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The talk is based on the following results

5" M. Buligek, J. Malek, K. R. Rajagopal and J. R. Walton:
Existence of solutions for the anti-plane stress for a new
class of "strain-limiting" elastic bodies, submitted

55" M. Buligek, J. Malek and E. Siili: Analysis and
approximation of a strain-limiting nonlinear elastic
model, Mathematics and Mechanics of Solids, 2014

55" M. Buligek, J. Malek, K. R. Rajagopal and E. Siili: On elastic
solids with limiting small strain: modelling and analysis,
EMS Surveys in Mathematical Sciences, 2014.

=5 L. Beck, M. Bulicek, J. Malek and E. Siili: Analysis and
approximation of a strain-limiting nonlinear elastic model
Il, in preparation
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Linearized nonlinear elasticity

We consider the elastic deformation of the body © ¢ R? with Iy N2 = 0 and
I Ul = 09 described by

—divT=f inQ,

u=up on [, and Tn=g onl,.

(E)

where u is displacement, T the Cauchy stress, f the external body forces, g the
external surface forces and ¢ is the linearized strain tensor, i.e.,

1 T
€= i(Vu +(Vu)')
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Linearized nonlinear elasticity

We consider the elastic deformation of the body © ¢ R? with Iy N2 = 0 and
I Ul = 09 described by

—divT =f in Q, ()
u=up on [, and Tn=g onl,.

where u is displacement, T the Cauchy stress, f the external body forces, g the
external surface forces and ¢ is the linearized strain tensor, i.e.,

1 T
€= E(Vu +(Vu)')

IS The implicit relation between the Cauchy stress and the strain
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Linearized nonlinear elasticity

We consider the elastic deformation of the body © ¢ R? with Iy N2 = 0 and
I Ul = 09 described by

—divT=f inQ,
(ED

u=up on [, and Tn=g onl,.

where u is displacement, T the Cauchy stress, f the external body forces, g the
external surface forces and ¢ is the linearized strain tensor, i.e.,

1 T
€= E(Vu +(Vu)')

IS The implicit relation between the Cauchy stress and the strain
G(T,e)=0

55" The key assumption in linearized elasticity

=] @

Strain-limiting models
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The linear models should not be used

The standard linear models immediately may lead to the contradiction:
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The linear models should not be used

The standard linear models immediately may lead to the contradiction:

IS Consider Q a domain with non-convex corner at xo, [ = 0L, up = 0 and
G of the form

T =2pe.
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The linear models should not be used

The standard linear models immediately may lead to the contradiction:

IS Consider Q a domain with non-convex corner at xo, [ = 0L, up = 0 and
G of the form
T =2pe.

I There exists a smooth f such that the solution (T, €) fulfils

ITC] = le(x)] "= 00

Liblice 2014

M. Bulicek Strain-limiting models



The linear models should not be used

The standard linear models immediately may lead to the contradiction:

IS Consider Q a domain with non-convex corner at xo, [ = 0L, up = 0 and
G of the form
T =2pe.

I There exists a smooth f such that the solution (T, €) fulfils

ITC] = le(x)] "= 00

% contradicts the assumption of the model (A) = not valid model at
least in the neighborhood of xo.
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The linear models should not be used

The standard linear models immediately may lead to the contradiction:

IS Consider Q a domain with non-convex corner at xo, [ = 0L, up = 0 and
G of the form
T =2pe.

I There exists a smooth f such that the solution (T, €) fulfils

ITC] = le(x)] "= 00

% contradicts the assumption of the model (A) = not valid model at
least in the neighborhood of xo.

& But there is material behavior that suggests

IT(x)] *=° o0 BUT le(x)| < 1.
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Limiting strain model

& Consider implicit models which a priori guarantees |e| < K:

Liblice 2014

where

e=M([tr T))(tr T+ X2 (JT)T 4+ As(JTY)T?

tr T K
_ = < .
s = 3(s+1)

Td =T d y |)\1,2,3(
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Limiting strain model

& Consider implicit models which a priori guarantees |e| < K:

e=M([tr T))(tr T+ X2 (JT)T 4+ As(JTY)T?

where
_uT K

T =T <
d 9 |)\1’2’3(5)| — 3(5+1)

& A priori estimates: from (L-S)

le] < K.
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Limiting strain model

& Consider implicit models which a priori guarantees |e| < K:

e=M([tr T (tr T+ X2(|TNT + X3 (|TY)T? |, (L-S)
where o K
d T
=T R A —
T T d’ |)‘1,2,3(5)| = 3(S+ 1)

& A priori estimates: from (L-S)
le] < K.

