Nečas Center for Mathematical Modeling

MOdelling REvisited + MOdel REduction ERC-CZ project LL1202 - MORE

Analysis of strain-limiting models in solid mechanics

Miroslav Bulíček

Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague

The talk is based on the following results

- M. Bulíček, J. Málek, K. R. Rajagopal and J. R. Walton: Existence of solutions for the anti-plane stress for a new class of "strain-limiting" elastic bodies, submitted
- M. Bulíček, J. Málek and E. Süli: Analysis and approximation of a strain-limiting nonlinear elastic model, Mathematics and Mechanics of Solids, 2014
- ☞ M. Bulí£ek, J. Málek, K. R. Rajagopal and E. Süli: On elastic solids with limiting small strain: modelling and analysis, EMS Surveys in Mathematical Sciences, 2014.
- L. Beck, M. Bulíček, J. Málek and E. Süli: Analysis and approximation of a strain-limiting nonlinear elastic model II, in preparation

Linearized nonlinear elasticity

We consider the elastic deformation of the body $\Omega\subset\mathbb{R}^d$ with $\mathsf{\Gamma}_1\cap\mathsf{\Gamma}_2=\emptyset$ and $\overline{\Gamma_1 \cup \Gamma_2} = \partial \Omega$ described by

$$
-\operatorname{div} T = f \quad \text{in } \Omega,
$$

$$
\mathbf{u} = \mathbf{u}_0 \quad \text{on } \Gamma_1, \quad \text{and} \quad \mathbf{T} \mathbf{n} = \mathbf{g} \quad \text{on } \Gamma_2.
$$
 (E1)

where \bf{u} is displacement, \bf{T} the Cauchy stress, \bf{f} the external body forces, \bf{g} the external surface forces and ε is the linearized strain tensor, i.e.,

$$
\boldsymbol{\varepsilon} := \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathsf{T}})
$$

Linearized nonlinear elasticity

We consider the elastic deformation of the body $\Omega\subset\mathbb{R}^d$ with $\mathsf{\Gamma}_1\cap\mathsf{\Gamma}_2=\emptyset$ and $\overline{\Gamma_1 \cup \Gamma_2} = \partial \Omega$ described by

$$
-\operatorname{div} T = f \quad \text{in } \Omega,
$$

$$
\mathbf{u} = \mathbf{u}_0 \quad \text{on } \Gamma_1, \quad \text{and} \quad \mathbf{T} \mathbf{n} = \mathbf{g} \quad \text{on } \Gamma_2.
$$
 (E1)

where \bf{u} is displacement, \bf{T} the Cauchy stress, \bf{f} the external body forces, \bf{g} the external surface forces and ε is the linearized strain tensor, i.e.,

$$
\boldsymbol{\varepsilon} := \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathsf{T}})
$$

■ The implicit relation between the Cauchy stress and the strain

$$
\boxed{\textbf{G}(\textbf{T},\varepsilon)=\textbf{0}}
$$

Linearized nonlinear elasticity

We consider the elastic deformation of the body $\Omega\subset\mathbb{R}^d$ with $\mathsf{\Gamma}_1\cap\mathsf{\Gamma}_2=\emptyset$ and $\overline{\Gamma_1 \cup \Gamma_2} = \partial \Omega$ described by

$$
-\operatorname{div} T = f \quad \text{in } \Omega,
$$

$$
\mathbf{u} = \mathbf{u}_0 \quad \text{on } \Gamma_1, \quad \text{and} \quad \mathbf{T} \mathbf{n} = \mathbf{g} \quad \text{on } \Gamma_2.
$$
 (E1)

where \bf{u} is displacement, \bf{T} the Cauchy stress, \bf{f} the external body forces, \bf{g} the external surface forces and ε is the linearized strain tensor, i.e.,

$$
\boldsymbol{\varepsilon} := \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathsf{T}})
$$

ES The implicit relation between the Cauchy stress and the strain

$$
\boxed{G(T,\varepsilon)=0}
$$

The key assumption in linearized elasticity

$$
|\varepsilon| \ll 1.
$$
 (A)

Liblice 2014 M. Bulíček [Strain-limiting models](#page-0-0)

The standard linear models immediately may lead to the contradiction:

The standard linear models immediately may lead to the contradiction:

■ Consider Ω a domain with non-convex corner at x_0 , $\Gamma = \partial \Omega$, $\mathbf{u}_0 = \mathbf{0}$ and G of the form

$$
\mathbf{T}=2\mu\varepsilon.
$$

The standard linear models immediately may lead to the contradiction:

