Thermodynamically compatible viscoelastic models suitable for modeling geomaterials

Karel Tůma joint work with J. Hron, J. Málek and K.R. Rajagopal

Institute of Fundamental Technological Research Polish Academy of Sciences

September 25, 2014

Asphalt binder

- glue in the asphalt concrete (very sticky)
- almost incompressible (compared to asphalt concrete)
- mixture of a large number of hydrocarbons
- exhibits viscoelastic behavior

Balance equations:

$$
\operatorname{div} \mathbf{v} = 0,
$$

$$
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + [\nabla \mathbf{v}] \mathbf{v} \right) = \operatorname{div} \mathbf{T}, \quad \mathbf{T} = \mathbf{T}^{T}.
$$

Relation for the Cauchy stress tensor T has to be specified.

$$
\mathbf{T} = -p\mathbf{I} + \mathbf{S},
$$

rate-type fluid models $-$ S satisfies *evolutionary* equation.

Standard viscoelastic rate-type fluid models

The Cauchy stress tensor in the form $\mathbf{T} = -p\mathbf{I} + \mathbf{S}$ Maxwell

$$
\begin{vmatrix}\n\mathbf{S} = G(\mathbf{B} - \mathbf{I}) \\
\frac{\nabla}{\mathbf{B}} + \frac{1}{\tau}(\mathbf{B} - \mathbf{I}) = \mathbf{0}\n\end{vmatrix}\n\qquad\n\tau = \frac{\mu}{G}
$$

Oldroyd-B

$$
\begin{array}{c}\n\mathbf{S} = 2\mu_2 \mathbf{D} + G(\mathbf{B} - \mathbf{I}) \\
\stackrel{\nabla}{\mathbf{B}} + \frac{1}{\tau} (\mathbf{B} - \mathbf{I}) = \mathbf{0}\n\end{array}\n\qquad\n\tau_1 = \frac{\mu_1}{G}
$$

Burgers

 $\overline{ }$

$$
\mathbf{S} + \lambda_1 \stackrel{\triangledown}{\mathbf{S}} + \lambda_2 \stackrel{\triangledown\triangledown}{\mathbf{S}} = \eta_1 \mathbf{D} + \eta_2 \stackrel{\triangledown}{\mathbf{D}}
$$

$$
\dot{\mathbf{S}} = \dot{\mathbf{S}} - \mathbf{L}\mathbf{S} - \mathbf{S}\mathbf{L}^{\mathrm{T}}, \quad \mathbf{L} := \nabla \mathbf{v}, \quad \mathbf{D} := \frac{1}{2}(\mathbf{L} + \mathbf{L}^{\mathrm{T}})
$$

Thermodynamical framework for derivation of viscoelastic models

Experimental data for asphalt binder show interesting phenomena that can not be captured by these standard linear viscoelastic models.

- Rajagopal and Srinivasa (2000), second law of thermodynamics automatically satisfied
- **•** based on the knowledge how the material stores the energy (given by the Helmholtz potential) and how the material dissipates the energy (given by the rate of the entropy production)
- **•** derivation of model by Rajagopal and Srinivasa (2000) was modified and new non-linear model was obtained
- capable of capturing experimental data of viscoelastic fluids
- models reduce to standard Oldroyd-B model

Natural configuration

Using natural configuration the deformation is split into purely elastic and dissipative part.

Two constitutive relations for scalars are prescribed: thermodynamic potential (Helmholtz free energy ψ) and rate of entropy production ξ.

Helmholtz free energy ψ – incompressible neo-Hookean

$$
\psi = \frac{G}{2\rho}\left(\operatorname{tr}\textbf{B}_{\kappa_{p(t)}} - 3 \right)
$$

Rate of entropy production ξ Rajagopal, Srinivasa (2000) used

$$
0 \leq \tilde{\xi} = 2\mu_1 \mathbf{D}_{\kappa_{p(t)}} \cdot \mathbf{B}_{\kappa_{p(t)}} \mathbf{D}_{\kappa_{p(t)}}.
$$

We tried several scalars.

