MOdelling REvisited + MOdel REduction ERC-CZ project LL1202 - MORE

Analysis of strain-limiting models in solid mechanics

Miroslav Bulíček

Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague

1/17

The talk is based on the following results

- M. Bulíček, J. Málek, K. R. Rajagopal and J. R. Walton: Existence of solutions for the anti-plane stress for a new class of "strain-limiting" elastic bodies, submitted
- M. Bulíček, J. Málek and E. Süli: Analysis and approximation of a strain-limiting nonlinear elastic model, Mathematics and Mechanics of Solids, 2014
- M. Bulíček, J. Málek, K. R. Rajagopal and E. Süli: On elastic solids with limiting small strain: modelling and analysis, EMS Surveys in Mathematical Sciences, 2014.
- L. Beck, M. Bulíček, J. Málek and E. Süli: Analysis and approximation of a strain-limiting nonlinear elastic model II, in preparation

Linearized nonlinear elasticity

We consider the elastic deformation of the body $\Omega \subset \mathbb{R}^d$ with $\Gamma_1 \cap \Gamma_2 = \emptyset$ and $\overline{\Gamma_1 \cup \Gamma_2} = \partial \Omega$ described by

$$\begin{split} -\operatorname{div} \boldsymbol{\mathsf{T}} &= \boldsymbol{\mathsf{f}} & \quad \operatorname{in} \, \Omega, \\ \boldsymbol{\mathsf{u}} &= \boldsymbol{\mathsf{u}}_0 & \quad \operatorname{on} \, \boldsymbol{\mathsf{\Gamma}}_1, & \quad \operatorname{and} & \quad \boldsymbol{\mathsf{Tn}} &= \boldsymbol{\mathsf{g}} \quad \operatorname{on} \, \boldsymbol{\mathsf{\Gamma}}_2. \end{split} \tag{E1}$$

where \mathbf{u} is displacement, \mathbf{T} the Cauchy stress, \mathbf{f} the external body forces, \mathbf{g} the external surface forces and $\boldsymbol{\varepsilon}$ is the linearized strain tensor, i.e.,

$$oldsymbol{arepsilon} arepsilon := rac{1}{2} (
abla \mathbf{u} + (
abla \mathbf{u})^T)$$

Linearized nonlinear elasticity

We consider the elastic deformation of the body $\Omega\subset\mathbb{R}^d$ with $\Gamma_1\cap\Gamma_2=\emptyset$ and $\overline{\Gamma_1\cup\Gamma_2}=\partial\Omega$ described by

$$\begin{split} -\operatorname{div} \textbf{T} &= \textbf{f} & \quad \operatorname{in} \ \Omega, \\ \textbf{u} &= \textbf{u}_0 & \quad \operatorname{on} \ \Gamma_1, & \quad \operatorname{and} & \quad \textbf{Tn} &= \textbf{g} \quad \operatorname{on} \ \Gamma_2. \end{split} \tag{EI}$$

where \mathbf{u} is displacement, \mathbf{T} the Cauchy stress, \mathbf{f} the external body forces, \mathbf{g} the external surface forces and $\boldsymbol{\varepsilon}$ is the linearized strain tensor, i.e.,

$$oldsymbol{arepsilon} arepsilon := rac{1}{2} (
abla \mathbf{u} + (
abla \mathbf{u})^T)$$

The implicit relation between the Cauchy stress and the strain

$$\mathsf{G}(\mathsf{T},arepsilon)=\mathsf{0}$$

Linearized nonlinear elasticity

We consider the elastic deformation of the body $\Omega \subset \mathbb{R}^d$ with $\Gamma_1 \cap \Gamma_2 = \emptyset$ and $\overline{\Gamma_1 \cup \Gamma_2} = \partial \Omega$ described by

$$\begin{split} -\operatorname{div} \textbf{T} &= \textbf{f} & \quad \operatorname{in} \ \Omega, \\ \textbf{u} &= \textbf{u}_0 & \quad \operatorname{on} \ \Gamma_1, & \quad \operatorname{and} & \quad \textbf{Tn} &= \textbf{g} \quad \operatorname{on} \ \Gamma_2. \end{split} \tag{EI}$$

where \mathbf{u} is displacement, \mathbf{T} the Cauchy stress, \mathbf{f} the external body forces, \mathbf{g} the external surface forces and $\boldsymbol{\varepsilon}$ is the linearized strain tensor, i.e.,

$$oldsymbol{arepsilon} oldsymbol{arepsilon} := rac{1}{2} (
abla \mathbf{u} + (
abla \mathbf{u})^{ au})$$