■ Consider Ω a domain with non-convex corner at x_0 , $\Gamma = \partial \Omega$, $\mathbf{u}_0 = \mathbf{0}$ and G of the form

$$
\mathsf{T}=2\mu\varepsilon.
$$

EX There exists a smooth f such that the solution (T, ε) fulfils

$$
|\mathbf{T}(x)| = |\varepsilon(x)| \stackrel{x \to x_0}{\to} \infty.
$$

The standard linear models immediately may lead to the contradiction:

■ Consider Ω a domain with non-convex corner at x_0 , $Γ = ∂Ω$, $u_0 = 0$ and G of the form

$$
\mathbf{T}=2\mu\varepsilon.
$$

EX There exists a smooth f such that the solution (T, ε) fulfils

$$
|\mathbf{T}(x)| = |\varepsilon(x)| \stackrel{x \to x_0}{\to} \infty.
$$

 contradicts the assumption of the model (A) \implies not valid model at least in the neighborhood of x_0 .

The standard linear models immediately may lead to the contradiction:

■ Consider Ω a domain with non-convex corner at x_0 , $\Gamma = \partial \Omega$, $\mathbf{u}_0 = \mathbf{0}$ and G of the form

$$
\mathsf{T}=2\mu\varepsilon.
$$

EX There exists a smooth f such that the solution (T, ε) fulfils

$$
|\mathbf{T}(x)| = |\varepsilon(x)| \stackrel{x \to x_0}{\to} \infty.
$$

 contradicts the assumption of the model (A) \implies not valid model at least in the neighborhood of x_0 .

 $\frac{1}{2}$ But there is material behavior that suggests

$$
\left| \left| T(x) \right| \stackrel{x \to x_0}{\to} \infty \qquad \text{BUT} \qquad |\varepsilon(x)| \ll 1.
$$

 $\overline{\mathscr{G}}$ Consider implicit models which a priori guarantees $|\varepsilon| \leq K$:

$$
\varepsilon = \lambda_1(|\operatorname{tr} T|)(\operatorname{tr} T)I + \lambda_2(|T|)T + \lambda_3(|T^d|)T^d,
$$
 (L-S)

where

$$
\mathsf{T}^d:=\mathsf{T}-\frac{\mathrm{tr}\,\mathsf{T}}{d},\qquad |\lambda_{1,2,3}(s)|\leq \frac{\mathsf{K}}{3(\mathsf{s}+1)}.
$$

 $\overline{\mathscr{C}}$ Consider implicit models which a priori guarantees $|\varepsilon|\leq K$:

$$
\varepsilon = \lambda_1(|\operatorname{tr} T|)(\operatorname{tr} T)I + \lambda_2(|T|)T + \lambda_3(|T^d|)T^d), \qquad (L-S)
$$

where

$$
T^d:=T-\frac{\mathrm{tr}\,T}{d},\qquad |\lambda_{1,2,3}(s)|\leq \frac{K}{3(s+1)}.
$$

✌ A priori estimates: from [\(L-S\)](#page-10-0)

 $|\varepsilon| \leq K$.

 $\overline{\mathscr{C}}$ Consider implicit models which a priori guarantees $|\varepsilon| \leq K$:

$$
\varepsilon = \lambda_1(|\operatorname{tr} T|)(\operatorname{tr} T)I + \lambda_2(|T|)T + \lambda_3(|T^d|)T^d), \qquad (L-S)
$$

where

$$
\mathsf{T}^d:=\mathsf{T}-\frac{\mathrm{tr}\,\mathsf{T}}{d},\qquad |\lambda_{1,2,3}(s)|\leq \frac{K}{3(s+1)}.
$$

 \bigotimes A priori estimates: from $(L-S)$

 $|\varepsilon| \leq K$.

From the equation, we may hope that

Z $\int\limits_\Omega \lambda_1(|\mathop{\mathrm{tr}}\nolimits \mathsf{T}|)|\mathop{\mathrm{tr}}\nolimits \mathsf{T}|^2 + \lambda_2(|\mathsf{T}|)|\mathsf{T}|^2 + \lambda_3(|\mathsf{T}^d|)|\mathsf{T}^d|^2 = \int\limits_\Omega \lambda_1(|\mathsf{T}^d|)|\mathsf{T}^d|^2.$ $\frac{1}{\Omega}$ T \cdot $\varepsilon \leq C$.