Reduced thermodynamic identity; incompressibility conditions

$$
\xi = \mathbf{T} \cdot \mathbf{D} - \rho \dot{\psi}; \quad \text{tr } \mathbf{D} = \text{tr } \mathbf{D}_{\kappa_{p(t)}} = 0.
$$

Quadratic model with one natural configuration

$$
0 \leq \tilde{\xi} = 2\mu_2 \mathbf{D} \cdot \mathbf{D} + 2\mu_1 \mathbf{D}_{\kappa_{p(t)}} \cdot \mathbf{D}_{\kappa_{p(t)}}
$$

$$
\Downarrow
$$

$$
\mathbf{T} = -p\mathbf{I} + 2\mu_2 \mathbf{D} + G \mathbf{B}_{\kappa_{p(t)}}^d,
$$

$$
\mathbf{B}_{\kappa_{p(t)}} + \frac{1}{\tau} \mathbf{B}_{\kappa_{p(t)}} \mathbf{B}_{\kappa_{p(t)}}^d = \mathbf{0}.
$$

$$
\mathbf{B}_{\kappa_{p(t)}}^d = \mathbf{B}_{\kappa_{p(t)}} - \frac{1}{3} \left(\text{tr } \mathbf{B}_{\kappa_{p(t)}} \right) \mathbf{I}
$$

- it linearizes to standard Oldroyd-B model
- it can be shown that $\det \mathbf{B}_{\kappa_{p(t)}} = 1$ and $\mathrm{tr} \, \mathbf{B}_{\kappa_{p(t)}} \geq 2$
- it captures one of the experiments

TD compatible Oldroyd-B model

Incompressible total deformation $\det \mathbf{F}_{\kappa_R} = \det \mathbf{G} \det \mathbf{F}_{\kappa_{n(t)}} = 1$ but compressible elastic and dissipative response $\det \mathbf{G}=1/\det \mathbf{F}_{\kappa_{p(t)}}\neq 1$

Helmholtz free energy ψ – compressible neo-Hookean

$$
\psi = \frac{G}{2\rho} \left(\operatorname{tr} \mathbf{B}_{\kappa_{p(t)}} - 3 - \ln \det \mathbf{B}_{\kappa_{p(t)}} \right)
$$

Rate of entropy production ξ

$$
0 \leq \tilde{\xi} = 2\mu_2 |\mathbf{D}|^2 + 2\mu_1 \mathbf{D}_{\kappa_{p(t)}} \mathbf{B}_{\kappa_{p(t)}} \cdot \mathbf{D}_{\kappa_{p(t)}}.
$$

Oldroyd-B model

$$
\label{eq:decomp} \begin{aligned} \mathbf{T} &= -p\mathbf{I} + 2\mu_2\mathbf{D} + G(\mathbf{B}_{\kappa_{p(t)}} - \mathbf{I}),\\ \overset{\triangledown}{\mathbf{B}}_{\kappa_{p(t)}} + \frac{1}{\tau}(\mathbf{B}_{\kappa_{p(t)}} - \mathbf{I}) &= \mathbf{0}. \end{aligned}
$$

Experiment Krishnan, Narayan (2007)

- experiment with asphalt binder
- torsional rheometer, height $h = 1$ mm, radius $R = 4$ mm
- upper plate rotates with constant angular velocity ω
- corresponding torque M is measured

This experiment is fitted in cylindrical coordinates under the assumption that $\mathbf{v} = (0, \omega r z / h, 0)$.

Experiment Narayan et al. (2012)

$$
\omega = \begin{cases} 0.5 \text{rad s}^{-1} & 0 \text{s} \le t \le 0.5 \text{s} \\ 0 \text{rad s}^{-1} & 0.5 \text{s} < t \le 2.0 \text{s}. \end{cases}
$$

corresponding torque and normal force are measured

Two relaxation mechanisms

Experiments show that ashpalt binders have two different relaxation mechanisms which can be captured by

$$
\label{eq:R1} \boxed{\textbf{T} = -p\textbf{I} + 2\mu_3\textbf{D} + G_1\textbf{B}_{\kappa_{p_1(t)}}^d + G_2\textbf{B}_{\kappa_{p_2(t)}}^d,} \quad \textbf{G}_1 \quad \textbf{G}_2 \quad \textbf{G}_3 \quad \textbf{F}_{\kappa_{p_i(t)}} \quad \textbf{F}_{\kappa_{p_i(t)}} \quad \textbf{B}_{\kappa_{p_1(t)}} \quad \textbf{H}_{\kappa_{p_2(t)}} \quad \textbf{H}_{
$$

reduces to standard Burgers model if the elastic responses are linearized

$$
\mathbf{T} = -p\mathbf{I} + 2\mu_3 \mathbf{D} + \mathbf{S},
$$

$$
\mathbf{S} + (\tau_1 + \tau_2) \mathbf{S} + \tau_1 \tau_2 \mathbf{S} = 2(\tau_1 G_1 + \tau_2 G_2) \mathbf{D} + 2\tau_1 \tau_2 (G_1 + G_2) \mathbf{S}.
$$