The implicit relation between the Cauchy stress and the strain

$$\mathsf{G}(\mathsf{T},\varepsilon)=\mathbf{0}$$

The key assumption in linearized elasticity

$$|\varepsilon| \ll 1$$
 (A)

/17

The standard linear models immediately may lead to the contradiction:

The standard linear models immediately may lead to the contradiction:

Consider Ω a domain with non-convex corner at x_0 , $\Gamma=\partial\Omega,$ $\mathbf{u}_0=\mathbf{0}$ and \mathbf{G} of the form

$$\mathbf{T}=2\mu\mathbf{\varepsilon}.$$

The standard linear models immediately may lead to the contradiction:

$$T=2\mu\varepsilon$$
.

There exists a smooth f such that the solution (T, ε) fulfils

$$|\mathsf{T}(x)| = |\varepsilon(x)| \stackrel{x \to x_0}{\to} \infty.$$

The standard linear models immediately may lead to the contradiction:

Consider Ω a domain with non-convex corner at x_0 , $\Gamma=\partial\Omega,$ $\mathbf{u}_0=\mathbf{0}$ and \mathbf{G} of the form

$$T = 2\mu\varepsilon$$
.

There exists a smooth **f** such that the solution $(\mathsf{T}, \varepsilon)$ fulfils

$$|\mathsf{T}(x)| = |\varepsilon(x)| \stackrel{x \to x_0}{\to} \infty.$$

 \star contradicts the assumption of the model (A) \implies not valid model at least in the neighborhood of x_0 .

The standard linear models immediately may lead to the contradiction:

Consider Ω a domain with non-convex corner at x_0 , $\Gamma=\partial\Omega$, $\mathbf{u}_0=\mathbf{0}$ and \mathbf{G} of the form

$$T=2\mu\varepsilon$$
.

There exists a smooth **f** such that the solution (T, ε) fulfils

$$|\mathbf{T}(x)| = |\varepsilon(x)| \stackrel{x \to x_0}{\to} \infty.$$

- **x** contradicts the assumption of the model (A) \implies not valid model at least in the neighborhood of x_0 .
- But there is material behavior that suggests

$$|\mathsf{T}(x)| \stackrel{x \to x_0}{ o} \infty$$
 BUT $|\varepsilon(x)| \ll 1$.

Consider implicit models which a priori guarantees $|arepsilon| \leq K$:

$$\boxed{\varepsilon = \lambda_1(|\operatorname{tr} \mathsf{T}|)(\operatorname{tr} \mathsf{T})\mathsf{I} + \lambda_2(|\mathsf{T}|)\mathsf{T} + \lambda_3(|\mathsf{T}^d|)\mathsf{T}^d}, \tag{L-S}$$

where

$$\mathsf{T}^d := \mathsf{T} - rac{\operatorname{tr} \mathsf{T}}{d}, \qquad |\lambda_{1,2,3}(s)| \leq rac{\mathcal{K}}{3(s+1)}.$$

Consider implicit models which a priori guarantees $|\varepsilon| \le K$:

$$\boxed{\varepsilon = \lambda_1(|\operatorname{tr} \mathsf{T}|)(\operatorname{tr} \mathsf{T})\mathsf{I} + \lambda_2(|\mathsf{T}|)\mathsf{T} + \lambda_3(|\mathsf{T}^d|)\mathsf{T}^d}, \tag{L-S}$$

where

$$\mathsf{T}^d := \mathsf{T} - rac{\operatorname{tr} \mathsf{T}}{d}, \qquad |\lambda_{1,2,3}(s)| \leq rac{\mathcal{K}}{3(s+1)}.$$

A priori estimates: from (L-S)

$$|\varepsilon| \leq K$$
.

