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The talk is based on the following results

+ M. Bulí£ek, J. Málek, K. R. Rajagopal and J. R. Walton:

Existence of solutions for the anti-plane stress for a new
class of "strain-limiting" elastic bodies, submitted

+ M. Bulí£ek, J. Málek and E. Süli: Analysis and
approximation of a strain-limiting nonlinear elastic
model, Mathematics and Mechanics of Solids, 2014

+ M. Bulí£ek, J. Málek, K. R. Rajagopal and E. Süli: On elastic
solids with limiting small strain: modelling and analysis,
EMS Surveys in Mathematical Sciences, 2014.

+ L. Beck, M. Bulí£ek, J. Málek and E. Süli: Analysis and
approximation of a strain-limiting nonlinear elastic model
II, in preparation
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Linearized nonlinear elasticity

We consider the elastic deformation of the body Ω ⊂ Rd with Γ1 ∩ Γ2 = ∅ and
Γ1 ∪ Γ2 = ∂Ω described by

−divT = f in Ω,

u = u0 on Γ1, and Tn = g on Γ2.
(El)

where u is displacement, T the Cauchy stress, f the external body forces, g the
external surface forces and ε is the linearized strain tensor, i.e.,

ε :=
1

2
(∇u + (∇u)T )

+ The implicit relation between the Cauchy stress and the strain

G(T, ε) = 0

+ The key assumption in linearized elasticity

|ε| � 1 . (A)
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The linear models should not be used

The standard linear models immediately may lead to the contradiction:

+ Consider Ω a domain with non-convex corner at x0, Γ = ∂Ω, u0 = 0 and
G of the form

T = 2µε.

+ There exists a smooth f such that the solution (T, ε) ful�ls

|T(x)| = |ε(x)| x→x0→ ∞.

6 contradicts the assumption of the model (A) =⇒ not valid model at
least in the neighborhood of x0.

, But there is material behavior that suggests

|T(x)| x→x0→ ∞ BUT |ε(x)| � 1.
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Limiting strain model

, Consider implicit models which a priori guarantees |ε| ≤ K :

ε = λ1(| trT|)(trT)I + λ2(|T|)T + λ3(|Td |)Td , (L-S)

where

Td := T− trT

d
, |λ1,2,3(s)| ≤ K

3(s + 1)
.

, A priori estimates: from (L-S)

|ε| ≤ K .

From the equation, we may hope that∫
Ω

λ1(| trT|)| trT|2 + λ2(|T|)|T|2 + λ3(|Td |)|Td |2 =

∫
Ω

T · ε ≤ C .

+ The reasonable assumptions (∞-Laplacian-like problem):

λ1,2,3(s) ≥ 0,

λ3(s) ≥ α

s + 1
.

 =⇒
∫

Ω

|Td | ≤ C .
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Limiting strain model & monotonicity

+ Apriori estimates for Td in L1

+ For the convergence at least some monotonicity needed, the minimal
assumption:

0 ≤ d

ds
(λ1,2,3(s)s). (M)

+ If we would have an approximative sequence ful�lling∫
Ω0

|(Td)n|1+δ ≤ C(Ω0) for all Ω0 ⊂⊂ Ω,

=⇒ Tn ⇀ T weakly in L1loc .

then using (M) we can identify the limit.

, Assume kind of uniform monotonicity, i.e., for some α, a,K > 0

α

(K + s)a
≤ d

dt
(λ3(s)s) (UM)

for example

λ3(s) :=
1

(1 + sa)
1

a

.
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Limiting strain model via dual formulation &

Theorem

Existence via the dual formulation (very similar to plasticity):
Find the (convex) potential F : Rd×d → R+ such that

∂F (T)

∂Tij
=

Tij

(1 + |T|a)
1

a

(= εij)

and de�ne the class of admissible stresses as

S := {T ∈ L1(Ω); −divT = f, Tn = g on Γ1}.

To �nd a weak solution to the original problem is equivalent to �nd T ∈ S
ful�lling ∫

Ω

F (T) ≤
∫

Ω

F (T̃) for all T̃ ∈ S.