From the equation, we may hope that

/ (e T TR+ A TDIT + As(IT T = / Te<C
Q Q
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Limiting strain model

& Consider implicit models which a priori guarantees |e| < K:

e=M([tr T (tr T+ X2(|TNT + X3 (|TY)T? |, (L-S)
where o K
d T
=T R A —
T T d’ |)‘1,2,3(5)| = 3(S+ 1)

& A priori estimates: from (L-S)
le] < K.

From the equation, we may hope that

/ (e T TR+ A TDIT + As(IT T = / Te<C
Q Q

0" The reasonable assumptions (oo-Laplacian-like problem):

A123(s) >0,

> } /|T|<C

Strain-limiting models
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Limiting strain model & monotonicity
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Apriori estimates for T¢ in L

For the convergence at least some monotonicity needed, the minimal
assumption:

d
< -
0_ds(

If we would have an approximative sequence fulfilling

A1,2,3(8)s). (M)

I(T9)"*? < C(Q) for all Qo CC Q,
Qo

— T"—~T  weaklyin L.
then using (M) we can identify the limit.

Assume kind of uniform monotonicity, i.e., for some a,a, K > 0

™
for example
. 1
As(s) = 7(1 —|—S‘3)% .
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Limiting strain model via dual formulation &

Theorem
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Limiting strain model via dual formulation &

Theorem

Existence via the dual formulation (very similar to plasticity):
Find the (convex) potential F : R¥*? — R such that

OF(T) Tj
= = €jj
o e

and define the class of admissible stresses as
S:={Tecl'(Q); ~divT=f, Tn=gon I}

To find a weak solution to the original problem is equivalent to find T € S
fulfilling

/Q F(T) < /Q F(T) forall T € S.

Strain-limiting models
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Limiting strain model via dual formulation &

Theorem

Existence via the dual formulation (very similar to plasticity):
Find the (convex) potential F : R¥*? — R such that

OF(T) Tj
= = €jj
o e

and define the class of admissible stresses as
S:={Tecl'(Q); ~divT=f, Tn=gon I}

To find a weak solution to the original problem is equivalent to find T € S

fulfilling
/ F(T) < / F(T) forallTesS.
Q Q
Theorem
Let Q C RY. There exists a minimizer T to the potential F, but in the space of
measures.
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We know everything that means we know nothing

e We solved the problem completely. It has unique solution!
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We know everything that means we know nothing

e We solved the problem completely. It has unique solution!

e What does it mean that the Cauchy stress is a measure?
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We know everything that means we know nothing

e We solved the problem completely. It has unique solution!
e What does it mean that the Cauchy stress is a measure?

e Can we reconstruct € and also u in a unique way?
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We know everything that means we know nothing

We solved the problem completely. It has unique solution!

What does it mean that the Cauchy stress is a measure?

Can we reconstruct € and also u in a unique way?

Is there any influence of the smoothness of data?

Is there any influence of the shape of Q7

Is there any influence of the parameter a of the model?
(smaller a means better convexity)
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We know everything that means we know nothing

e We solved the problem completely. It has unique solution!
e What does it mean that the Cauchy stress is a measure?
e Can we reconstruct € and also u in a unique way?

e Is there any influence of the smoothness of data?

e |s there any influence of the shape of Q7

e Is there any influence of the parameter a of the model?
(smaller a means better convexity)

e Can we do something better “inside" Q7
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We know everything that means we know nothing

e We solved the problem completely. It has unique solution!
e What does it mean that the Cauchy stress is a measure?
e Can we reconstruct € and also u in a unique way?

e Is there any influence of the smoothness of data?

e |s there any influence of the shape of Q7

e Is there any influence of the parameter a of the model?
(smaller a means better convexity)

e Can we do something better “inside" Q7

e Is there any chance to avoid measures completely and to solve
the original problem?
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Limiting strain model - anti-plane stress

We consider the following special geometry

Figure: Anti-plane stress geometry.