 $\overline{\mathscr{C}}$ Consider implicit models which a priori guarantees $|\varepsilon| \leq K$:

$$
\varepsilon = \lambda_1(|\operatorname{tr} T|)(\operatorname{tr} T)I + \lambda_2(|T|)T + \lambda_3(|T^d|)T^d), \qquad (L-S)
$$

where

$$
\mathsf{T}^d:=\mathsf{T}-\frac{\mathrm{tr}\,\mathsf{T}}{d},\qquad |\lambda_{1,2,3}(s)|\leq \frac{K}{3(s+1)}.
$$

 \bigotimes A priori estimates: from [\(L-S\)](#page-10-0)

 $|\varepsilon| \leq K$.

From the equation, we may hope that

$$
\int_{\Omega}\lambda_1(|\operatorname{tr} T|)|\operatorname{tr} T|^2+\lambda_2(|T|)|T|^2+\lambda_3(|T^d|)|T^d|^2=\int_{\Omega}T\cdot\varepsilon\leq C.
$$

■■ The reasonable assumptions (∞ -Laplacian-like problem):

$$
\left.\begin{array}{c}\lambda_{1,2,3}(s)\geq0,\\\lambda_{3}(s)\geq\frac{\alpha}{s+1}.\end{array}\right\}\implies\int_{\Omega}|\mathsf{T}^{d}|\leq C.
$$

Liblice 2014 M. Bulíček [Strain-limiting models](#page-0-0)

 $^{5}/_17$

Limiting strain model & monotonicity

$$
\mathbb{R}^{\mathbb{Z}} \quad \text{A priori estimates for } \mathbf{T}^d \text{ in } L^1
$$

For the convergence at least some monotonicity needed, the minimal assumption:

$$
0\leq \frac{d}{ds}(\lambda_{1,2,3}(s)s).
$$
 (M)

■ If we would have an approximative sequence fulfilling

$$
\begin{aligned} & \int_{\Omega_{\mathbf{0}}} |(T^d)^n|^{1+\delta} \leq C(\Omega_{\mathbf{0}}) \qquad \text{for all } \Omega_{\mathbf{0}} \subset\subset \Omega, \\ & \implies T^n \rightharpoonup T \qquad \text{weakly in } \mathit{L}^1_{loc}. \end{aligned}
$$

then using [\(M\)](#page-14-0) we can identify the limit.

 $\bigotimes^{\mathcal{U}}$ Assume kind of uniform monotonicity, i.e., for some $\alpha,$ a, $K>0$

$$
\frac{\alpha}{(K+s)^a} \leq \frac{d}{dt}(\lambda_3(s)s)
$$
 (UM)

 $^{6}/_17$

for example

$$
\lambda_3(s):=\frac{1}{(1+s^a)^{\frac{1}{a}}}.
$$

Limiting strain model via dual formulation & Theorem

Limiting strain model via dual formulation & Theorem

Existence via the dual formulation (very similar to plasticity): Find the (convex) potential $F: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}_+$ such that

$$
\frac{\partial F(\mathsf{T})}{\partial \mathsf{T}_{ij}} = \frac{\mathsf{T}_{ij}}{\left(1+|\mathsf{T}|^{\mathsf{a}}\right)^{\frac{1}{\mathsf{a}}}} \left(=\boldsymbol{\varepsilon}_{ij}\right)
$$

and define the class of admissible stresses as

$$
\mathcal{S}:=\{\textbf{T}\in L^1(\Omega); \ -\operatorname{div} \textbf{T}=\textbf{f}, \ \textbf{T}\textbf{n}=\textbf{g} \ \text{on} \ \Gamma_1\}.
$$

To find a weak solution to the original problem is equivalent to find $T \in \mathcal{S}$ fulfilling

$$
\left| \int_{\Omega} F(\mathbf{T}) \leq \int_{\Omega} F(\tilde{\mathbf{T}}) \right| \quad \text{for all } \tilde{\mathbf{T}} \in \mathcal{S}.
$$