Our fit for experiment Narayan et al. (2012)

Full simulation in deforming domains

• problem computed on a fixed mesh \Rightarrow the weak formulation transformed by $\hat{\varphi}$ from the physical domain in Ω_x to computational domain Ω_{χ} using arbitrary Langrangian-Eulerian description

- new variable \hat{u} arbitrary deformation of the domain and the mesh, for material points the relation $d\hat{u}/dt = v$ holds
- monolithic approach is used which means that the problem is solved as one big coupled system of equations including the deformation of the mesh

discretization in time $\frac{\partial y(x,t)}{\partial t} = f(y(x,t))$ approximated by conditionally stable ($>2^{\rm nd}$ order) Glowinski time scheme

1.
$$
\frac{y^{n+\theta}(x) - y^n(x)}{\theta \Delta t^n} = f\left(y^{n+\theta}(x)\right),
$$

\n2.
$$
y^{n+1-\theta} = \frac{1-\theta}{\theta}y^{n+\theta} + \frac{2\theta - 1}{\theta}y^n,
$$

\n3.
$$
\frac{y^{n+1}(x) - y^{n+1-\theta}(x)}{\theta \Delta t^n} = f\left(y^{n+1}(x)\right).
$$

- discretization in space, quadrilaterals, refined near boundary
- pressure $p /$ velocity v / deformation u / tensor $B_{\kappa_{n(t)}}$ approximated by $\mathsf{P}_1^{\text{disc}}$ / Q_2 / Q_2 / Q_2
- Newton method & UMFPACK
- based on J. Hron's code, tests with benchmarks

Pressing of viscoelastic material

- **•** rectangular piece of material, width 3m, height 1m
- \bullet material is on the ground: it can fully slip in the x-direction, but it can not flow in the y -direction
- all other sides of the rectangle are free
- at $t = 0$ the material is at rest, and it is suddenly pushed in the middle at the top with a constant normal stress $Tyy = -5$ kPa for $\Delta t = 0.5$ s

Karel Tůma ^{TD} Compatible Rate-Type Fluid Models 18/26

- problem computed with Oldroyd-B model and $\tau = 0.8$ s
- using four different mesh sizes h and four different time steps Δt
- compared $E_k(h, \Delta t)$ and $u_y(h, \Delta t)$ in the middle of the top side at $t = 0.6$ s
- experimental order of convergence estimated by fitting both solutions E_k and u_y by

$$
a_0+a_1h^{b_1}+a_2\Delta t^{b_2}
$$

and obtained

$$
u_y = -0.10463466 - 0.0368 h^{1.108} - 3.6160 \Delta t^{2.812}
$$

$$
E_k = 92.075101 + 44.735 h^{0.997} + 313.522 \Delta t^{1.876}
$$

values to which the solutions converge and experimental order of convergence.

and obtained

$$
u_y = -0.10463466 - 0.0368 h^{1.108} - 3.6160 \Delta t^{2.812}
$$

$$
E_k = 92.075101 + 44.735 h^{0.997} + 313.522 \Delta t^{1.876}
$$

values to which the solutions converge and experimental order of convergence.

and obtained

$$
u_y = -0.10463466 - 0.0368 h^{1.108} - 3.6160 \Delta t^{2.812}
$$

$$
E_k = 92.075101 + 44.735 h^{0.997} + 313.522 \Delta t^{1.876}
$$

values to which the solutions converge and experimental order of convergence.

Applying shear stress on a square from the viscoelastic material

square piece of material, side 1m

- bottom side fixed, other sides free
- apply shear stress $T_{xy} = 500$ Pa on the top side for $0 \le t \le 7.0$

•
$$
\rho = 1000 \text{ kg m}^{-3}
$$
, $\mu_2 = 1 \text{ kPa s}$,
\n $G = 1 \text{ kPa}$, $\tau = 2.0 \text{ s}$

• computed for Oldroyd-B and quadratic model

Dependence of u_x and $-(\text{tr }\mathbf{T})/2$ w.r.t t

Karel Tůma [TD Compatible Rate-Type Fluid Models 25/26](#page-0-0)

Summary of the results

- models equivalent to standard Maxwell, Oldroyd-B or Burgers:
	- can be obtained using thermodynamic approach
	- satisfy the second law of themodynamics
	- one should view them as the fluids where the elastic response corresponds to that of a compressible neo-Hookean solid
- however they do not agree with the experiments new TD compatible non-linear models that capture the experiments were derived
- • computation in time varying domain using ALE method – real life problems