Theorem
Let Ω ⊂ Rd . There exists a minimizer T to the potential F , but in the space of
measures.
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We know everything that means we know nothing

• We solved the problem completely. It has unique solution!

• What does it mean that the Cauchy stress is a measure?

• Can we reconstruct ε and also u in a unique way?

• Is there any in�uence of the smoothness of data?

• Is there any in�uence of the shape of Ω?

• Is there any in�uence of the parameter a of the model?

(smaller a means better convexity)

• Can we do something better �inside" Ω?

• Is there any chance to avoid measures completely and to solve

the original problem?
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Limiting strain model - anti-plane stress

We consider the following special geometry

Ω

g

g

ν

Figure: Anti-plane stress geometry.

and we look for the solution in the following from:

u = u(x1, x2) = (0, 0, u(x1, x2)), g(x) = (0, 0, g(x1, x2)),

and

T(x) =

 0 0 T13(x1, x2)
0 0 T23(x1, x2)

T13(x1, x2) T23(x1, x2) 0

 .
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Equivalent reformulation

+ Find U : Ω→ R - the Airy stress function such that

T13 =
1√
2
Ux2 and T23 = − 1√

2
Ux1 .

=⇒ divT = 0 is ful�lled.

+ U must satisfy (ε = T

(1+|T|a)
1

a
)

div

(
∇U

(1 + |∇U|a)
1

a

)
= 0 in Ω,

Ux2n1 − Ux1n2 =
√
2g on ∂Ω.

+ Dirichlet problem, indeed assume that ∂Ω is parametrized by
γ(s) = (γ1(s), γ2(s)). Then

U(γ(s0)) = a0 +
√
2

∫ s0

0

g(γ(s))
√

(γ
′
1
(s))2 + (γ

′
2
(s))2ds =: U0(x).
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Consequences for U

+ U must satisfy

div

(
∇U

(1 + |∇U|a)
1

a

)
= 0 in Ω, U = U0 on ∂Ω.

6 a = 2 - the minimal surface equation: for convex domains and smooth
data the classical solution exists, for non-convex domains the weak
solution does not exist in general, the proper function space is BV , the
boundary value is not attained

6 a = 2 what does it say for �physics"? the solution T must be of the
prescribed form due to the uniqueness, g cannot be prescribed arbitrarily
to get the weak solution, if g attains some critical value something very
�bad" happens - either the model is not valid (there is not deformation for
large g) or the body is no more continuum

, a 6= 2 we cannot use all the geometrical machinery, but on convex
domains we can prove |∇U| ≤ C

, a ≤ 2 we can localize and prove ∇U ∈ L∞loc
6 a ∈ (1, 2) the weak solution may not exists eg. for Ω = B2 \ B1

, on the �at part of the boundary, one can extend the solution outside
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Limiting strain - Result I

Theorem (anti-plane stress)

Let U0 be arbitrary. Then there exists unique weak solution U
provided that one of the following holds:

• Ω is uniformly convex, a > 0 is arbitrary and U0 smooth.

• a ∈ (0, 2) and ∂Ω =
⋃N

i=1 Γi such that either Γi is uniformly

convex and U0 is smooth on Γi or Γi is �at and U0 is constant

there.
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Limiting strain - Reformulation

F1 Find the weak solution

F2 Find U ∈W 1,1(Ω) being equal to U0 on ∂Ω such that∫
Ω

F (∇U) ≤
∫

Ω

F (∇V ) for all (V − U0) ∈W 1,1
0

(Ω).

F3 Find U ∈W 1,1(Ω) such that∫
Ω

F (∇U)+

∫
∂Ω

|U−U0| ≤
∫

Ω

F (∇V )+

∫
∂Ω

|V−U0| for all V ∈W 1,1(Ω).