Limiting strain model via dual formulation & Theorem

Existence via the dual formulation (very similar to plasticity): Find the (convex) potential $F: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}_+$ such that

$$
\frac{\partial F(\mathsf{T})}{\partial \mathsf{T}_{ij}} = \frac{\mathsf{T}_{ij}}{\left(1+|\mathsf{T}|^{\mathsf{a}}\right)^{\frac{1}{\mathsf{a}}}} \left(=\boldsymbol{\varepsilon}_{ij}\right)
$$

and define the class of admissible stresses as

$$
\mathcal{S}:=\{\textbf{T}\in L^1(\Omega); \ -\operatorname{div} \textbf{T}=\textbf{f}, \ \textbf{T}\textbf{n}=\textbf{g} \ \text{on} \ \Gamma_1\}.
$$

To find a weak solution to the original problem is equivalent to find $\mathsf{T} \in \mathcal{S}$ fulfilling

$$
\left| \int_{\Omega} F(\mathbf{T}) \leq \int_{\Omega} F(\tilde{\mathbf{T}}) \right| \quad \text{for all } \tilde{\mathbf{T}} \in \mathcal{S}.
$$

Theorem

Let $\Omega \subset \mathbb{R}^d$. There exists a minimizer \textsf{T} to the potential F, but in the space of measures.

Liblice 2014 M. Bulíček [Strain-limiting models](#page-0-0)

 $^{7}/_{17}$

• We solved the problem completely. It has unique solution!

- We solved the problem completely It has unique solution!
- What does it mean that the Cauchy stress is a measure?

- We solved the problem completely It has unique solution!
- What does it mean that the Cauchy stress is a measure?
- Can we reconstruct ε and also **u** in a unique way?

- We solved the problem completely It has unique solution!
- What does it mean that the Cauchy stress is a measure?
- Can we reconstruct ε and also **u** in a unique way?
- Is there any influence of the smoothness of data?
- Is there any influence of the shape of Ω ?
- Is there any influence of the parameter a of the model? (smaller a means better convexity)

- We solved the problem completely It has unique solution!
- What does it mean that the Cauchy stress is a measure?
- Can we reconstruct ε and also **u** in a unique way?
- Is there any influence of the smoothness of data?
- Is there any influence of the shape of Ω ?
- Is there any influence of the parameter a of the model? (smaller a means better convexity)
- Can we do something better "inside" Ω ?

- We solved the problem completely It has unique solution!
- What does it mean that the Cauchy stress is a measure?
- Can we reconstruct ε and also **u** in a unique way?
- Is there any influence of the smoothness of data?
- Is there any influence of the shape of Ω ?
- Is there any influence of the parameter a of the model? (smaller a means better convexity)
- Can we do something better "inside" $Ω?$
- Is there any chance to avoid measures completely and to solve the original problem?

Limiting strain model - anti-plane stress

We consider the following special geometry

Figure: Anti-plane stress geometry.

and we look for the solution in the following from:

$$
\mathbf{u} = \mathbf{u}(x_1, x_2) = (0, 0, u(x_1, x_2)), \quad \mathbf{g}(x) = (0, 0, g(x_1, x_2)).
$$

and

$$
\mathbf{T}(x) = \begin{pmatrix} 0 & 0 & T_{13}(x_1, x_2) \\ 0 & 0 & T_{23}(x_1, x_2) \\ T_{13}(x_1, x_2) & T_{23}(x_1, x_2) & 0 \end{pmatrix}.
$$

Liblice 2014 M. Bulíček [Strain-limiting models](#page-0-0)

Equivalent reformulation

■■ Find U : Ω \rightarrow R - the Airy stress function such that

$$
T_{13}=\frac{1}{\sqrt{2}}U_{x_2} \quad \text{and} \quad T_{23}=-\frac{1}{\sqrt{2}}U_{x_1}.
$$

 \implies div **T** = 0 is fulfilled.

Equivalent reformulation

■ $\sqrt{\mathbb{Q}}$ Find U : Ω $\rightarrow \mathbb{R}$ the Airy stress function such that

$$
T_{13}=\frac{1}{\sqrt{2}}U_{x_2} \quad \text{and} \quad T_{23}=-\frac{1}{\sqrt{2}}U_{x_1}.
$$

 \implies div **T** = 0 is fulfilled.

 \mathbb{R} U must satisfy $\left(\varepsilon = \frac{1}{\sqrt{2}}\right)$ $\frac{1}{(1+|T|^a)^{\frac{1}{a}}}\Big)$ $\mathrm{div}\left(\frac{\nabla U}{\sqrt{1-\frac{U}{\nu}}} \right)$ $\overline{(1+|\nabla U|^s)^{\frac{1}{s}}}$ \setminus in Ω , U_{x_2} n₁ – U_{x_1} n₂ = $\sqrt{ }$ on $\partial Ω$.

