# An Integral Framework for Modeling in Continuum Thermodynamics

Martin Heida<sup>1</sup>

<sup>1</sup>TU Dortmund

18.09.2012

#### Outline

- Introduction and Motivation
- 2 Energy and Entropy in Thermodynamical Systems
- 3 Cahn-Hilliard Equation with Dynamic Boundary Conditions
- Gradient Flows and Entropy: A semi-formal introduction
- Outlook

#### Outline

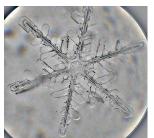
- Introduction and Motivation
- 2 Energy and Entropy in Thermodynamical Systems
- Cahn-Hilliard Equation with Dynamic Boundary Conditions
- Gradient Flows and Entropy: A semi-formal introduction
- Outlook

# Multiphase and Multifluid Systems









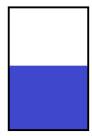
#### Phase Field Models

#### M. Van der Waals 1893/1894

"It is highly probable that the sharp interface observed at the interface between a liquid and its vapor is only ostensible. In fact it seems that there is a small transition zone in which the density continuously decreases."

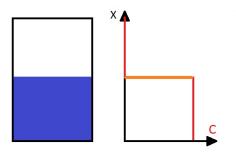
# Phase Field Models: Example

- ullet Consider a system of a tank  $\Omega$  filled with two fluids, say air and water.
- Introduce a function  $c: \Omega \rightarrow [0,1]$  having values
  - $c(x) \equiv 1$  whenever x is occupied by water
  - $c(x) \equiv 0$  whenever x is occupied by air
  - $\triangleright$   $c(x) \in ]0,1[$  whenever x is in the boundary region between water and air



# Phase Field Models: Example

- ullet Consider a system of a tank  $\Omega$  filled with two fluids, say air and water.
- Introduce a function  $c: \Omega \to [0,1]$  having values
  - $c(x) \equiv 1$  whenever x is occupied by water
  - $c(x) \equiv 0$  whenever x is occupied by air
  - $c(x) \in ]0,1[$  whenever x is in the boundary region between water and air



# Phase Field Models: Example

- ullet Consider a system of a tank  $\Omega$  filled with two fluids, say air and water.
- Introduce a function  $c: \Omega \to [0,1]$  having values
  - $c(x) \equiv 1$  whenever x is occupied by water
  - $c(x) \equiv 0$  whenever x is occupied by air
  - ▶  $c(x) \in ]0,1[$  whenever x is in the boundary region between water and air



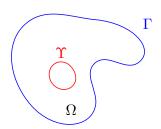
#### Phase Field Models

#### Examples for phase field models

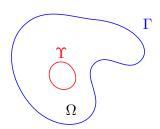
- Korteweg model (1901)
- Cahn-Hilliard model (1958)
- Allen-Cahn model (1979)
- Cahn-Hilliard-Navier-Stokes model (Lowengrub & Truskinovsky 1998)

#### Outline

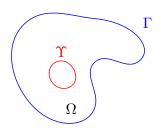
- Introduction and Motivation
- 2 Energy and Entropy in Thermodynamical Systems
- 3 Cahn-Hilliard Equation with Dynamic Boundary Conditions
- 4 Gradient Flows and Entropy: A semi-formal introduction
- Outlook



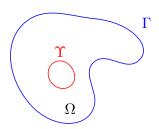
- The most essential parameters in classical equilibrium Thermodynamics: Internal Energy  $\mathcal E$  and Entropy  $\mathcal S$ , depending on extensive variables
- Here: Internal Energy  $\mathcal E$  and Entropy  $\mathcal S$ , depend on several parameters that are intersting to us, in order to provide a complete description of the system
- As the parameters usually are given as functions on  $\Omega$ ,  $\Gamma$ ,  $\Upsilon$ , the quantities  $\mathcal{E}$  and  $\mathcal{S}$  are functionals



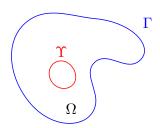
- The most essential parameters in classical equilibrium Thermodynamics: Internal Energy  $\mathcal E$  and Entropy  $\mathcal S$ , depending on extensive variables
- ullet Here: Internal Energy  ${\mathcal E}$  and Entropy  ${\mathcal S}$ , depend on several parameters that are intersting to us, in order to provide a complete description of the system
- As the parameters usually are given as functions on  $\Omega$ ,  $\Gamma$ ,  $\Upsilon$ , the quantities  $\mathcal{E}$  and  $\mathcal{S}$  are functionals



- The most essential parameters in classical equilibrium Thermodynamics: Internal Energy  $\mathcal E$  and Entropy  $\mathcal S$ , depending on extensive variables
- Here: Internal Energy  $\mathcal E$  and Entropy  $\mathcal S$ , depend on several parameters that are intersting to us, in order to provide a complete description of the system
- As the parameters usually are given as functions on  $\Omega$ ,  $\Gamma$ ,  $\Upsilon$ , the quantities  $\mathcal{E}$  and  $\mathcal{S}$  are functionals



- As the parameters usually are given as functions on  $\Omega$ ,  $\Gamma$ ,  $\Upsilon$ , the quantities  $\mathcal E$  and  $\mathcal S$  are functionals
- Examples are
  - ightharpoonup velocity, density, concentrations on  $\Omega$
  - $\blacktriangleright$  normal velocity, tangential velocity, concentration on  $\Gamma$  or  $\Upsilon$
  - Shape of Γ and Υ

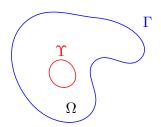


We consider isolated systems, i.e.

• 
$$\frac{d}{dt}\mathcal{E}=0$$
 and

ullet there is no exchange of entropy with the surrounding of  $\Omega$  (to be specified later), in particular,

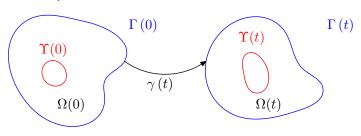
$$\frac{d}{dt}S \ge 0$$



We consider isolated systems, i.e.