Consider implicit models which a priori guarantees $|\varepsilon| \le K$:

$$\boxed{\varepsilon = \lambda_1(|\operatorname{tr} \mathbf{T}|)(\operatorname{tr} \mathbf{T})\mathsf{I} + \lambda_2(|\mathbf{T}|)\mathbf{T} + \lambda_3(|\mathbf{T}^d|)\mathbf{T}^d}, \tag{L-S}$$

where

$$\mathsf{T}^d := \mathsf{T} - rac{\operatorname{tr} \mathsf{T}}{d}, \qquad |\lambda_{1,2,3}(s)| \leq rac{\mathcal{K}}{3(s+1)}.$$

A priori estimates: from (L-S)

$$|\varepsilon| \leq K$$
.

From the equation, we may hope that

$$\int_{\Omega} \lambda_1(|\operatorname{tr} \mathsf{T}|)|\operatorname{tr} \mathsf{T}|^2 + \lambda_2(|\mathsf{T}|)|\mathsf{T}|^2 + \lambda_3(|\mathsf{T}^d|)|\mathsf{T}^d|^2 = \int_{\Omega} \mathsf{T} \cdot \varepsilon \leq C.$$

Consider implicit models which a priori guarantees $|\varepsilon| \le K$:

$$\boxed{\varepsilon = \lambda_1(|\operatorname{tr} \mathsf{T}|)(\operatorname{tr} \mathsf{T})\mathsf{I} + \lambda_2(|\mathsf{T}|)\mathsf{T} + \lambda_3(|\mathsf{T}^d|)\mathsf{T}^d}, \tag{L-S}$$

where

$$\mathsf{T}^d := \mathsf{T} - rac{\operatorname{tr} \mathsf{T}}{d}, \qquad |\lambda_{1,2,3}(s)| \leq rac{\mathcal{K}}{3(s+1)}.$$

A priori estimates: from (L-S)

$$|\varepsilon| \leq K$$
.

From the equation, we may hope that

$$\int_{\Omega} \lambda_1(|\operatorname{tr} \mathsf{T}|)|\operatorname{tr} \mathsf{T}|^2 + \lambda_2(|\mathsf{T}|)|\mathsf{T}|^2 + \lambda_3(|\mathsf{T}^d|)|\mathsf{T}^d|^2 = \int_{\Omega} \mathsf{T} \cdot \varepsilon \leq C.$$

The reasonable assumptions (∞ -Laplacian-like problem):

$$\left. egin{aligned} \lambda_{1,2,3}(s) &\geq 0, \ \lambda_{3}(s) &\geq rac{lpha}{s+1}. \end{aligned}
ight. \implies \int_{\Omega} |\mathbf{T}^{d}| \leq C.$$

Limiting strain model & monotonicity

- Apriori estimates for T^d in L^1
- For the convergence at least some monotonicity needed, the minimal assumption:

$$0 \le \frac{d}{ds}(\lambda_{1,2,3}(s)s). \tag{M}$$

If we would have an approximative sequence fulfilling

$$\begin{split} &\int_{\Omega_{\mathbf{0}}} \left| (\mathsf{T}^d)^n \right|^{1+\delta} \leq C(\Omega_{\mathbf{0}}) & \text{ for all } \Omega_{\mathbf{0}} \subset \subset \Omega, \\ & \Longrightarrow \mathsf{T}^n \rightharpoonup \mathsf{T} & \text{ weakly in } L^1_{loc}. \end{split}$$

then using (M) we can identify the limit.

 $\stackrel{f \&}{b}$ Assume kind of uniform monotonicity, i.e., for some lpha, a, K>0

$$\frac{\alpha}{(K+s)^2} \le \frac{d}{dt}(\lambda_3(s)s) \tag{UM}$$

for example

$$\boxed{\lambda_3(s) := \frac{1}{(1+s^a)^{\frac{1}{a}}}}.$$

Limiting strain model via dual formulation & Theorem

/17

Limiting strain model via dual formulation & Theorem

Existence via the dual formulation (very similar to plasticity): Find the (convex) potential $F: \mathbb{R}^{d \times d} \to \mathbb{R}_+$ such that

$$\frac{\partial F(\mathsf{T})}{\partial \mathsf{T}_{ij}} = \frac{\mathsf{T}_{ij}}{(1+|\mathsf{T}|^a)^{\frac{1}{a}}} (=\varepsilon_{ij})$$

and define the class of admissible stresses as

$$S := \{ T \in L^1(\Omega); -\operatorname{div} T = f, Tn = g \text{ on } \Gamma_1 \}.$$