F4 Find the measure T solving the original minimization problem

F1⇔ F2 =⇒ F3 =⇒ F4

Theorem (anti-plane stress II)

Let a ∈ (0, 2], U0 and Ω ⊂ Rd be arbitrary. Then there exists unique weak
solution U ∈W 1,1(Ω) in the following sense∫

Ω

F (∇U) +

∫
∂Ω

|U − U0| ≤
∫

Ω

F (∇V ) +

∫
∂Ω

|V − U0| ∀V ∈W 1,1(Ω).

De�ning T13 := Ux2 and T23 := −Ux1 we have divT = 0 but Tn = g is not
attained but we have �the best approximation".
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Consequences for solution in general case

• Bildhauer & Fuchs (2001�): General theory for 1-like Laplacian for
a ∈ (0, 2] - i.e., smoothness locally in Ω, the trace may not be attained;
for convex domains everything is nice up to the boundary

• We cannot solve the problem in general for the Neumann data -
counterexamples

• Maybe we can avoid to be T measure in the interior of Ω

• Maybe for a ∈ (0, 1) the theory can be built up to the boundary

• Maybe the Dirichlet problem is easier to handle - we do not need the
estimates up to the boundary

• But in all cases we need to face the problem with symmetric gradient
contrary to the full gradient as in Bildhauer & Fuchs

• Is really the assumption a ≤ 2 essential? Counterexamples only for
non-smooth data
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Limiting strain model & Theorems

Theorem (Dirichlet data)

Let Ω ⊂ Rd , λ1,2 ful�l (M) and λ3 satisfy (UM) with a < 1

d
. Then there exists

a weak solution (T, u). Moreover, u is unique. Further, if either λ1 or λ2 are
strictly monotone then also T is unique.

+ Proper approximation (p-Laplacian)

+ Uniform L1 estimates

+ Uniform L1+δ
loc estimates by showing that T ∈ Nα,1 for some α ∈ (0, 1).

Theorem (Periodic data)

Let λ1,2 ful�l (M) and λ3 satisfy (UM) with a < 2

d
. Then there exists a weak

solution (T, u). Moreover, u is unique. Further, if either λ1 or λ2 are strictly
monotone then also T is unique.

+ The same as before but no problem with localization =⇒ better bound
for a
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Limiting strain model & Theorems

Theorem (Periodic data II)

Let λ1,2 ful�l (M) and λ3 satisfy (UM) with a > 0. Then there exists a (T, u)
ful�lling the implicit relation a.e. such that

T ∈ L1, ε ∈ L∞,
∇T

(1 + |T|) a+1
2

∈ L2

the energy inequality holds, i.e.,∫
Ω

T · ε(u) ≤
∫

Ω

f · u,

and ful�ll the renormalized equation, i.e., for all smooth periodic v and all
g ∈ D(R) there holds∫

Ω

T · (g(|T|)∇v + v ⊗∇g(|T|)) =

∫
Ω

g(|T|)f · v.

Moreover, if T ∈ La+1 the the solution is weak.
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Limiting strain model & Surprising Theorems

Theorem (Limiting strain - Dirichlet data)

Consider Ω ⊂ Rd with continuous boundary and smooth f. Then for arbitrary
a > 0 there exists unique T ∈ L1(Ω;Rd×d) and u ∈W 1,1

0
(Ω;Rd) such that

ε(u) ∈ L∞(Ω;Rd×d) solving for all v ∈ D(Ω;Rd)∫
Ω

T · ε(v) =

∫
Ω

f · v, ε(u) =
T

(1 + |T|a)
1

a

.

Theorem (Plasticity-like models - Neumann data)

Consider Ω ⊂ Rd with Lipschitz boundary and smooth g. Moreover, assume
that there exists T0 ful�lling T0n = g on ∂Ω such that ‖T0‖∞ < 1 and
divT0 = 0 (necessary compatibility condition). Then for arbitrary a > 0 there

exists unique T ∈ L∞(Ω;Rd×d) and u ∈ Ld′
0 (Ω;Rd) such that

ε(u) ∈ L1(Ω;Rd×d) solving for all v ∈ C∞(Ω;Rd)∫
Ω

T · ε(v) =

∫
∂Ω

g · v, T =
ε

(1 + |ε|a)
1

a

.
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