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Multiphase and Multifluid Systems
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Phase Field Models

M. Van der Waals 1893/1894

“It is highly probable that the sharp interface observed at the interface between a
liquid and its vapor is only ostensible. In fact it seems that there is a small
transition zone in which the density continuously decreases.”
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Phase Field Models: Example

@ Consider a system of a tank Q filled with two fluids, say air and water.
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Phase Field Models: Example

@ Consider a system of a tank Q filled with two fluids, say air and water.
@ Introduce a function ¢ : Q — [0, 1] having values

» ¢(x) =1 whenever x is occupied by water
» ¢(x) = 0 whenever x is occupied by air

X4

Yo

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 6 /34



Phase Field Models: Example

@ Consider a system of a tank Q filled with two fluids, say air and water.
@ Introduce a function ¢ : Q — [0, 1] having values

» ¢(x) =1 whenever x is occupied by water
» ¢(x) = 0 whenever x is occupied by air
> c(x) €]0, 1] whenever x is in the boundary region between water and air

XA XA
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Phase Field Models

Examples for phase field models
o Korteweg model (1901)
e Cahn-Hilliard model (1958)
@ Allen-Cahn model (1979)
e Cahn-Hilliard-Navier-Stokes model (Lowengrub & Truskinovsky 1998)
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© Energy and Entropy in Thermodynamical Systems
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Thermodynamical Systems

r

@ The most essential parameters in classical equilibrium Thermodynamics:
Internal Energy £ and Entropy S, depending on extensive variables
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Thermodynamical Systems
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@ The most essential parameters in classical equilibrium Thermodynamics:
Internal Energy £ and Entropy S, depending on extensive variables

@ Here:

Internal Energy £ and Entropy S, depend on several parameters that are
intersting to us, in order to provide a complete description of the system
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Thermodynamical Systems

r

@ The most essential parameters in classical equilibrium Thermodynamics:
Internal Energy £ and Entropy S, depending on extensive variables

@ Here:
Internal Energy £ and Entropy S, depend on several parameters that are
intersting to us, in order to provide a complete description of the system

@ As the parameters usually are given as functions on Q, I', T, the quantities £
and S are functionals
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Thermodynamical Systems

r

@ As the parameters usually are given as functions on Q, I', T, the quantities £
and S are functionals

@ Examples are

» velocity, density, concentrations on Q
» normal velocity, tangential velocity, concentration on ' or T

» shapeof and T
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Thermodynamical Systems
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Thermodynamical Systems

r

We consider isolated systems, i.e.
d
e —¢&=0and
p an
@ there is no exchange of entropy with the surrounding of Q (to be specified

later), in particular,

d
—5 > 0.
dtS_0
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Assumptions

The evolution is given by an evolution trajectory 7(t), containing information on

@ parameters such as density p, velocity v etc.
@ shape of Q(t),I(t) and subdomains T(t)
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Assumptions

@ The dissipation of the system along any valid trajectory +(t) is given through
= ((t)," 0 (1)")
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Assumptions

@ The dissipation of the system along any valid trajectory +(t) is given through
= ((t)," 0 (1)")

@ any physical trajectory is such that it maximizes = with respect to the
constraint = (v(t), 9,y(t)) = £S((t)).
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Assumptions

@ The dissipation of the system along any valid trajectory +(t) is given through
=((t)," 0 (t)")

@ any physical trajectory is such that it maximizes = with respect to the
constraint = (v(t), 9¢y(t)) = LS(7(t)).

@ Physical interpretation (as we will see later):

» = adds a (Riemannian) geometry to the space of thermodynamical states.
» Any admissible trajectory is such that it follows the steepest decent of S
according to this geometry.
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Thermodynamical Systems

@ We assume that the shape is preserved

@ 7(t) is then given by internal variables such as g, v, etc. ....
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Thermodynamical Systems

@ We assume that the shape is preserved
@ 7(t) is then given by internal variables such as g, v, etc. ....