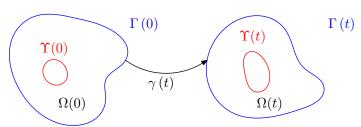
- $\frac{d}{dt}\mathcal{E}=0$  and
- there is no exchange of entropy with the surrounding of  $\Omega$  (to be specified later), in particular,

$$\frac{d}{dt}S \geq 0.$$

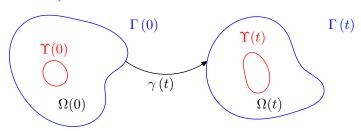


The evolution is given by an evolution trajectory  $\gamma(t)$ , containing information on

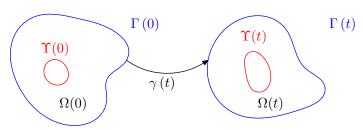
- ullet parameters such as density arrho, velocity  $oldsymbol{v}$  etc.
- shape of  $\Omega(t)$ ,  $\Gamma(t)$  and subdomains  $\Upsilon(t)$



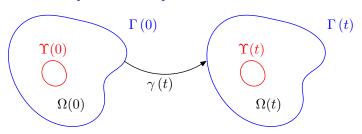
- The dissipation of the system along any valid trajectory  $\gamma(t)$  is given through  $\Xi(\gamma(t), "\partial_t \gamma(t)")$
- any physical trajectory is such that it maximizes  $\Xi$  with respect to the constraint  $\Xi(\gamma(t), \partial_t \gamma(t)) = \frac{d}{dt} S(\gamma(t))$ .
- Physical interpretation (as we will see later):
  - ▶ ≡ adds a (Riemannian) geometry to the space of thermodynamical states.
  - ightharpoonup Any admissible trajectory is such that it follows the steepest decent of  $\mathcal S$  according to this geometry.



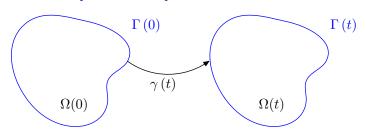
- The dissipation of the system along any valid trajectory  $\gamma(t)$  is given through  $\Xi(\gamma(t), "\partial_t \gamma(t)")$
- any physical trajectory is such that it maximizes  $\Xi$  with respect to the constraint  $\Xi(\gamma(t), \partial_t \gamma(t)) = \frac{d}{dt} S(\gamma(t))$ .
- Physical interpretation (as we will see later):
  - $ightharpoonup \Xi$  adds a (Riemannian) geometry to the space of thermodynamical states.
  - ightharpoonup Any admissible trajectory is such that it follows the steepest decent of  $\mathcal S$  according to this geometry.



- The dissipation of the system along any valid trajectory  $\gamma(t)$  is given through  $\Xi(\gamma(t), "\partial_t \gamma(t)")$
- any physical trajectory is such that it maximizes  $\Xi$  with respect to the constraint  $\Xi(\gamma(t), \partial_t \gamma(t)) = \frac{d}{dt} S(\gamma(t))$ .
- Physical interpretation (as we will see later):
  - ▶ ≡ adds a (Riemannian) geometry to the space of thermodynamical states.
  - ► Any admissible trajectory is such that it follows the steepest decent of S according to this geometry.



- We assume that the shape is preserved
- $\gamma(t)$  is then given by internal variables such as  $\rho$ , v, etc. ....
- we assume there are no further (fixed ore evolving) structures  $\Upsilon \equiv \emptyset$ .



- We assume that the shape is preserved
- $\gamma(t)$  is then given by internal variables such as  $\varrho$ , v, etc. ....
- ullet we assume there are no further (fixed ore evolving) structures  $\Upsilon \equiv \emptyset$ .

#### Outline

- Introduction and Motivation
- 2 Energy and Entropy in Thermodynamical Systems
- 3 Cahn-Hilliard Equation with Dynamic Boundary Conditions
- 4 Gradient Flows and Entropy: A semi-formal introduction
- Outlook

# Quantities and Parameters

$$\mathcal{E} = \int_{\Omega} \varrho E + \int_{\Gamma} E_{\Gamma}$$

$$\mathcal{S} = \int_{\Omega} \varrho \eta(\varrho, c, E, v) + \int_{\Gamma} \eta_{\Gamma}(E_{\Gamma}, c)$$

In  $\Omega$ : Energy  $E = \tilde{\mathbf{e}}(\varrho, c, \eta) + \frac{1}{2} \left| \boldsymbol{v} \right|^2$  where  $\varrho \triangleq$  mass density

 $\hat{oldsymbol{v}} \mathrel{\hat{oldsymbol{v}}} \hat{oldsymbol{v}}$  velocity

 $c \triangleq \mathsf{mass}$  concentration of one of the constituents

 $e = \tilde{e}(\varrho, c, \eta) = \text{internal energy per mass}$ 

 $\eta \triangleq \text{entropy per mass}$ Assume  $\frac{\partial \tilde{\mathbf{e}}}{\partial \eta} > 0$ ,  $\Rightarrow$  $\eta = \tilde{\eta}(\varrho, c, E, v)$  On  $\Gamma$   $E_{\Gamma} = \tilde{E}_{\Gamma}(c, \eta_{\Gamma}) \stackrel{\triangle}{=} \text{surface energy}$   $\eta_{\Gamma} \stackrel{\triangle}{=} \text{surface entropy}$ Assume  $\frac{\partial \tilde{E}_{\Gamma}}{\partial \eta_{\Gamma}} > 0$ ,  $\Rightarrow$   $\eta_{\Gamma} = \tilde{\eta}_{\Gamma}(c, E_{\Gamma})$ 

Using the notation  $\dot{a} = \partial_t a + v \cdot \nabla a$ ,  $\dot{a} = \partial_t a + (\nabla a) v$ , we start from continuum mechanics

$$\dot{\varrho} + \varrho \operatorname{div} \boldsymbol{v} = 0$$
  $\qquad \qquad \varrho \dot{E} - \operatorname{div} \boldsymbol{h} = 0$   $\qquad \qquad \varrho \dot{c} + \operatorname{div} \boldsymbol{j} = \overset{+}{c}$ 

where  $\mathbb{T}$  is the stress tensor, **j** is diffusive flux of c,  $\overset{+}{c}$  is production of c and **h** is the generalized heat flux.

