pa for t ≤ 7.0 s

v = 0

square piece of material, side 1m
bottom side fixed, other sides free
apply shear stress Txy = 500 Pa on the
top side for 0 ≤ t ≤ 7.0

ρ = 1000 kg m−3, µ2 = 1 kPa s,
G = 1 kPa, τ = 2.0 s
computed for Oldroyd-B and quadratic model
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Dependence of ux and −(trT)/2 w.r.t t
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Summary of the results

models equivalent to standard Maxwell, Oldroyd-B or Burgers:
can be obtained using thermodynamic approach
satisfy the second law of themodynamics
one should view them as the fluids where the elastic response
corresponds to that of a compressible neo-Hookean solid

however they do not agree with the experiments – new TD
compatible non-linear models that capture the experiments were
derived
computation in time varying domain using ALE method – real
life problems
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