@ we assume there are no further (fixed ore evolving) structures T = {).
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© Cahn-Hilliard Equation with Dynamic Boundary Conditions
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Quantities and Parameters

g:/QE+/EF S:/Qn(97C7E7U)+/nr(Erac)
Q r Q r

In Q: Onrl

Energy E = &(0,c,n) + & |v|* where Er = Er(c,nr) = surface energy
© = mass density nr = surface entropy

v = velocity Assume % >0, =

¢ = mass concentration of one of the nr Z?%F(C, Er)

constituents

e = &(p, c,n) = internal energy per
mass

1 = entropy per mass

Assume g—i >0, =

n :ﬁ(gacv E7U)
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Basic Assumptions

Using the notation d=0:a+v-Va, a=0daa+(Va)v,
we start from continuum mechanics

0+ odivo =0 oE —divh =0

o0 —divT =0 0¢ + divj =¢

where T is the stress tensor, j is diffusive flux of c, Cis production of ¢ and h is
the generalized heat flux.

Aim: Find constitutive equations for T, h, j and ¢
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Basic Assumptions

Using the notation d=0:a+v-Va, a=0daa+(Va)v,
we start from continuum mechanics
0+ odivo =0 oE —divh =0
ot —divT =0 ot +divj =¢

where T is the stress tensor, j is diffusive flux of c, Cis production of ¢ and h is
the generalized heat flux.

c=0 = Cahn-Hilliard models
j=0 = Allen-Cahn models

We assume either
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Basic Assumptions

Using the notation d=0:a+v-Va, a=0daa+(Va)v,
we start from continuum mechanics

0+ odivo =0 oE —divh =0
o0 —divT =0 0¢ + divj =¢

where T is the stress tensor, j is diffusive flux of c, Cis production of ¢ and h is
the generalized heat flux.

. ¢=0 = Cahn-Hilliard models
We assume either
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Basic Assumptions

Using the notation d=0:a+v-Va, a=0daa+(Va)v,
we start from continuum mechanics
0+ odivo =0 oE —divh =0
o0 —divT =0 0¢ + divj =¢
where T is the stress tensor, j is diffusive flux of c, Cis production of ¢ and h is
the generalized heat flux.

[¢3]
Aim: Find constitutive equations for T, h, j, 63, hr, E and (Tnr)_

5%
00:c + pv,-V,.c=cC
We have the following balance equations on I:

5]
atEr - diV-,— hr =E
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Basic Assumptions

Using the notation a=0;a+v-Va, a=0da+(Va)v
we start from continuum mechanics
0+ odivo =0 oE —divh =0
o0 —divT =0 0¢ + divj =¢
where T is the stress tensor, j is diffusive flux of c, Cis production of ¢ and h is
the generalized heat flux.

[¢3]
Aim: Find constitutive equations for T, h, j, gg, hr, E and (Tnr)_

00;c+ ov, - V,c= ¢
We have the following balance equations on I: ©
OtEr —div.hr = E
~ 1 2 g 2
E=E(m 0v.c,Ve)= 7 |vl" + Eo(n, 0,) + 2% Vel
or 2
Er = Er(nr,c,V.c) = E(nr,c) + - Vel
Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012
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Energy conservation

yields

o =3 = E Dae
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Time derivative of S

S:/QTI(QaCa EaU)ﬁL/WF(EﬂC)
Q r

95— [ o+ [ 2
P 9077 rdt77r

where we get the time derivatives from constitutive assumptions via

leads to

E—8E+8—E+8E+BE+ ~-Ve
8Er 5‘Er OEr
3tEr 8 at r+ a 8 + a(v )8 (V C)
Assume for simplicity 9= 6—E = Jr:= % on .
on onr
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Rate of Entropy Production

d 1 1
5= Laer [ 5e
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Rate of Entropy Production

d 1 1
Es—/ﬂgf‘f'/rgfr

We find two local rates of entropy production:

€= (g.Ddu+%-Vﬁ+(m+p)divu) —§-V (ne + 1)

< Avy)
fF:_S"UT'f'qF' 9 _ﬂr,cﬂé
where
S = ((Tnr); + por) §:=(T+Tc) — Ml
(9Er 1 T
qr == hr + ocpur 2v; — 3(V.0) Orc Dv = §(VU +Vu')
m = %tr (T+T,) D% :=Dv — % (trDv) I

q=(pc +p)j+0vcEdivij+h—To,
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Maximum Rate of Entropy Production
We assume that global dissipation is given through

E(gaqrv%vgaqv(m'i_p)aj):/Qg(g,q7(r~n+p)7])+\/r£r(g‘r,qra%)

d 1 1
5= Laer [ 5e

while we calculated

with
_ (& md q . . .
f-(SiD) v+5-V19+(m+p)d|vv>—J-V(Mc+u)
. 0
fF:_S"UT'f'QF' 9 _/il',cﬂg
and
. . .y Lal? 3 - 2 2, 1 .0
E8.a.(m+p)din) = - [8 + =55 (o) + ~lal*+ S iF .
~ oy ® 1« 2 1 2 1 <)
SF(STquaC):B|ST} +K_r|qr| +Ol_c c
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Maximum Rate of Entropy Production