To find a weak solution to the original problem is equivalent to find $\mathsf{T} \in \mathcal{S}$ fulfilling

$$\int_{\Omega} F(\mathsf{T}) \leq \int_{\Omega} F(\tilde{\mathsf{T}}) \qquad ext{ for all } \tilde{\mathsf{T}} \in \mathcal{S}.$$

Limiting strain model via dual formulation & Theorem

Existence via the dual formulation (very similar to plasticity): Find the (convex) potential $F: \mathbb{R}^{d \times d} \to \mathbb{R}_+$ such that

$$\frac{\partial F(\mathsf{T})}{\partial \mathsf{T}_{ij}} = \frac{\mathsf{T}_{ij}}{(1+|\mathsf{T}|^a)^{\frac{1}{a}}} (=\varepsilon_{ij})$$

and define the class of admissible stresses as

$$S := \{ T \in L^1(\Omega); -\operatorname{div} T = f, Tn = g \text{ on } \Gamma_1 \}.$$

To find a weak solution to the original problem is equivalent to find $T \in \mathcal{S}$ fulfilling

$$\int_{\Omega} F(\mathsf{T}) \leq \int_{\Omega} F(\tilde{\mathsf{T}}) \qquad ext{ for all } \tilde{\mathsf{T}} \in \mathcal{S}.$$

Theorem

Let $\Omega \subset \mathbb{R}^d$. There exists a minimizer **T** to the potential F, but in the space of measures.

We solved the problem completely. It has unique solution!

⁸/₁₇

- We solved the problem completely. It has unique solution!
- What does it mean that the Cauchy stress is a measure?

- We solved the problem completely. It has unique solution!
- What does it mean that the Cauchy stress is a measure?
- Can we reconstruct ε and also **u** in a unique way?

- We solved the problem completely. It has unique solution!
- What does it mean that the Cauchy stress is a measure?
- Can we reconstruct ε and also \mathbf{u} in a unique way?
- Is there any influence of the smoothness of data?
- Is there any influence of the shape of Ω ?
- Is there any influence of the parameter a of the model? (smaller a means better convexity)

- We solved the problem completely. It has unique solution!
- What does it mean that the Cauchy stress is a measure?
- Can we reconstruct ε and also ${\bf u}$ in a unique way?
- Is there any influence of the smoothness of data?
- Is there any influence of the shape of Ω ?
- Is there any influence of the parameter a of the model? (smaller a means better convexity)
- Can we do something better "inside" Ω ?

- We solved the problem completely. It has unique solution!
- What does it mean that the Cauchy stress is a measure?
- Can we reconstruct ε and also ${\bf u}$ in a unique way?
- Is there any influence of the smoothness of data?
- Is there any influence of the shape of Ω ?
- Is there any influence of the parameter a of the model? (smaller a means better convexity)
- Can we do something better "inside" Ω ?
- Is there any chance to avoid measures completely and to solve the original problem?

Limiting strain model - anti-plane stress

We consider the following special geometry

Figure: Anti-plane stress geometry.

and we look for the solution in the following from:

$$\mathbf{u} = \mathbf{u}(x_1, x_2) = (0, 0, u(x_1, x_2)), \quad \mathbf{g}(x) = (0, 0, g(x_1, x_2)),$$

and

$$\mathbf{T}(x) = \begin{pmatrix} 0 & 0 & T_{13}(x_1, x_2) \\ 0 & 0 & T_{23}(x_1, x_2) \\ T_{13}(x_1, x_2) & T_{23}(x_1, x_2) & 0 \end{pmatrix}.$$

Equivalent reformulation

Find $U:\Omega o \mathbb{R}$ - the Airy stress function such that

$$T_{13} = rac{1}{\sqrt{2}} U_{x_2}$$
 and $T_{23} = -rac{1}{\sqrt{2}} U_{x_1}$.

 $\implies \operatorname{div} \mathbf{T} = \mathbf{0}$ is fulfilled.