and we look for the solution in the following from:

u= u(X17X2) = (0707 U(X1,X2)), g(X) = (0707g(X17X2))r

and
0 0 T13(X1 s X2)
T(X) = 0 0 T23(X1,X2) .
T13(X1,X2) T23(X1,X2) 0
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Equivalent reformulation

IZ° Find U:Q — R - the Airy stress function such that

1 1
Tis=—=U, and To3= _EUXI'

V2
= divT = 0 is fulfilled.
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Equivalent reformulation

IZ° Find U:Q — R - the Airy stress function such that

1 1
Tis = ﬁsz and T3 = —\ﬁun-
= divT = 0 is fulfilled.
55" U must satisfy (e = T )
(1+[T2)5
(YY) -0 in Q,
1+ VU
Ugni — Uyna =V2g on 8Q.
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Equivalent reformulation

IZ° Find U:Q — R - the Airy stress function such that

1 1
Tis = ﬁsz and T3 = _EUXI'
= divT = 0 is fulfilled.
55" U must satisfy (e = T )
(1+[T2)5
(YY) -0 in Q,
1+ VU
Ugni — Uyna =V2g on 8Q.

I Dirichlet problem, indeed assume that 99 is parametrized by
7(s) = (71(s),72(s))- Then

U(v(s0)) = a0 + V2 / * gV (4 (9))2 + (4(5))2ds = Un(x),
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Consequences for U

55" U must satisfy

div <VU> =0 inQ, U= Uy on 99.

(1+|VU]?):
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Consequences for U

55" U must satisfy

div ViUl =0 inQ, U= Uy on0Q.
(1+|VU|?)=

® 2 =2 - the minimal surface equation:
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Consequences for U

55" U must satisfy

div ViUl =0 inQ, U= Uy on 09.
(1+1[VU]F)=

® 2 =2 - the minimal surface equation: for convex domains and smooth
data the classical solution exists, for non-convex domains the weak
solution does not exist in general, the proper function space is BV, the
boundary value is not attained
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Consequences for U

55" U must satisfy

div ViUl =0 inQ, U= Uy on 09.
(1+1[VU]F)=

® 2 =2 - the minimal surface equation: for convex domains and smooth
data the classical solution exists, for non-convex domains the weak
solution does not exist in general, the proper function space is BV, the
boundary value is not attained

8 5 =2 what does it say for “physics"?
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Consequences for U

55" U must satisfy

v ViUl =0 inQ, U= Uy on 09.
(1+|VU|?)=

® 2 =2 - the minimal surface equation: for convex domains and smooth
data the classical solution exists, for non-convex domains the weak
solution does not exist in general, the proper function space is BV, the
boundary value is not attained

8 5 =2 what does it say for “physics"? the solution T must be of the
prescribed form due to the uniqueness, g cannot be prescribed arbitrarily
to get the weak solution, if g attains some critical value something very
“bad" happens - either the model is not valid (there is not deformation for
large g) or the body is no more continuum
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Consequences for U

55" U must satisfy

v ViUl =0 inQ, U= Uy on 09.
(1+|VU|?)=

® 2 =2 - the minimal surface equation: for convex domains and smooth
data the classical solution exists, for non-convex domains the weak
solution does not exist in general, the proper function space is BV, the
boundary value is not attained

8 5 =2 what does it say for “physics"? the solution T must be of the
prescribed form due to the uniqueness, g cannot be prescribed arbitrarily
to get the weak solution, if g attains some critical value something very
“bad" happens - either the model is not valid (there is not deformation for
large g) or the body is no more continuum

% a # 2 we cannot use all the geometrical machinery, but on convex
domains we can prove |[VU| < C
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Consequences for U

55" U must satisfy
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v ViUl =0 inQ, U= Uy on 09.
(1+|VU|?)=

a = 2 - the minimal surface equation: for convex domains and smooth
data the classical solution exists, for non-convex domains the weak
solution does not exist in general, the proper function space is BV, the
boundary value is not attained

a = 2 what does it say for “physics"? the solution T must be of the
prescribed form due to the uniqueness, g cannot be prescribed arbitrarily
to get the weak solution, if g attains some critical value something very
“bad" happens - either the model is not valid (there is not deformation for
large g) or the body is no more continuum

a # 2 we cannot use all the geometrical machinery, but on convex
domains we can prove |[VU| < C

a < 2 we can localize and prove VU € Ly,
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Consequences for U