Equivalent reformulation

■ $\sqrt{\mathbb{Q}}$ Find U : Ω $\rightarrow \mathbb{R}$ the Airy stress function such that $T_{13} = \frac{1}{\sqrt{2}} U_{x_2}$ and $T_{23} = -\frac{1}{\sqrt{2}} U_{x_1}$. \implies div **T** = 0 is fulfilled. \mathbb{R} U must satisfy $\left(\varepsilon = \frac{1}{\sqrt{2}}\right)$ $\frac{1}{(1+|T|^a)^{\frac{1}{a}}}\Big)$ $\mathrm{div}\left(\frac{\nabla U}{\sqrt{1-\frac{U}{\nu}}} \right)$ $\overline{(1+|\nabla U|^s)^{\frac{1}{s}}}$ \setminus in Ω ,

 U_{x_2} n₁ – U_{x_1} n₂ = $\sqrt{ }$ on $\partial Ω$.

■ $\sqrt{\frac{12}{3}}$ Dirichlet problem, indeed assume that $\partial\Omega$ is parametrized by $\gamma(s) = (\gamma_1(s), \gamma_2(s))$. Then

$$
U(\gamma(s_0)) = a_0 + \sqrt{2} \int_0^{s_0} g(\gamma(s)) \sqrt{(\gamma_1'(s))^2 + (\gamma_2'(s))^2} ds =: U_0(x).
$$

133 U must satisfy
\n
$$
\operatorname{div}\left(\frac{\nabla U}{(1+|\nabla U|^a)^{\frac{1}{a}}}\right) = 0 \text{ in } \Omega, \qquad U = U_0 \text{ on } \partial \Omega.
$$

13 U must satisfy

$$
\operatorname{div}\left(\frac{\nabla U}{(1+|\nabla U|^a)^{\frac{1}{a}}}\right) = 0 \text{ in } \Omega, \qquad U = U_0 \text{ on } \partial \Omega.
$$

 $\star a = 2$ - the minimal surface equation:

 \mathbb{R} U must satisfy $\mathrm{div}\left(\frac{\nabla U}{\sqrt{1-\frac{1}{2}}}\right)$ $\overline{\left(1+|\nabla U|^s\right)^{\frac{1}{s}}}$ \setminus $= 0$ in Ω , $U = U_0$ on $\partial \Omega$.

 \star $a = 2$ - the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV , the boundary value is not attained

 \mathbb{R} U must satisfy

$$
\mathrm{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^a\right)^{\frac{1}{a}}}\right)=0\quad\text{in }\Omega,\qquad U=U_0\quad\text{on }\partial\Omega.
$$

 \star $a = 2$ - the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV , the boundary value is not attained

$$
\bullet a = 2 \text{ what does it say for "physics"}
$$
?

 \mathbb{F} U must satisfy

$$
\mathrm{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^a\right)^{\frac{1}{a}}}\right)=0\quad\text{in }\Omega,\qquad U=U_0\quad\text{on }\partial\Omega.
$$

- \star $a = 2$ the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV , the boundary value is not attained
- \star a = 2 what does it say for "physics"? the solution T must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very bad" happens - either the model is not valid (there is not deformation for large g) or the body is no more continuum

 \mathbb{F} U must satisfy

$$
\operatorname{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^a\right)^{\frac{1}{a}}}\right)=0 \quad \text{in }\Omega, \qquad U=U_0 \quad \text{on }\partial\Omega.
$$

- \star $a = 2$ the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV , the boundary value is not attained
- \star a = 2 what does it say for "physics"? the solution T must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens - either the model is not valid (there is not deformation for large g) or the body is no more continuum
-

 $\frac{100}{2}$ a \neq 2 we cannot use all the geometrical machinery, but on convex domains we can prove $|\nabla U| < C$

 \mathbb{F} U must satisfy

$$
\operatorname{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^a\right)^{\frac{1}{a}}}\right)=0 \quad \text{in }\Omega, \qquad U=U_0 \quad \text{on }\partial\Omega.
$$

- \star $a = 2$ the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV , the boundary value is not attained
- \star a = 2 what does it say for "physics"? the solution T must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens - either the model is not valid (there is not deformation for large g) or the body is no more continuum
- $\frac{100}{2}$ a \neq 2 we cannot use all the geometrical machinery, but on convex domains we can prove $|\nabla U| < C$
- $\overline{\mathscr{C}}$ a \leq 2 we can localize and prove $\nabla U \in L^{\infty}_{loc}$