We whish to maximize =(S, q, ¢S, q. (M +p),j) wrt. S qr, ¢S, q, (M +p),j
under the constraint

d
= ES'
This is equivalent with
o maximizing £(S,q, (/M + p),j) under the constraint
&S, q, (m+p),j) = (§-Ddu+ % -w+(fn+p)divu) =i V(e +np)
and

o maximizing &r(S;, qr, Gc?‘) under the constraint

LS & v
a8 = S e e
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Resulting equations
H., Mélek & Rajagopal
Oro+div(ov) = 0

00:v + o (v - V)v —div (v(g, c)Vv) + Vp+div(eVec® V) =
00¢c + pvVec — div (f'(c)Ve) + div (V <%Ac>>

I
o

with the boundary conditions
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Resulting equations
H., Mélek & Rajagopal
Oro+div(ov) = 0

00:v + o (v - V)v —div (v(g, c)Vv) + Vp+div(eVec® V) =
00¢c + pvVec — div (f'(c)Ve) + div (V <%Ac>>

I
o

with the boundary conditions

(2011 / 2012)

00:c + ov, - V,.C = ac (zATC S Ve - nr)
0 0
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Resulting equations
H., Mélek & Rajagopal
Oro+div(ov) = 0

00:v + o (v - V)v —div (v(g, c)Vv) + Vp+div(eVec® V) =
00¢c + pvVec — div (f'(c)Ve) + div (V <%Ac>>

I
o

with the boundary conditions

H. (2011 / 2012)

ARy
hr = RrT — (ocprpv, — 0,Erdyc) (Tnr), = —pv,; — (6Arc — pr)V.c

h=Tv + kVI — (ke + 1) j — OvcEdivj %:aC(EATC—“—;—vc.nr
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Outline

@ Gradient Flows and Entropy: A semi-formal introduction
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Example

We consider the following system:

O+ div (A(u, Vu) V (Au—s'(u))) 20 on (0, T] x Q,
(A(u,Vu)V (Au—5"(u))) - nr=Vu-nr=0 on (0, T]xT,
u(0) = up fort=0.

with the weak formulation

T T
/ / Ocutp — / / (A(u, Vu) V (Au—s'(u))) - Vi =0 vy e 170, T; H(lo)(Q))
o Ja o Ja
Vu-nr=0o0n (0, T] xT, u(0) =wuo for t =0.
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Example

o Set H(lo)(Q) = {u € HY(Q) : / u= 0}7 lull =/ |Vul?
Q © Q

o Foruefl = H1 (), we define for ry, r, € H = H(o) (Q):

o) = [ VoA Va)Te = [ npt = (. po)y g,

where A: R x R" — R33, Ae CLI(R x R"), £ - A(c, d)€ > a [¢]?
VeEeR?ae (c,d) € R x R3, A symmetric and

® pi' € Hp)(Q) is the unique solution to

—div (A(u, Vu)Vpf)=r fori=1,2.

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 23 /34



Example
o gu(n,r)= /Q np2 = <f17P2>H(;)1,H(10) = (fz,P1>H(g)1,H(10)
@ We introduce
S: H=Hgy(Q) —»R

S(u) = Jo 31Vl + fos(u) for ue HY(Q)
+o0 for u € ’H\H(lo)(Q)

o with subdifferential (Abels & Wilke 2008) dS(u) = —A(Au —s'(v))

@ and the notation:

§eV,S(u) & FedS(u) st g )= <5,¢>H Yo eH
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Example

T T
/ /Btuzp —/ / (A(u, Vu) V (Au—s'(u))) - V=0 Vi € L*(0, T; Hip)(Q))
0 Q 0 Q
Vu-nr=0o0n (0, T] xT, u(0) =wo for t =0.
=
8u(0ru, ) = gu(—=VS,p) YoeH, u(0)=u fort=0.