=

®
2
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U must satisfy

v ViUl =0 inQ, U= Uy on 09.
(1+|VU|?)=

a = 2 - the minimal surface equation: for convex domains and smooth
data the classical solution exists, for non-convex domains the weak
solution does not exist in general, the proper function space is BV, the
boundary value is not attained

a = 2 what does it say for “physics"? the solution T must be of the
prescribed form due to the uniqueness, g cannot be prescribed arbitrarily
to get the weak solution, if g attains some critical value something very
“bad" happens - either the model is not valid (there is not deformation for
large g) or the body is no more continuum

a # 2 we cannot use all the geometrical machinery, but on convex

domains we can prove |[VU| < C

oo

a < 2 we can localize and prove VU € Ly,
a € (1,2) the weak solution may not exists eg. for Q = B> \ By

on the flat part of the boundary, one can extend the solution outside
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Limiting strain - Result |

Theorem (anti-plane stress)

Let Uy be arbitrary. Then there exists unique weak solution U
provided that one of the following holds:

e Q is uniformly convex, a > 0 is arbitrary and Uy smooth.

e 2€(0,2) and 00 = U,N:1 I'; such that either I'; is uniformly
convex and Uy is smooth on ' or ['; is flat and Uy is constant
there.
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Limiting strain - Reformulation

F1 Find the weak solution
F2 Find U € W(Q) being equal to Uy on 0Q such that

/F(VU) < / F(VV)  forall (V — Up) € W (Q).
Q Q
F3 Find U € W(Q) such that

/F(VU)+/ |U—Up| g/F(VV)+/ [V—Up|  forall Ve W"(Q).
Q o Q on

F4 Find the measure T solving the original minimization problem
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Limiting strain - Reformulation

F1 Find the weak solution
F2 Find U € W(Q) being equal to Uy on 0Q such that

/F(VU) S/F(VV) for all (V — Up) € Wp'(Q).

Q Q

F3 Find U € W(Q) such that
/F(VU)+/ |U—Up| g/F(VV)+/ [V—Up|  forall Ve W"(Q).
Q o Q on

F4 Find the measure T solving the original minimization problem

|Fl& F2 = F3 — F4]
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Limiting strain - Reformulation

F1 Find the weak solution
F2 Find U € W(Q) being equal to Uy on 0Q such that

/F(VU) S/F(VV) for all (V — Up) € Wp'(Q).

Q Q

F3 Find U € W(Q) such that
/F(VU)+/ |U—Up| g/F(VV)+/ [V—Up|  forall Ve W"(Q).
Q o Q on

F4 Find the measure T solving the original minimization problem

|Fl& F2 = F3 — F4]

Theorem (anti-plane stress Il)

Let a € (0,2], Up and Q C RY be arbitrary. Then there exists unique weak
solution U € WY(Q) in the following sense

/SlF(vu)Jr/aﬂlu—UolS/QF(VVH/BQIV—UOI vV e wh(Q).
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Limiting strain - Reformulation
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F1 Find the weak solution
F2 Find U € W(Q) being equal to Uy on 0Q such that

/F(VU) g/F(VV) for all (V — Up) € Wp'(Q).

Q Q

F3 Find U € W(Q) such that
/F(VU)+/ |U—Us| g/F(VV)+/ [V—Up|  forall Ve W"(Q).
Q o Q on

F4 Find the measure T solving the original minimization problem

|Fl& F2 = F3 — F4]

Theorem (anti-plane stress Il)

Let a € (0,2], Up and Q C RY be arbitrary. Then there exists unique weak
solution U € WY(Q) in the following sense

/QF(VU)+/M|U—U0|S/QF(VVH/aQIV—Uol vV e wh(Q).

Defining T13 := U, and Ta3 := —U,, we have divT =0 but Tn =g is not
attained but we have “the best approximation".