Equivalent reformulation

Find $U:\Omega o \mathbb{R}$ - the Airy stress function such that

$$T_{13} = rac{1}{\sqrt{2}} \emph{U}_{x_2} \quad ext{and} \quad T_{23} = -rac{1}{\sqrt{2}} \emph{U}_{x_1}.$$

 $\implies \operatorname{div} \mathbf{T} = \mathbf{0}$ is fulfilled.

$$U$$
 must satisfy $(arepsilon = rac{\mathsf{T}}{(1+|\mathsf{T}|^a)^{rac{1}{a}}})$

$$\begin{split} \operatorname{div}\left(\frac{\nabla \textit{U}}{(1+|\nabla \textit{U}|^{a})^{\frac{1}{a}}}\right) &= 0 & \text{in } \Omega, \\ \textit{U}_{x_{2}}\mathbf{n}_{1} - \textit{U}_{x_{1}}\mathbf{n}_{2} &= \sqrt{2}g & \text{on } \partial\Omega. \end{split}$$

Equivalent reformulation

Find $U:\Omega \to \mathbb{R}$ - the Airy stress function such that

$$T_{13} = rac{1}{\sqrt{2}} \emph{U}_{x_2} \quad ext{and} \quad T_{23} = -rac{1}{\sqrt{2}} \emph{U}_{x_1}.$$

 \implies div **T** = **0** is fulfilled.

U must satisfy $(arepsilon = rac{\mathsf{T}}{(1+|\mathsf{T}|^a)^{rac{1}{a}}})$

$$\begin{split} \operatorname{div}\left(\frac{\nabla \textit{U}}{(1+|\nabla \textit{U}|^a)^{\frac{1}{a}}}\right) &= 0 & \text{in } \Omega, \\ \textit{U}_{x_2} \mathbf{n}_1 - \textit{U}_{x_1} \mathbf{n}_2 &= \sqrt{2}g & \text{on } \partial \Omega. \end{split}$$

Dirichlet problem, indeed assume that $\partial\Omega$ is parametrized by $\gamma(s) = (\gamma_1(s), \gamma_2(s))$. Then

$$U(\gamma(s_0)) = a_0 + \sqrt{2} \int_0^{s_0} g(\gamma(s)) \sqrt{(\gamma_1'(s))^2 + (\gamma_2'(s))^2} ds =: U_0(x).$$

U must satisfy

$$\operatorname{div}\left(\frac{\nabla U}{(1+|\nabla U|^{2})^{\frac{1}{2}}}\right)=0\quad\text{in }\Omega,\qquad U=U_{0}\quad\text{on }\partial\Omega.$$

U must satisfy

$$\operatorname{div}\left(\frac{\nabla U}{(1+|\nabla U|^{a})^{\frac{1}{a}}}\right)=0\quad\text{in }\Omega,\qquad U=U_{0}\quad\text{on }\partial\Omega.$$

 \Rightarrow a = 2 - the minimal surface equation:

U must satisfy

$$\operatorname{div}\left(rac{
abla U}{(1+|
abla U|^{s})^{rac{1}{s}}}
ight)=0\quad ext{in }\Omega, \qquad U=U_{0}\quad ext{on }\partial\Omega.$$

lpha = 2 - the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the boundary value is not attained

U must satisfy

$$\operatorname{div}\left(rac{
abla U}{(1+|
abla U|^a)^{rac{1}{a}}}
ight)=0\quad \text{in }\Omega, \qquad U=U_0\quad \text{on }\partial\Omega.$$

- lpha = 2 the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the boundary value is not attained
- \Rightarrow a = 2 what does it say for "physics"?

 \square U must satisfy

$$\operatorname{div}\left(rac{
abla U}{(1+|
abla U|^a)^{rac{1}{a}}}
ight)=0 \quad \text{in } \Omega, \qquad U=U_0 \quad \text{on } \partial\Omega.$$

- lpha=2 the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the boundary value is not attained
- * a=2 what does it say for "physics"? the solution T must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens either the model is not valid (there is not deformation for large g) or the body is no more continuum

 \square U must satisfy

$$\operatorname{div}\left(rac{
abla U}{(1+|
abla U|^{a})^{rac{1}{a}}}
ight)=0\quad ext{in }\Omega, \qquad U=U_{0}\quad ext{on }\partial\Omega.$$

- lpha=2 the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the boundary value is not attained
- a = 2 what does it say for "physics"? the solution T must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens either the model is not valid (there is not deformation for large g) or the body is no more continuum

 \square U must satisfy

$$\operatorname{div}\left(rac{
abla U}{(1+|
abla U|^{a})^{rac{1}{a}}}
ight)=0\quad ext{in }\Omega, \qquad U=U_{0}\quad ext{on }\partial\Omega.$$