=4
Oru = -V ,8S(u), V.uS(u) = —div (A(u, Vu) V (Au — s'(u)))
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General Setting

Definition

We call any tuple (’Ho,ﬁ,’H,g) of Hilbert spaces #o, H, H and a mapping
8e : H — B(H) satisfying 1 and 2 an entropy space:

Q@ Mo — H — H, densely, Ho < H is compactly.
Q@ 311 < G* < 400 such that

—1 ~
VG [yl < lgu(o )l S VG [ y)y| YueH, Vxy e,

and : if u, — u strongly in  and ©n — ¢ weakly in H as n — oo, then

&u,(¢ns V) = gulp,¥) asn— oo  YpeH.
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General Setting

Definition
S : H — (—o0,400] is an entropy functional on (Ho, H, H, g) if it satisfies :
Q@ D(S) C 7L and S : H — R being proper, lower semicontinuous.

@ I 7. > 0 such that sets
5 1 A *_1 2
{ve’H : S(v)—l—;mm{l,\/G }||v||H<C}

are compact for any 7 < 7, and any C >0and 35, > 0s. t.

1 . -1
S(v) + g min {1L,VE L v]f, > =S, (1)

lully, < € (S(u)+ VS () +1)
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Theorem (H. 2012)

Let d;S(u) the strong-weak closure of dS(u) be convex and closed for all u € H.
Then, for each uy € Hp and every 0 < T € R, there exists a solution
u € HY(0, T;H) N L2(0, T; Ho) to

Oru = -V ,S(v)

satisfying the Lyapunov inequality

%/0 gu(ﬁtu,ﬁtu)—l—%/o V() + S(u(t)) < S(u(0))  forae. t€(0,T).

If S additionally fulfills the continuity assumption

Vo = v, sup (|[VS(vi)|,S(vn)) < +00 = S(vp) = S(v) asn oo

then, there is a negligible set N’ C (0, T) such that

%/ WP+ [ OS@PS(u() < S((s)  Vee (s, T). Vs e O TIW.

v
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Application

We get solutions to a variety of problems:

H. 2012
Oeu +div (A(u, Vu) V (Au —s'(u))) 20 on (0, T] x Q,
(A(u,Vu)V (Au—5"(u)))-nr=Vu-nr=0 on (0, T] xT,
u(0) = up fort=0.
s(-) = () +s()
so € C%((a, b)) convex , s1 € C3(R)
limy— 5 s5(x) = —o0, limy—p s(Xx) = 400
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Application

We get solutions to a variety of problems:

H. 2012

Ou € —div (A(u, Vu)V (s'(u) — Au))
0= A(u,Vu)V (s'(u) — Au) - np
Oru € Ar(u) (Aru — st(u) — Vu - nr)

on Q,
onl,

onl,

s(-) = () +s() sr(1) = so() + %2(°)
so € C?((a, b)) convex , s1,5 € C3(R)
limy— 5 s5(x) = —o0, limy—p sp(Xx) = 400
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Application

We get solutions to a variety of problems:

H. 2012
Oru — div (A(u, Vu,w)Vw) 50 on (0, T] x Q,
w+ Au—s'(u)=0 on (0, T] x Q,
(A(u,Vu,w)Vw) -nr =Vu-nr =0 on (0, T] xT,
u(0) = wo fort=0.

s(u) = so(u) + s1(u)
so(u) = |ul? for some p >0

s1€ CH(R)
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Connection to Maximum Rate of Entropy Production

(2012)

In case there is no convection, we can show that Maximum Rate of Entropy
Production is equivalent with a gradient flow, provided we can identify a suitable
Hilbert spaces with suitable generalized Riemannian metric tensor.
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Conjecture

Can we discribe evolution of thermodynamical systems equivalently as a
“generalized version” of “gradient flows” or via the maximum rate of entropy
production???

Here, we mean by generalized gradient flows equations of the form

Au
— = -V, ,S(u
At u ( )
where % is a generalized time derivative, such as
Au . Au 5
— = ou — =0, ...
At IQ ) At tu,
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Interpretation

The evolution is given in such a way as to locally follow the steepest decent of the
entropy in the space of states of a system with respect to a given geometry.

With regard to Maupertuis’ principle, this geometry can be interpreted as the
“inertia” or “inertial mass” of the system.
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Outlook

Open Questions

@ Moving interfaces, membranes, interactions fluid / elastic body

Better understanding of physical implications

@ Is the conjecture true, i.e. are MREP and gradient flows at least informally

equivalent?

More mathematics is needed

In particular: What about Navier-Stokes or Cahn-Hilliard-Navier-Stokes?
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