 \mathbb{F} U must satisfy

$$
\operatorname{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^a\right)^{\frac{1}{a}}}\right)=0 \quad \text{in }\Omega, \qquad U=U_0 \quad \text{on }\partial\Omega.
$$

- \star $a = 2$ the minimal surface equation: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV , the boundary value is not attained
- \star a = 2 what does it say for "physics"? the solution T must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens - either the model is not valid (there is not deformation for large g) or the body is no more continuum
- $\frac{1}{2}$ a \neq 2 we cannot use all the geometrical machinery, but on convex domains we can prove $|\nabla U| < C$
- $\overline{\mathscr{C}}$ a \leq 2 we can localize and prove $\nabla U \in L^{\infty}_{loc}$
- \blacktriangleright a ∈ (1, 2) the weak solution may not exists eg. for $\Omega = B_2 \setminus B_1$
	- on the flat part of the boundary, one can extend the solution outside

Theorem (anti-plane stress)

Let U_0 be arbitrary. Then there exists unique weak solution U provided that one of the following holds:

- Ω is uniformly convex, $a > 0$ is arbitrary and U_0 smooth.
- $\bullet\,$ a $\in (0,2)$ and $\partial \Omega = \bigcup_{i=1}^N \mathsf{\Gamma}_i$ such that either $\mathsf{\Gamma}_i$ is uniformly convex and U_0 is smooth on Γ_i or Γ_i is flat and U_0 is constant there.

F1 Find the weak solution

F2 Find $U ∈ W^{1,1}(\Omega)$ being equal to U_0 on $\partial\Omega$ such that

$$
\int_{\Omega} F(\nabla U) \leq \int_{\Omega} F(\nabla V) \quad \text{for all } (V - U_0) \in W_0^{1,1}(\Omega).
$$

F3 Find $U \in W^{1,1}(\Omega)$ such that

$$
\int_{\Omega} F(\nabla U) + \int_{\partial \Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial \Omega} |V - U_0| \qquad \text{for all } V \in W^{1,1}(\Omega).
$$

F4 Find the measure T solving the original minimization problem

F1 Find the weak solution

F2 Find $U ∈ W^{1,1}(\Omega)$ being equal to U_0 on $\partial\Omega$ such that

$$
\int_{\Omega} F(\nabla U) \leq \int_{\Omega} F(\nabla V) \quad \text{for all } (V - U_0) \in W_0^{1,1}(\Omega).
$$

F3 Find $U \in W^{1,1}(\Omega)$ such that

$$
\int_{\Omega} F(\nabla U) + \int_{\partial \Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial \Omega} |V - U_0| \quad \text{for all } V \in W^{1,1}(\Omega).
$$

F4 Find the measure T solving the original minimization problem

$$
F1 \Leftrightarrow F2 \implies F3 \implies F4
$$

F1 Find the weak solution

F2 Find $U ∈ W^{1,1}(\Omega)$ being equal to U_0 on $\partial\Omega$ such that

$$
\int_{\Omega} F(\nabla U) \leq \int_{\Omega} F(\nabla V) \quad \text{for all } (V - U_0) \in W_0^{1,1}(\Omega).
$$

F3 Find $U \in W^{1,1}(\Omega)$ such that

$$
\int_{\Omega} F(\nabla U) + \int_{\partial \Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial \Omega} |V - U_0| \quad \text{for all } V \in W^{1,1}(\Omega).
$$

F4 Find the measure T solving the original minimization problem

$$
F1 \Leftrightarrow F2 \implies F3 \implies F4
$$

Theorem (anti-plane stress II)

Let $a\in (0,2]$, U_0 and $\Omega\subset \mathbb{R}^d$ be arbitrary. Then there exists unique weak solution $U \in W^{1,1}(\Omega)$ in the following sense

$$
\int_\Omega F(\nabla U) + \int_{\partial\Omega} |U-U_0| \leq \int_\Omega F(\nabla V) + \int_{\partial\Omega} |V-U_0| \qquad \forall V \in W^{1,1}(\Omega).
$$

F1 Find the weak solution

F2 Find $U ∈ W^{1,1}(\Omega)$ being equal to U_0 on $\partial\Omega$ such that

$$
\int_{\Omega} F(\nabla U) \leq \int_{\Omega} F(\nabla V) \quad \text{for all } (V - U_0) \in W_0^{1,1}(\Omega).
$$