- lpha=2 the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the boundary value is not attained
- a = 2 what does it say for "physics"? the solution T must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens either the model is not valid (there is not deformation for large g) or the body is no more continuum
- $a \neq 2$ we cannot use all the geometrical machinery, but on convex domains we can prove $|\nabla U| \leq C$
- $\begin{cases} \mathcal{Y} & a \leq 2 \ ext{we can localize and prove} \
 abla U \in L^\infty_{loc} \end{cases}$

U must satisfy

$$\operatorname{div}\left(rac{
abla U}{(1+|
abla U|^{a})^{rac{1}{a}}}
ight)=0\quad ext{in }\Omega, \qquad U=U_{0}\quad ext{on }\partial\Omega.$$

- lpha = 2 the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the boundary value is not attained
- a = 2 what does it say for "physics"? the solution T must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens either the model is not valid (there is not deformation for large g) or the body is no more continuum
- $\delta a \neq 2$ we cannot use all the geometrical machinery, but on convex domains we can prove $|\nabla U| \leq C$
- $\emptyset \quad a \leq 2 \text{ we can localize and prove } \nabla U \in L^\infty_{loc}$
- $igspace* a \in (1,2)$ the weak solution may not exists eg. for $\Omega = B_2 \setminus B_1$
- on the flat part of the boundary, one can extend the solution outside

Limiting strain - Result I

Theorem (anti-plane stress)

Let U_0 be arbitrary. Then there exists unique weak solution U provided that one of the following holds:

- Ω is uniformly convex, a > 0 is arbitrary and U_0 smooth.
- $a \in (0,2)$ and $\partial \Omega = \bigcup_{i=1}^N \Gamma_i$ such that either Γ_i is uniformly convex and U_0 is smooth on Γ_i or Γ_i is flat and U_0 is constant there.

- F1 Find the weak solution
- **F2** Find $U \in W^{1,1}(\Omega)$ being equal to U_0 on $\partial \Omega$ such that

$$\int_{\Omega} F(\nabla U) \leq \int_{\Omega} F(\nabla V) \qquad \text{for all } (V-U_0) \in W_0^{1,1}(\Omega).$$

F3 Find $U \in W^{1,1}(\Omega)$ such that

$$\int_{\Omega} F(\nabla U) + \int_{\partial \Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial \Omega} |V - U_0| \qquad \text{for all } V \in W^{1,1}(\Omega).$$

F4 Find the measure T solving the original minimization problem

- F1 Find the weak solution
- **F2** Find $U \in W^{1,1}(\Omega)$ being equal to U_0 on $\partial\Omega$ such that

$$\int_{\Omega} F(\nabla U) \leq \int_{\Omega} F(\nabla V) \qquad \text{for all } (V-U_0) \in W_0^{1,1}(\Omega).$$

F3 Find $U \in W^{1,1}(\Omega)$ such that

$$\int_{\Omega} F(\nabla U) + \int_{\partial\Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial\Omega} |V - U_0| \qquad \text{for all } V \in W^{1,1}(\Omega).$$

F4 Find the measure T solving the original minimization problem

$$F1 \Leftrightarrow F2 \implies F3 \implies F4$$

- **F1** Find the weak solution
- **F2** Find $U \in W^{1,1}(\Omega)$ being equal to U_0 on $\partial\Omega$ such that

$$\int_{\Omega} F(\nabla U) \leq \int_{\Omega} F(\nabla V) \qquad \text{for all } (V-U_0) \in W^{1,1}_0(\Omega).$$

F3 Find $U \in W^{1,1}(\Omega)$ such that

$$\int_{\Omega} F(\nabla U) + \int_{\partial\Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial\Omega} |V - U_0| \qquad \text{for all } V \in W^{1,1}(\Omega).$$

F4 Find the measure T solving the original minimization problem

$$F1 \Leftrightarrow F2 \implies F3 \implies F4$$

Theorem (anti-plane stress II)

Let $a \in (0,2]$, U_0 and $\Omega \subset \mathbb{R}^d$ be arbitrary. Then there exists unique weak solution $U \in W^{1,1}(\Omega)$ in the following sense

$$\int_{\Omega} F(\nabla U) + \int_{\partial\Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial\Omega} |V - U_0| \qquad \forall V \in W^{1,1}(\Omega).$$