Aim: Find constitutive equations for  $\mathbb{T}$ ,  $\mathbf{h}$ ,  $\mathbf{j}$  and  $\mathbf{c}$ 

Using the notation  $\dot{a} = \partial_t a + v \cdot \nabla a$ ,  $\dot{a} = \partial_t a + (\nabla a) v$ , we start from continuum mechanics

$$\dot{\varrho} + \varrho \operatorname{div} \boldsymbol{v} = 0$$
  $\qquad \qquad \varrho \dot{E} - \operatorname{div} \boldsymbol{h} = 0$   $\qquad \qquad \varrho \dot{c} + \operatorname{div} \boldsymbol{j} = \dot{c}$ 

where  $\mathbb{T}$  is the stress tensor, **j** is diffusive flux of c,  $\overset{+}{c}$  is production of c and **h** is the generalized heat flux.

We assume either

$$\overset{\scriptscriptstyle{}}{c}=0 \quad \Rightarrow \quad {\sf Cahn-Hilliard\ models}$$
  ${f j}={f 0} \quad \Rightarrow \quad {\sf Allen-Cahn\ models}$ 

Using the notation  $\dot{a} = \partial_t a + v \cdot \nabla a$ ,  $\dot{a} = \partial_t a + (\nabla a) v$ , we start from continuum mechanics

$$\dot{\varrho} + \varrho \operatorname{div} \boldsymbol{v} = 0$$
  $\qquad \qquad \varrho \dot{E} - \operatorname{div} \boldsymbol{h} = 0$   $\qquad \qquad \varrho \dot{c} + \operatorname{div} \boldsymbol{j} = \dot{c}$ 

where  $\mathbb{T}$  is the stress tensor,  $\mathbf{j}$  is diffusive flux of c,  $\overset{\scriptscriptstyle +}{c}$  is production of c and  $\mathbf{h}$  is the generalized heat flux.

We assume either

 $\overset{\scriptscriptstyle +}{c}=0 \quad \Rightarrow \quad \mathsf{Cahn}\text{-Hilliard models}$ 

Using the notation  $\dot{a} = \partial_t a + v \cdot \nabla a$ ,  $\dot{a} = \partial_t a + (\nabla a) v$ , we start from continuum mechanics

$$\dot{\varrho} + \varrho \operatorname{div} \boldsymbol{v} = 0$$
  $\qquad \qquad \varrho \dot{E} - \operatorname{div} \boldsymbol{h} = 0$   $\qquad \qquad \varrho \dot{c} + \operatorname{div} \boldsymbol{j} = \dot{c}$ 

where  $\mathbb{T}$  is the stress tensor,  $\mathbf{j}$  is diffusive flux of c,  $\overset{\scriptscriptstyle +}{c}$  is production of c and  $\mathbf{h}$  is the generalized heat flux.

Aim: Find constitutive equations for  $\mathbb{T}$ ,  $\mathbf{h}$ ,  $\mathbf{j}$ ,  $\overset{\oplus}{c}$ ,  $\mathbf{h}_{\Gamma}$ ,  $\overset{\oplus}{E}$  and  $(\mathbb{T}\mathbf{n}_{\Gamma})_{\tau}$ 

We have the following balance equations on  $\Gamma$ :

$$\varrho \partial_t c + \varrho v_{\tau} \cdot \nabla_{\tau} c = \overset{\scriptscriptstyle{\oplus}}{c}$$

$$\partial_t E_{\Gamma} - \operatorname{div}_{\tau} \mathbf{h}_{\Gamma} = \overset{\scriptscriptstyle{\oplus}}{E}$$

Using the notation  $\dot{a} = \partial_t a + v \cdot \nabla a$ ,  $\dot{a} = \partial_t a + (\nabla a) v$ , we start from continuum mechanics

$$\dot{\varrho} + \varrho \operatorname{div} \boldsymbol{v} = 0$$
  $\qquad \qquad \varrho \dot{E} - \operatorname{div} \mathbf{h} = 0$   $\qquad \qquad \varrho \dot{c} + \operatorname{div} \mathbf{j} = \dot{c}$ 

where  $\mathbb{T}$  is the stress tensor,  $\mathbf{j}$  is diffusive flux of c,  $\overset{+}{c}$  is production of c and  $\mathbf{h}$  is the generalized heat flux.

Aim: Find constitutive equations for  $\mathbb{T}$ ,  $\mathbf{h}$ ,  $\mathbf{j}$ ,  $\overset{\circ}{c}$ ,  $\mathbf{h}_{\Gamma}$ ,  $\overset{\circ}{E}$  and  $(\mathbb{T}\mathbf{n}_{\Gamma})_{\tau}$ 

$$\varrho \partial_t c + \varrho \boldsymbol{v}_\tau \cdot \nabla_\tau c = \overset{\scriptscriptstyle \oplus}{c}$$

We have the following balance equations on  $\Gamma$ :

$$\partial_t E_\Gamma - \operatorname{div}_\tau \mathbf{h}_\Gamma = \overset{\scriptscriptstyle\oplus}{E}$$

$$\begin{split} E &= \tilde{E} \left( \eta, \varrho, \boldsymbol{v}, c, \nabla c \right) = \frac{1}{2} \left| \boldsymbol{v} \right|^2 + E_0(\eta, \varrho, c) + \frac{\sigma}{2\varrho} \left| \nabla c \right|^2 \\ E_{\Gamma} &= \tilde{E}_{\Gamma}(\eta_{\Gamma}, c, \nabla_{\tau} c) = \hat{E}(\eta_{\Gamma}, c) + \frac{\sigma_{\Gamma}}{2} \left| \nabla_{\tau} c \right|^2 \; . \end{split}$$