F3 Find $U \in W^{1,1}(\Omega)$ such that

$$
\int_{\Omega} F(\nabla U) + \int_{\partial \Omega} |U - U_0| \leq \int_{\Omega} F(\nabla V) + \int_{\partial \Omega} |V - U_0| \quad \text{for all } V \in W^{1,1}(\Omega).
$$

F4 Find the measure T solving the original minimization problem

$$
F1 \Leftrightarrow F2 \implies F3 \implies F4
$$

Theorem (anti-plane stress II)

Let $a\in (0,2]$, U_0 and $\Omega\subset \mathbb{R}^d$ be arbitrary. Then there exists unique weak solution $U \in W^{1,1}(\Omega)$ in the following sense

$$
\int_\Omega F(\nabla U) + \int_{\partial\Omega} |U-U_0| \leq \int_\Omega F(\nabla V) + \int_{\partial\Omega} |V-U_0| \qquad \forall V \in W^{1,1}(\Omega).
$$

Defining $T_{13} := U_{x_2}$ and $T_{23} := -U_{x_1}$ we have $\text{div } T = 0$ but $T_n = g$ is not attained but we have "the best approximation".

• Bildhauer & Fuchs (2001–): General theory for 1-like Laplacian for $a \in (0, 2]$ - i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary

- Bildhauer & Fuchs (2001): General theory for 1-like Laplacian for $a \in (0, 2]$ - i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary
- We cannot solve the problem in general for the Neumann data counterexamples
- Maybe we can avoid to be T measure in the interior of Ω

- Bildhauer & Fuchs (2001): General theory for 1-like Laplacian for $a \in (0, 2]$ - i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary
- We cannot solve the problem in general for the Neumann data counterexamples
- Maybe we can avoid to be T measure in the interior of Ω
- Maybe for $a \in (0,1)$ the theory can be built up to the boundary

- Bildhauer & Fuchs (2001): General theory for 1-like Laplacian for $a \in (0, 2]$ - i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary
- We cannot solve the problem in general for the Neumann data counterexamples
- Maybe we can avoid to be T measure in the interior of Ω
- Maybe for $a \in (0,1)$ the theory can be built up to the boundary
- Maybe the Dirichlet problem is easier to handle we do not need the estimates up to the boundary

- Bildhauer & Fuchs (2001–): General theory for 1-like Laplacian for $a \in (0, 2]$ - i.e., smoothness locally in Ω , the trace may not be attained; for convex domains everything is nice up to the boundary
- We cannot solve the problem in general for the Neumann data counterexamples
- Maybe we can avoid to be T measure in the interior of Ω
- Maybe for $a \in (0,1)$ the theory can be built up to the boundary
- Maybe the Dirichlet problem is easier to handle we do not need the estimates up to the boundary
- But in all cases we need to face the problem with symmetric gradient contrary to the full gradient as in Bildhauer & Fuchs
- Is really the assumption $a \leq 2$ essential? Counterexamples only for non-smooth data

Theorem (Dirichlet data)

Let $\Omega \subset \mathbb{R}^d$, $\lambda_{1,2}$ fulfil [\(M\)](#page-14-0) and λ_3 satisfy [\(UM\)](#page-14-1) with $a < \frac{1}{d}$. Then there exists a weak solution (T, u). Moreover, u is unique. Further, if either λ_1 or λ_2 are strictly monotone then also **T** is unique.

- \mathbb{R} Proper approximation (p-Laplacian)
- \mathbb{R} Uniform L^1 estimates
- Uniform $L_{loc}^{1+\delta}$ estimates by showing that $\mathbf{T} \in \mathcal{N}^{\alpha,1}$ for some $\alpha \in (0,1)$.

Theorem (Periodic data)

Let $\lambda_{1,2}$ fulfil [\(M\)](#page-14-0) and λ_3 satisfy [\(UM\)](#page-14-1) with $a < \frac{2}{d}$. Then there exists a weak solution (T, u). Moreover, u is unique. Further, if either λ_1 or λ_2 are strictly monotone then also T is unique.