- F1 Find the weak solution
- **F2** Find $U \in W^{1,1}(\Omega)$ being equal to U_0 on $\partial\Omega$ such that

$$\int_{\Omega} F(\nabla U) \leq \int_{\Omega} F(\nabla V) \qquad \text{for all } (V-U_0) \in W_0^{1,1}(\Omega).$$

F3 Find $U \in W^{1,1}(\Omega)$ such that

$$\int_{\Omega} F(\nabla U) + \int_{\partial\Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial\Omega} |V - U_0| \qquad \text{for all } V \in W^{1,1}(\Omega).$$

F4 Find the measure T solving the original minimization problem

$$F1 \Leftrightarrow F2 \implies F3 \implies F4$$

Theorem (anti-plane stress II)

Let $a \in (0,2]$, U_0 and $\Omega \subset \mathbb{R}^d$ be arbitrary. Then there exists unique weak solution $U \in W^{1,1}(\Omega)$ in the following sense

$$\int_{\Omega} F(\nabla U) + \int_{\partial\Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial\Omega} |V - U_0| \qquad \forall V \in W^{1,1}(\Omega).$$

Defining $T_{13} := U_{x_2}$ and $T_{23} := -U_{x_1}$ we have $\operatorname{div} T = 0$ but $T_n = g$ is not attained but we have "the best approximation".

• Bildhauer & Fuchs (2001–): General theory for 1-like Laplacian for $a \in (0,2]$ - i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary

- Bildhauer & Fuchs (2001–): General theory for 1-like Laplacian for $a \in (0,2]$ i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary
- We cannot solve the problem in general for the Neumann data counterexamples
- Maybe we can avoid to be T measure in the interior of Ω

- Bildhauer & Fuchs (2001–): General theory for 1-like Laplacian for $a \in (0,2]$ i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary
- We cannot solve the problem in general for the Neumann datacounterexamples
- Maybe we can avoid to be ${f T}$ measure in the interior of Ω
- ullet Maybe for $a\in(0,1)$ the theory can be built up to the boundary

- Bildhauer & Fuchs (2001–): General theory for 1-like Laplacian for $a \in (0,2]$ i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary
- We cannot solve the problem in general for the Neumann data counterexamples
- ullet Maybe we can avoid to be ${f T}$ measure in the interior of Ω
- ullet Maybe for $a\in(0,1)$ the theory can be built up to the boundary
- Maybe the Dirichlet problem is easier to handle we do not need the estimates up to the boundary

- Bildhauer & Fuchs (2001–): General theory for 1-like Laplacian for $a \in (0,2]$ i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary
- We cannot solve the problem in general for the Neumann data counterexamples
- ullet Maybe we can avoid to be ${f T}$ measure in the interior of Ω
- ullet Maybe for $a\in(0,1)$ the theory can be built up to the boundary
- Maybe the Dirichlet problem is easier to handle we do not need the estimates up to the boundary
- But in all cases we need to face the problem with symmetric gradient contrary to the full gradient as in Bildhauer & Fuchs
- Is really the assumption $a \le 2$ essential? Counterexamples only for non-smooth data

Limiting strain model & Theorems

Theorem (Dirichlet data)

Let $\Omega \subset \mathbb{R}^d$, $\lambda_{1,2}$ fulfil (M) and λ_3 satisfy (UM) with $a < \frac{1}{d}$. Then there exists a weak solution (T, u). Moreover, u is unique. Further, if either λ_1 or λ_2 are strictly monotone then also T is unique.

- Proper approximation (p-Laplacian)
- Uniform I^1 estimates
- Uniform $L_{loc}^{1+\delta}$ estimates by showing that $T \in \mathcal{N}^{\alpha,1}$ for some $\alpha \in (0,1)$.