# **Energy conservation**

Local energy conservation:

$$\overset{\scriptscriptstyle \oplus}{E} = - \mathbf{h} \cdot \mathbf{n}_\Gamma$$

yields

$$\frac{d}{dt}\mathcal{E}=0$$

#### Time derivative of $\mathcal S$

$$\mathcal{S} = \int_{\Omega} \varrho \eta(\varrho, c, E, v) + \int_{\Gamma} \eta_{\Gamma}(E_{\Gamma}, c)$$

$$\frac{d}{dt} \mathcal{S} = \int_{\Omega} \varrho \dot{\eta} + \int_{\Gamma} \frac{d}{dt} \eta_{\Gamma}$$

leads to

where we get the time derivatives from constitutive assumptions via

$$\varrho \dot{E} = \varrho \frac{\partial E}{\partial \eta} \dot{\eta} + \varrho \frac{\partial E}{\partial \varrho} \dot{\varrho} + \varrho \frac{\partial E}{\partial v} \cdot \dot{v} + \varrho \frac{\partial E}{\partial c} \dot{c} + \varrho \frac{\partial E}{\partial \nabla c} \cdot \overline{\nabla} \dot{c}, 
\partial_t E_{\Gamma} = \frac{\partial E_{\Gamma}}{\partial \eta_{\Gamma}} \partial_t \eta_{\Gamma} + \frac{\partial E_{\Gamma}}{\partial c} \partial_t c + \frac{\partial E_{\Gamma}}{\partial (\nabla_{\tau} c)} \partial_t (\nabla_{\tau} c).$$

Assume for simplicity  $\vartheta := \frac{\partial E}{\partial \eta} = \vartheta_{\Gamma} := \frac{\partial E_{\Gamma}}{\partial \eta_{\Gamma}}$  on  $\Gamma$ .

# Rate of Entropy Production

$$\frac{d}{dt}\mathcal{S} = \int_{\Omega} \frac{1}{\vartheta} \xi + \int_{\Gamma} \frac{1}{\vartheta} \xi_{\Gamma}$$

We find two local rates of entropy production

$$\xi = \left( \tilde{\mathbb{S}} \cdot \mathbb{D}^{d} \boldsymbol{v} + \frac{\mathbf{q}}{\vartheta} \cdot \nabla \vartheta + (\tilde{m} + p) \operatorname{div} \boldsymbol{v} \right) - \mathbf{j} \cdot \nabla \left( \mu_{c} + \mu \right)$$

$$\xi_{\Gamma} = -\tilde{\mathbb{S}} \cdot \boldsymbol{v}_{\tau} + \mathbf{q}_{\Gamma} \cdot \frac{\nabla_{\tau} \vartheta}{\vartheta} - \mu_{\Gamma,c} \overset{\oplus}{c}$$

where

$$\begin{split} & \tilde{\mathbb{S}} := ((\mathbb{T} \mathbf{n}_{\Gamma})_{\tau} + \mu_{\upsilon,\Gamma}) & \tilde{\mathbb{S}} := (\mathbb{T} + \mathbb{T}_{c}) \\ & \mathbf{q}_{\Gamma} := \mathbf{h}_{\Gamma} + \varrho c \mu_{\Gamma,2} \upsilon_{\tau} - \frac{\partial E_{\Gamma}}{\partial (\nabla_{\tau} c)} \partial_{t} c & \mathbb{D} \upsilon := \frac{1}{2} (\nabla \upsilon + \widetilde{\upsilon}) \\ & \tilde{m} := \frac{1}{3} \mathrm{tr} (\mathbb{T} + \mathbb{T}_{c}) & \mathbb{D}^{d} \upsilon := \mathbb{D} \upsilon - \frac{1}{3} \\ & \mathbf{q} = (\mu_{c} + \mu) \mathbf{j} + \partial_{\nabla c} E \operatorname{div} \mathbf{j} + \mathbf{h} - \mathbb{T} \upsilon \,, \end{split}$$

# Rate of Entropy Production

$$rac{d}{dt}\mathcal{S}=\int_{\Omega}rac{1}{artheta}\xi+\int_{\Gamma}rac{1}{artheta}\xi_{\Gamma}$$

We find two local rates of entropy production:

$$\xi = \left(\tilde{\mathbb{S}} \cdot \mathbb{D}^{d} \boldsymbol{v} + \frac{\mathbf{q}}{\vartheta} \cdot \nabla \vartheta + (\tilde{m} + p) \operatorname{div} \boldsymbol{v}\right) - \mathbf{j} \cdot \nabla \left(\mu_{c} + \mu\right)$$

$$\xi_{\Gamma} = -\tilde{\mathbb{S}} \cdot \boldsymbol{v}_{\tau} + \mathbf{q}_{\Gamma} \cdot \frac{\nabla_{\tau} \vartheta}{\vartheta} - \mu_{\Gamma,c} \overset{\oplus}{c}$$

where

$$\begin{split} \tilde{\mathbb{S}} &:= ((\mathbb{T} \mathbf{n}_{\Gamma})_{\tau} + \mu_{\boldsymbol{\upsilon},\Gamma}) & \tilde{\mathbb{S}} := (\mathbb{T} + \mathbb{T}_{c}) - \tilde{\boldsymbol{m}} \mathbb{I} \\ \mathbf{q}_{\Gamma} &:= \mathbf{h}_{\Gamma} + \varrho c \mu_{\Gamma,2} \boldsymbol{\upsilon}_{\tau} - \frac{\partial E_{\Gamma}}{\partial (\nabla_{\tau} c)} \partial_{t} c & \mathbb{D} \boldsymbol{\upsilon} := \frac{1}{2} (\nabla \boldsymbol{\upsilon} + \nabla \boldsymbol{\upsilon}^{T}) \\ \tilde{\boldsymbol{m}} &:= \frac{1}{3} \mathrm{tr} \left( \mathbb{T} + \mathbb{T}_{c} \right) & \mathbb{D}^{d} \boldsymbol{\upsilon} := \mathbb{D} \boldsymbol{\upsilon} - \frac{1}{3} \left( \mathrm{tr} \mathbb{D} \boldsymbol{\upsilon} \right) \mathbb{I} \\ \mathbf{q} &= (\mu_{c} + \mu) \mathbf{j} + \partial_{\nabla c} \boldsymbol{E} \operatorname{div} \mathbf{j} + \mathbf{h} - \mathbb{T} \boldsymbol{\upsilon} , \end{split}$$