The same as before but no problem with localization \implies better bound for a

Limiting strain model & Theorems

Theorem (Periodic data II)

Let $\lambda_{1,2}$ fulfil [\(M\)](#page-14-0) and λ_3 satisfy [\(UM\)](#page-14-1) with $a > 0$. Then there exists a (T, u) fulfilling the implicit relation a.e. such that

$$
\mathsf{T}\in\mathsf{L}^1,\qquad \varepsilon\in\mathsf{L}^\infty,\qquad \frac{\nabla\mathsf{T}}{(1+|\mathsf{T}|)^{\frac{a+1}{2}}}\in\mathsf{L}^2
$$

the energy inequality holds, i.e.,

$$
\int_{\Omega} T \cdot \varepsilon(u) \leq \int_{\Omega} f \cdot u,
$$

and fulfill the renormalized equation, i.e., for all smooth periodic v and all $g \in \mathcal{D}(\mathbb{R})$ there holds

$$
\int_{\Omega} \mathsf{T} \cdot (g(|\mathsf{T}|) \nabla v + v \otimes \nabla g(|\mathsf{T}|)) = \int_{\Omega} g(|\mathsf{T}|) \mathsf{f} \cdot v.
$$

Moreover, if $T \in L^{a+1}$ the the solution is weak.

Liblice 2014 M. Bulíček [Strain-limiting models](#page-0-0)

Limiting strain model & Surprising Theorems

Theorem (Limiting strain - Dirichlet data)

Consider $\Omega \subset \mathbb{R}^d$ with continuous boundary and smooth f. Then for arbitrary $a>0$ there exists unique $\textsf{T}\in L^1(\Omega;\mathbb{R}^{d\times d})$ and $\textsf{u}\in W^{1,1}_0(\Omega;\mathbb{R}^d)$ such that $\bm{\varepsilon}(\bm{{\mathsf{u}}}) \in L^\infty(\Omega; \mathbb{R}^{d \times d})$ solving for all $\bm{{\mathsf{v}}} \in \mathcal{D}(\Omega; \mathbb{R}^d)$

$$
\int_\Omega \mathsf{T}\cdot \varepsilon(\mathsf{v}) = \int_\Omega \mathsf{f}\cdot \mathsf{v}, \qquad \varepsilon(\mathsf{u}) = \frac{\mathsf{T}}{(1+|\mathsf{T}|^a)^{\frac{1}{a}}}.
$$

Limiting strain model & Surprising Theorems

Theorem (Limiting strain - Dirichlet data)

Consider $\Omega \subset \mathbb{R}^d$ with continuous boundary and smooth f. Then for arbitrary $a>0$ there exists unique $\textsf{T}\in L^1(\Omega;\mathbb{R}^{d\times d})$ and $\textsf{u}\in W^{1,1}_0(\Omega;\mathbb{R}^d)$ such that $\bm{\varepsilon}(\bm{{\mathsf{u}}}) \in L^\infty(\Omega; \mathbb{R}^{d \times d})$ solving for all $\bm{{\mathsf{v}}} \in \mathcal{D}(\Omega; \mathbb{R}^d)$

$$
\int_{\Omega} \mathsf{T} \cdot \varepsilon(\mathsf{v}) = \int_{\Omega} \mathsf{f} \cdot \mathsf{v}, \qquad \varepsilon(\mathsf{u}) = \frac{\mathsf{T}}{(1+|\mathsf{T}|^{\mathsf{a}})^{\frac{1}{\mathsf{a}}}}.
$$

Theorem (Plasticity-like models - Neumann data)

Consider $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary and smooth \mathbf{g} . Moreover, assume that there exists T_0 fulfilling $T_0n = g$ on $\partial\Omega$ such that $||T_0||_{\infty} < 1$ and $div T_0 = 0$ (necessary compatibility condition). Then for arbitrary $a > 0$ there exists unique $\mathsf{T}\in L^\infty(\Omega;\mathbb{R}^{d\times d})$ and $\mathsf{u}\in L_0^{d'}(\Omega;\mathbb{R}^d)$ such that $\varepsilon(\mathsf{u}) \in L^1(\Omega;\mathbb{R}^{d \times d})$ solving for all $\mathsf{v} \in \mathcal{C}^\infty(\Omega;\mathbb{R}^d)$

$$
\int_\Omega \mathsf{T}\cdot \varepsilon(\mathsf{v}) = \int_{\partial \Omega} \mathsf{g}\cdot \mathsf{v}, \qquad \mathsf{T} = \frac{\varepsilon}{\left(1+|\varepsilon|^{\mathfrak{g}}\right)^{\frac{1}{\mathfrak{g}}}}.
$$