Theorem (Periodic data)

Let $\lambda_{1,2}$ fulfil (M) and λ_3 satisfy (UM) with $a < \frac{2}{d}$. Then there exists a weak solution (T, \mathbf{u}) . Moreover, \mathbf{u} is unique. Further, if either λ_1 or λ_2 are strictly monotone then also T is unique.

lacktriangle The same as before but no problem with localization \implies better bound for a

Limiting strain model & Theorems

Theorem (Periodic data II)

Let $\lambda_{1,2}$ fulfil (M) and λ_3 satisfy (UM) with a > 0. Then there exists a (T, u) fulfilling the implicit relation a.e. such that

$$\mathsf{T} \in \mathsf{L}^1, \qquad \varepsilon \in \mathsf{L}^\infty, \qquad \frac{\nabla \mathsf{T}}{(1+|\mathsf{T}|)^{\frac{a+1}{2}}} \in \mathsf{L}^2$$

the energy inequality holds, i.e.,

$$\int_{\Omega} \textbf{T} \cdot \boldsymbol{\varepsilon}(\textbf{u}) \leq \int_{\Omega} \textbf{f} \cdot \textbf{u},$$

and fulfill the renormalized equation, i.e., for all smooth periodic v and all $g \in \mathcal{D}(\mathbb{R})$ there holds

$$\int_{\Omega} T \cdot (g(|T|) \nabla v + v \otimes \nabla g(|T|)) = \int_{\Omega} g(|T|) f \cdot v.$$

Moreover, if $T \in L^{a+1}$ the the solution is weak.

Limiting strain model & Surprising Theorems

Theorem (Limiting strain - Dirichlet data)

Consider $\Omega \subset \mathbb{R}^d$ with continuous boundary and smooth f. Then for arbitrary a>0 there exists unique $\mathbf{T}\in L^1(\Omega;\mathbb{R}^{d\times d})$ and $\mathbf{u}\in W^{1,1}_0(\Omega;\mathbb{R}^d)$ such that $\varepsilon(\mathbf{u})\in L^\infty(\Omega;\mathbb{R}^{d\times d})$ solving for all $\mathbf{v}\in \mathcal{D}(\Omega;\mathbb{R}^d)$

$$\int_{\Omega} \mathbf{T} \cdot \boldsymbol{\varepsilon}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}, \qquad \boldsymbol{\varepsilon}(\mathbf{u}) = \frac{\mathbf{T}}{(1 + |\mathbf{T}|^{a})^{\frac{1}{a}}}.$$

Limiting strain model & Surprising Theorems

Theorem (Limiting strain - Dirichlet data)

Consider $\Omega \subset \mathbb{R}^d$ with continuous boundary and smooth f. Then for arbitrary a>0 there exists unique $\mathbf{T}\in L^1(\Omega;\mathbb{R}^{d\times d})$ and $\mathbf{u}\in W^{1,1}_0(\Omega;\mathbb{R}^d)$ such that $\varepsilon(\mathbf{u})\in L^\infty(\Omega;\mathbb{R}^{d\times d})$ solving for all $\mathbf{v}\in \mathcal{D}(\Omega;\mathbb{R}^d)$

$$\int_{\Omega} \mathbf{T} \cdot \boldsymbol{\varepsilon}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}, \qquad \boldsymbol{\varepsilon}(\mathbf{u}) = \frac{\mathbf{T}}{(1+|\mathbf{T}|^a)^{\frac{1}{a}}}.$$

Theorem (Plasticity-like models - Neumann data)

Consider $\Omega\subset\mathbb{R}^d$ with Lipschitz boundary and smooth \mathbf{g} . Moreover, assume that there exists T_0 fulfilling $T_0\mathbf{n}=\mathbf{g}$ on $\partial\Omega$ such that $\|T_0\|_\infty<1$ and $\operatorname{div} T_0=0$ (necessary compatibility condition). Then for arbitrary a>0 there exists unique $T\in L^\infty(\Omega;\mathbb{R}^{d\times d})$ and $\mathbf{u}\in L_0^{d'}(\Omega;\mathbb{R}^d)$ such that $\varepsilon(\mathbf{u})\in L^1(\Omega;\mathbb{R}^{d\times d})$ solving for all $\mathbf{v}\in \mathcal{C}^\infty(\Omega;\mathbb{R}^d)$

$$\int_{\Omega} \mathbf{T} \cdot \boldsymbol{\varepsilon}(\mathbf{v}) = \int_{\partial \Omega} \mathbf{g} \cdot \mathbf{v}, \qquad \mathbf{T} = \frac{\boldsymbol{\varepsilon}}{(1 + |\boldsymbol{\varepsilon}|^a)^{\frac{1}{a}}}.$$