# Maximum Rate of Entropy Production

We assume that global dissipation is given through

$$\Xi(\check{\mathbb{S}},\mathbf{q}_{\Gamma},\overset{\scriptscriptstyle\Phi}{c},\check{\mathbb{S}},\mathbf{q},(\tilde{m}+p),\mathbf{j})=\int_{\Omega} ilde{\xi}(\check{\mathbb{S}},\mathbf{q},(\tilde{m}+p),\mathbf{j})+\int_{\Gamma} ilde{\xi}_{\Gamma}(\check{\mathbb{S}}_{ au},\mathbf{q}_{\Gamma},\overset{\scriptscriptstyle\Phi}{c})$$

while we calculated

$$\frac{d}{dt}\mathcal{S} = \int_{\Omega} \frac{1}{\vartheta} \xi + \int_{\Gamma} \frac{1}{\vartheta} \xi_{\Gamma}$$

with

$$\xi = \left(\tilde{\mathbb{S}} \cdot \mathbb{D}^{d} \boldsymbol{v} + \frac{\mathbf{q}}{\vartheta} \cdot \nabla \vartheta + (\tilde{m} + \rho) \operatorname{div} \boldsymbol{v}\right) - \mathbf{j} \cdot \nabla \left(\mu_{c} + \mu\right)$$

$$\xi_{\Gamma} = -\tilde{\mathbb{S}} \cdot \boldsymbol{v}_{\tau} + \mathbf{q}_{\Gamma} \cdot \frac{\nabla_{\tau} \vartheta}{\vartheta} - \mu_{\Gamma,c} \overset{\oplus}{c}$$

and

$$\tilde{\xi}(\tilde{\mathbb{S}}, \mathbf{q}, (\tilde{m} + p), \mathbf{j}_{1}) = \frac{1}{\nu} \left| \tilde{\mathbb{S}} \right|^{2} + \frac{3}{\nu + 3\lambda} (\tilde{m} + p)^{2} + \frac{1}{\kappa} |\mathbf{q}|^{2} + \frac{1}{J} |\mathbf{j}|^{2}, 
\tilde{\xi}_{\Gamma}(\tilde{\mathbb{S}}_{\tau}, \mathbf{q}_{\Gamma}, \overset{\oplus}{c}) = \frac{1}{\beta} \left| \tilde{\mathbb{S}}_{\tau} \right|^{2} + \frac{1}{\kappa_{\Gamma}} |\mathbf{q}_{\Gamma}|^{2} + \frac{1}{\alpha_{c}} \left| \overset{\oplus}{c} \right|^{2}$$

# Maximum Rate of Entropy Production

We whish to maximize  $\Xi(\check{\mathbb{S}}, \mathbf{q}_{\Gamma}, \overset{\oplus}{c}, \tilde{\mathbb{S}}, \mathbf{q}, (\tilde{m}+p), \mathbf{j})$  w.r.t.  $\check{\mathbb{S}}, \mathbf{q}_{\Gamma}, \overset{\oplus}{c}, \tilde{\mathbb{S}}, \mathbf{q}, (\tilde{m}+p), \mathbf{j}$  under the constraint  $\Xi = \frac{d}{dt} \mathcal{S}.$ 

This is equivalent with

• maximizing  $\widetilde{\xi}(\widetilde{\mathbb{S}},\mathbf{q},(\widetilde{m}+p),\mathbf{j})$  under the constraint

$$\tilde{\xi}(\tilde{\mathbb{S}}, \mathbf{q}, (\tilde{m} + p), \mathbf{j}) = \left(\tilde{\mathbb{S}} \cdot \mathbb{D}^d \boldsymbol{v} + \frac{\mathbf{q}}{\vartheta} \cdot \nabla \vartheta + (\tilde{m} + p) \operatorname{div} \boldsymbol{v}\right) - \mathbf{j} \cdot \nabla \left(\mu_c + \mu\right)$$

and

• maximizing  $\tilde{\xi}_{\Gamma}(\check{\mathbb{S}}_{\tau},\mathbf{q}_{\Gamma},\overset{\oplus}{c})$  under the constraint

$$(\tilde{\xi}_{\Gamma}(\check{\mathbb{S}}_{ au},\mathbf{q}_{\Gamma},\overset{\oplus}{c}) = -\check{\mathbb{S}}\cdot\boldsymbol{v}_{ au} + \mathbf{q}_{\Gamma}\cdot\frac{\nabla_{ au}\vartheta}{\vartheta} - \mu_{\Gamma,c}\overset{\oplus}{c}$$