M. Bulicek Strain-limiting models



Consequences for solution in general case

e Bildhauer & Fuchs (2001-): General theory for 1-like Laplacian for
a € (0,2] - i.e., smoothness locally in Q, the trace may not be attained;
for convex domains everything is nice up to the boundary
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Consequences for solution in general case

e Bildhauer & Fuchs (2001-): General theory for 1-like Laplacian for
a € (0,2] - i.e., smoothness locally in Q, the trace may not be attained;
for convex domains everything is nice up to the boundary

e We cannot solve the problem in general for the Neumann data -
counterexamples

® Maybe we can avoid to be T measure in the interior of Q

Strain-limiting models
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Consequences for solution in general case
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a € (0,2] - i.e., smoothness locally in Q, the trace may not be attained;
for convex domains everything is nice up to the boundary

e We cannot solve the problem in general for the Neumann data -
counterexamples

® Maybe we can avoid to be T measure in the interior of Q

® Maybe for a € (0,1) the theory can be built up to the boundary

Liblice 2014

M. Bulicek Strain-limiting models



Consequences for solution in general case

e Bildhauer & Fuchs (2001-): General theory for 1-like Laplacian for
a € (0,2] - i.e., smoothness locally in Q, the trace may not be attained;
for convex domains everything is nice up to the boundary

e We cannot solve the problem in general for the Neumann data -
counterexamples

® Maybe we can avoid to be T measure in the interior of Q
® Maybe for a € (0,1) the theory can be built up to the boundary

e Maybe the Dirichlet problem is easier to handle - we do not need the
estimates up to the boundary
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Consequences for solution in general case

e Bildhauer & Fuchs (2001-): General theory for 1-like Laplacian for
a € (0,2] - i.e., smoothness locally in Q, the trace may not be attained;
for convex domains everything is nice up to the boundary

e We cannot solve the problem in general for the Neumann data -
counterexamples

® Maybe we can avoid to be T measure in the interior of Q
® Maybe for a € (0,1) the theory can be built up to the boundary

e Maybe the Dirichlet problem is easier to handle - we do not need the
estimates up to the boundary

® But in all cases we need to face the problem with symmetric gradient
contrary to the full gradient as in Bildhauer & Fuchs

® |s really the assumption a < 2 essential? Counterexamples only for
non-smooth data
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Limiting strain model & Theorems

Theorem (Dirichlet data)

Let Q C RY, A1 fulfil (M) and A3 satisfy (UM) with a < L. Then there exists
a weak solution (T,u). Moreover, u is unique. Further, if either A1 or \» are
strictly monotone then also T is unique.

= Proper approximation (p-Laplacian)

I Uniform L! estimates
I Uniform LLt9 estimates by showing that T € AN for some a € (0,1).

loc

Theorem (Periodic data)

Let A1 2 fulfil (M) and A3 satisfy (UM) with a < 2. Then there exists a weak
solution (T, u). Moreover, u is unique. Further, if either Ay or Xz are strictly
monotone then also T is unique.

I55" The same as before but no problem with localization = better bound
for a
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Limiting strain model & Theorems

Theorem (Periodic data Il)

Let A1 fulfil (M) and A3 satisfy (UM) with a > 0. Then there exists a (T, u)
fulfilling the implicit relation a.e. such that

o] VT 2

) PPN

Tel', ecl
(1+[T)=

the energy inequality holds, i.e.,

/QT-e(u)S/Qf~u,

and fulfill the renormalized equation, i.e., for all smooth periodic v and all
g € D(R) there holds

/Q T (( TV +v @ Ve(T)) = / g(T)f -v.

Moreover, if T € L*™ the the solution is weak.
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Limiting strain model & Surprising Theorems

Theorem (Limiting strain - Dirichlet data)

Consider Q C RY with continuous boundary and smooth f. Then for arbitrary
a > 0 there exists unique T € L*(Q;R?*?) and u € W' (2 RY) such that
e(u) € L°°(; R¥™9) solving for all v € D(Q; R?)
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Limiting strain model & Surprising Theorems

Theorem (Limiting strain - Dirichlet data)

Consider Q C RY with continuous boundary and smooth f. Then for arbitrary
a > 0 there exists unique T € L*(Q;R?*?) and u € W' (2 RY) such that
e(u) € L°°(; R¥™9) solving for all v € D(Q; R?)

Theorem (Plasticity-like models - Neumann data)

Consider Q C RY with Lipschitz boundary and smooth g. Moreover, assume
that there exists Tq fulfilling Ton = g on 0K such that | To||x < 1 and

div To = 0 (necessary compatibility condition). Then for arbitrary a > 0 there
exists unique T € L°(;R?*Y) and u € LY (Q;RY) such that

e(u) € L*(Q;RI*?) solving for all v € C*(; RY)

/QT-:-:(V):/BQg-v, T:m.
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