# Resulting equations

## H., Málek & Rajagopal

$$\partial_{t}\varrho + \operatorname{div}(\varrho \boldsymbol{v}) = 0$$

$$\varrho \partial_{t}\boldsymbol{v} + \varrho(\boldsymbol{v} \cdot \nabla)\boldsymbol{v} - \operatorname{div}(\nu(\varrho, c)\nabla\boldsymbol{v}) + \nabla p + \operatorname{div}(\sigma\nabla c \otimes \nabla c) = 0$$

$$\varrho \partial_{t}c + \varrho \boldsymbol{v}\nabla c - \operatorname{div}(f'(c)\nabla c) + \operatorname{div}\left(\nabla\left(\frac{\sigma}{\varrho}\Delta c\right)\right) = 0$$

with the boundary conditions

## Resulting equations

### H., Málek & Rajagopal

$$\partial_{t}\varrho + \operatorname{div}(\varrho v) = 0$$

$$\varrho \partial_{t}v + \varrho(v \cdot \nabla)v - \operatorname{div}(\nu(\varrho, c)\nabla v) + \nabla p + \operatorname{div}(\sigma\nabla c \otimes \nabla c) = 0$$

$$\varrho \partial_{t}c + \varrho v \nabla c - \operatorname{div}(f'(c)\nabla c) + \operatorname{div}\left(\nabla\left(\frac{\sigma}{\varrho}\Delta c\right)\right) = 0$$

with the boundary conditions

(2011 / 2012)

$$\varrho \partial_t c + \varrho \boldsymbol{v}_{\tau} \cdot \nabla_{\tau} c = \alpha_c \left( \frac{\sigma}{\varrho} \Delta_{\tau} c - \frac{\mu_{\Gamma}}{\varrho} - \nabla c \cdot \boldsymbol{n}_{\Gamma} \right)$$



## Resulting equations

## H., Málek & Rajagopal

$$\begin{array}{rcl} \partial_t \varrho + \operatorname{div} \left( \varrho \boldsymbol{v} \right) & = & 0 \\ \varrho \partial_t \boldsymbol{v} + \varrho \left( \boldsymbol{v} \cdot \nabla \right) \boldsymbol{v} - \operatorname{div} \left( \nu(\varrho, c) \nabla \boldsymbol{v} \right) + \nabla \rho + \operatorname{div} \left( \sigma \nabla c \otimes \nabla c \right) & = & 0 \\ \varrho \partial_t c + \varrho \boldsymbol{v} \nabla c - \operatorname{div} \left( f'(c) \nabla c \right) + \operatorname{div} \left( \nabla \left( \frac{\sigma}{\varrho} \Delta c \right) \right) & = & 0 \end{array}$$

with the boundary conditions

## H. (2011 / 2012)

$$\mathbf{h}_{\Gamma} = \kappa_{\Gamma} \frac{\nabla_{\tau} \vartheta}{\vartheta} - (\varrho c \mu_{\Gamma,2} v_{\tau} - \partial_{z} E_{\Gamma} \partial_{t} c) \qquad (\mathbb{T} \mathbf{n}_{\Gamma})_{\tau} = -\beta v_{\tau} - (\sigma \Delta_{\tau} c - \mu_{\Gamma}) \nabla_{\tau} c$$

$$\mathbf{h} = \mathbb{T} v + \kappa \nabla \vartheta - (\mu_{c} + \mu) \mathbf{j} - \partial_{\nabla c} E \operatorname{div} \mathbf{j} \qquad \stackrel{\oplus}{c} = \alpha_{c} \left( \frac{\sigma}{\varrho} \Delta_{\tau} c - \frac{\mu_{\Gamma}}{\varrho} - \nabla c \cdot \mathbf{n}_{\Gamma} \right)$$

### Outline

- Introduction and Motivation
- 2 Energy and Entropy in Thermodynamical Systems
- Cahn-Hilliard Equation with Dynamic Boundary Conditions
- 4 Gradient Flows and Entropy: A semi-formal introduction
- Outlook

We consider the following system:

$$\begin{split} \partial_t u + \operatorname{div} \left( A(u, \nabla u) \, \nabla \left( \Delta u - s'(u) \right) \right) &\ni 0 & \text{on } (0, T] \times \Omega \,, \\ \left( A(u, \nabla u) \, \nabla \left( \Delta u - s'(u) \right) \right) \cdot \mathbf{n}_\Gamma &= \nabla u \cdot \mathbf{n}_\Gamma &= 0 & \text{on } (0, T] \times \Gamma \,, \\ u(0) &= u_0 & \text{for } t = 0 \,. \end{split}$$

with the weak formulation

$$\begin{split} \int_0^T \int_\Omega \partial_t u \psi - \int_0^T \int_\Omega \left( A(u, \nabla u) \, \nabla \left( \Delta u - s'(u) \right) \right) \cdot \nabla \psi &= 0 \qquad \forall \psi \in L^2(0, T; H^1_{(0)}(\Omega)) \\ \nabla u \cdot \mathbf{n}_\Gamma &= 0 \text{ on } (0, T] \times \Gamma \,, \qquad u(0) = u_0 \text{ for } t = 0 \,. \end{split}$$

• Set 
$$H^1_{(0)}(\Omega) := \left\{ u \in H^1(\Omega) : \int_{\Omega} u = 0 \right\}, \qquad \|u\|_{H^1_{(0)}} = \int_{\Omega} |\nabla u|^2$$

• For  $u \in \tilde{\mathcal{H}} := H^1_{(0)}(\Omega)$ , we define for  $r_1, r_2 \in \mathcal{H} := H^{-1}_{(0)}(\Omega)$ :

$$g_{u}(r_{1}, r_{2}) = \int_{\Omega} \nabla \rho_{1}^{u} A(u, \nabla u) \nabla \rho_{2}^{u} = \int_{\Omega} r_{1} \rho_{2}^{u} = \langle r_{1}, \rho_{2} \rangle_{H_{(0)}^{-1}, H_{(0)}^{1}},$$

where  $A: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^{3 \times 3}$ ,  $A \in C^{1,1}(\mathbb{R} \times \mathbb{R}^n)$ ,  $\xi \cdot A(c,d)\xi \ge a_0 |\xi|^2$   $\forall \xi \in \mathbb{R}^3$  a.e.  $(c,d) \in \mathbb{R} \times \mathbb{R}^3$ , A symmetric and

•  $p_i^u \in H^1_{(0)}(\Omega)$  is the unique solution to

$$-\operatorname{div}\left(A(u,\nabla u)\nabla p_i^u\right)=r_i\quad \text{for }i=1,2.$$



• 
$$g_u(r_1, r_2) = \int_{\Omega} r_1 p_2 = \langle r_1, p_2 \rangle_{H_{(0)}^{-1}, H_{(0)}^1} = \langle r_2, p_1 \rangle_{H_{(0)}^{-1}, H_{(0)}^1}$$

We introduce

$$\begin{split} \mathcal{S}: & \ \mathcal{H} = H_{(0)}^{-1}(\Omega) \to \mathbb{R} \\ \mathcal{S}(u) = \begin{cases} \int_{\Omega} \frac{1}{2} \left| \nabla u \right|^2 + \int_{\Omega} s(u) & \text{for } u \in H_{(0)}^1(\Omega) \\ +\infty & \text{for } u \in \mathcal{H} \backslash H_{(0)}^1(\Omega) \end{cases} \end{split}$$

- ullet with subdifferential (Abels & Wilke 2008)  $d\mathcal{S}(u) = -\Delta(\Delta u s'(u))$
- and the notation:

$$\delta \in 
abla_u \mathcal{S}(u) \quad \Leftrightarrow \quad \exists ilde{\delta} \in d\mathcal{S}(u) \quad s.t. \quad g_u(\delta, arphi) = \left< ilde{\delta}, arphi 
ight>_{\mathcal{H}} \, orall arphi \in \mathcal{H}$$

$$\int_{0}^{T} \int_{\Omega} \partial_{t} u \psi - \int_{0}^{T} \int_{\Omega} \left( A(u, \nabla u) \nabla \left( \Delta u - s'(u) \right) \right) \cdot \nabla \psi = 0 \qquad \forall \psi \in L^{2}(0, T; H^{1}_{(0)}(\Omega))$$

$$\nabla u \cdot \mathbf{n}_{\Gamma} = 0 \text{ on } (0, T] \times \Gamma, \qquad u(0) = u_{0} \text{ for } t = 0.$$

$$\Leftrightarrow$$

$$g_{u}(\partial_{t} u, \varphi) = g_{u}(-\nabla S, \varphi) \quad \forall \varphi \in \mathcal{H}, \quad u(0) = u_{0} \text{ for } t = 0.$$

$$\partial_t u = -\nabla_u \mathcal{S}(u), \qquad \nabla_u \mathcal{S}(u) = -\mathrm{div}\,\left(A(u, \nabla u)\,\nabla\left(\Delta u - s'(u)\right)\right)$$



# **General Setting**

#### **Definition**

We call any tuple  $(\mathcal{H}_0, \tilde{\mathcal{H}}, \mathcal{H}, g)$  of Hilbert spaces  $\mathcal{H}_0, \tilde{\mathcal{H}}, \mathcal{H}$  and a mapping  $g_{\bullet}: \tilde{\mathcal{H}} \to \mathcal{B}(\mathcal{H})$  satisfying 1 and 2 an entropy space:

- $\bullet \ \, \mathcal{H}_0 \hookrightarrow \tilde{\mathcal{H}} \hookrightarrow \mathcal{H} \text{, densely, } \mathcal{H}_0 \hookrightarrow \tilde{\mathcal{H}} \text{ is compactly.}$
- 2  $\exists$   $1 \leq G^* < +\infty$  such that

$$\sqrt{G^*}^{-1} |\langle x, y \rangle_{\mathcal{H}}| \leq |g_u(x, y)| \leq \sqrt{G^*} |\langle x, y \rangle_{\mathcal{H}}| \quad \forall u \in \tilde{\mathcal{H}}, \quad \forall x, y \in \mathcal{H},$$

and : if  $u_n \to u$  strongly in  $\tilde{\mathcal{H}}$  and  $\varphi_n \rightharpoonup \varphi$  weakly in  $\mathcal{H}$  as  $n \to \infty$ , then

$$g_{u_n}(\varphi_n,\psi) \to g_u(\varphi,\psi)$$
 as  $n \to \infty$   $\forall \psi \in \mathcal{H}$ .

# General Setting

#### **Definition**

 $\mathcal{S}: \mathcal{H} \to (-\infty, +\infty]$  is an entropy functional on  $(\mathcal{H}_0, \tilde{\mathcal{H}}, \mathcal{H}, g)$  if it satisfies :

- $\bullet \ \, D(\mathcal{S}) \subset \tilde{\mathcal{H}} \, \text{ and } \, \mathcal{S}: \, \mathcal{H} \to \mathbb{R} \, \text{ being proper, lower semicontinuous.}$

$$\left\{v \in \mathcal{H} \,:\, \mathcal{S}(v) + \frac{1}{2\tau} \min\left\{1, \sqrt{G^*}^{-1}\right\} \left\|v\right\|_{\mathcal{H}}^2 < C\right\}$$

are compact for any  $au < au_*$  and any au > 0 and  $\exists \ S_0 > 0$  s. t.

$$S(v) + \frac{1}{2\tau_*} \min\left\{1, \sqrt{G^*}^{-1}\right\} \|v\|_{\mathcal{H}}^2 \ge -S_0$$
 (1)

**3** 

$$\left\|u\right\|_{\mathcal{H}_{0}}\leq C\left(\mathcal{S}(u)+\left|\nabla S\right|^{2}(u)+1\right)$$

### Theorem (H. 2012)

Let  $d_l \mathcal{S}(u)$  the strong-weak closure of  $d \mathcal{S}(u)$  be convex and closed for all  $u \in \mathcal{H}$ . Then, for each  $u_0 \in \mathcal{H}_0$  and every  $0 < T \in \mathbb{R}$ , there exists a solution  $u \in H^1(0, T; \mathcal{H}) \cap L^2(0, T; \mathcal{H}_0)$  to

$$\partial_t u = -\nabla_{I,u} \mathcal{S}(u)$$

satisfying the Lyapunov inequality

$$\frac{1}{2}\int_0^t g_u(\partial_t u,\partial_t u) + \frac{1}{2}\int_0^t \left|\nabla_l \mathcal{S}(u)\right|^2 + \mathcal{S}(u(t)) \leq \mathcal{S}(u(0)) \qquad \text{for a.e. } t \in (0,T)\,.$$

If  ${\mathcal S}$  additionally fulfills the continuity assumption

$$v_n 
ightarrow v, \ \sup_n \left( \left| 
abla \mathcal{S}(v_n) \right|, \mathcal{S}(v_n) 
ight) < +\infty \ \Rightarrow \ \mathcal{S}(v_n) 
ightarrow \mathcal{S}(v) \ \ \text{as } n \nearrow \infty$$

then, there is a negligible set  $\mathcal{N}\subset (0,T)$  such that

$$\frac{1}{2}\int_{s}^{t}|u'|^{2}+\frac{1}{2}\int_{s}^{t}|\nabla_{l}\mathcal{S}(u)|^{2}+\mathcal{S}(u(t))\leq\mathcal{S}(u(s))\qquad\forall t\in(s,T),\,\forall s\in(0,T)\backslash\mathcal{N}.$$

## **Application**

We get solutions to a variety of problems:

#### H. 2012

$$\begin{array}{ll} \partial_t u + \operatorname{div} \left( A(u, \nabla u) \, \nabla \left( \Delta u - s'(u) \right) \right) \ni 0 & \text{on } (0, T] \times \Omega \,, \\ \left( A(u, \nabla u) \, \nabla \left( \Delta u - s'(u) \right) \right) \cdot \mathbf{n}_{\Gamma} = \nabla u \cdot \mathbf{n}_{\Gamma} = 0 & \text{on } (0, T] \times \Gamma \,, \\ u(0) = u_0 & \text{for } t = 0 \,. \end{array}$$

$$s(\cdot)=s_0(\cdot)+s_1(\cdot)$$
  $s_0\in C^2((a,b)) ext{ convex }, \qquad s_1\in C^2(\mathbb{R})$   $\lim_{x\to a}s_0'(x)=-\infty, \qquad \lim_{x\to b}s_0'(x)=+\infty$ 

# **Application**

We get solutions to a variety of problems:

#### H. 2012

$$\begin{split} \partial_t u &\in -\text{div } \left( A(u, \nabla u) \nabla \left( s'(u) - \Delta u \right) \right) & \text{on } \Omega \,, \\ 0 &= A(u, \nabla u) \nabla \left( s'(u) - \Delta u \right) \cdot \mathbf{n}_\Gamma & \text{on } \Gamma \,, \\ \partial_t u &\in A_\Gamma(u) \left( \Delta_\Gamma u - s'_\Gamma(u) - \nabla u \cdot \mathbf{n}_\Gamma \right) & \text{on } \Gamma \,, \end{split}$$

$$s(\cdot)=s_0(\cdot)+s_1(\cdot)$$
  $s_\Gamma(\cdot)=s_0(\cdot)+s_2(\cdot)$   $s_0\in C^2((a,b)) \text{ convex }, \qquad s_1,s_2\in C^2(\mathbb{R})$   $\lim_{x o a}s_0'(x)=-\infty, \qquad \lim_{x o b}s_0'(x)=+\infty$ 

# **Application**

We get solutions to a variety of problems:

#### H. 2012

$$\begin{array}{ll} \partial_t u - \operatorname{div} \left( A(u, \nabla u, w) \, \nabla w \right) \ni 0 & \text{on } (0, \, T] \times \Omega \,, \\ w + \Delta u - s'(u) = 0 & \text{on } (0, \, T] \times \Omega \,, \\ \left( A(u, \nabla u, w) \, \nabla w \right) \cdot \mathbf{n}_\Gamma = \nabla u \cdot \mathbf{n}_\Gamma = 0 & \text{on } (0, \, T] \times \Gamma \,, \\ u(0) = u_0 & \text{for } t = 0 \,. \end{array}$$

$$s(u) = s_0(u) + s_1(u)$$
  
 $s_0(u) = |u|^p$  for some  $p > 0$   
 $s_1 \in C_b^{3,1}(\mathbb{R})$ 

# Connection to Maximum Rate of Entropy Production

## (2012)

In case there is no convection, we can show that Maximum Rate of Entropy Production is equivalent with a gradient flow, provided we can identify a suitable Hilbert spaces with suitable generalized Riemannian metric tensor.

### Conjecture

Can we discribe evolution of thermodynamical systems equivalently as a "generalized version" of "gradient flows" or via the maximum rate of entropy production???

Here, we mean by generalized gradient flows equations of the form

$$\frac{\Delta u}{\Delta t} = -\nabla_u \mathcal{S}(u)$$

where  $\frac{\Delta u}{\Delta t}$  is a generalized time derivative, such as

$$\frac{\Delta u}{\Delta t} \equiv \varrho \dot{u}, \qquad \frac{\Delta u}{\Delta t} \equiv \partial_t u, \qquad \dots$$

#### Interpretation

The evolution is given in such a way as to locally follow the steepest decent of the entropy in the space of states of a system with respect to a given geometry. With regard to Maupertuis' principle, this geometry can be interpreted as the "inertia" or "inertial mass" of the system.

### Outline

- Introduction and Motivation
- 2 Energy and Entropy in Thermodynamical Systems
- Cahn-Hilliard Equation with Dynamic Boundary Conditions
- 4 Gradient Flows and Entropy: A semi-formal introduction
- Outlook

### Outlook

#### **Open Questions**

- Moving interfaces, membranes, interactions fluid / elastic body
- Better understanding of physical implications
- Is the conjecture true, i.e. are MREP and gradient flows at least informally equivalent?
- In particular: What about Navier-Stokes or Cahn-Hilliard-Navier-Stokes?
- More mathematics is needed