
An Integral Framework for Modeling in Continuum
Thermodynamics

Martin Heida1

1TU Dortmund

18.09.2012

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 1 / 34



institution-logo-filenameO

Outline

1 Introduction and Motivation

2 Energy and Entropy in Thermodynamical Systems

3 Cahn-Hilliard Equation with Dynamic Boundary Conditions

4 Gradient Flows and Entropy: A semi-formal introduction

5 Outlook

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 2 / 34



institution-logo-filenameO

Outline

1 Introduction and Motivation

2 Energy and Entropy in Thermodynamical Systems

3 Cahn-Hilliard Equation with Dynamic Boundary Conditions

4 Gradient Flows and Entropy: A semi-formal introduction

5 Outlook

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 3 / 34



institution-logo-filenameO

Multiphase and Multifluid Systems
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Phase Field Models

M. Van der Waals 1893/1894

“It is highly probable that the sharp interface observed at the interface between a
liquid and its vapor is only ostensible. In fact it seems that there is a small
transition zone in which the density continuously decreases.”
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Phase Field Models: Example

Consider a system of a tank Ω filled with two fluids, say air and water.

Introduce a function c : Ω→ [0, 1] having values

I c(x) ≡ 1 whenever x is occupied by water
I c(x) ≡ 0 whenever x is occupied by air
I c(x) ∈]0, 1[ whenever x is in the boundary region between water and air
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Phase Field Models

Examples for phase field models

Korteweg model (1901)

Cahn-Hilliard model (1958)

Allen-Cahn model (1979)

Cahn-Hilliard-Navier-Stokes model (Lowengrub & Truskinovsky 1998)
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Thermodynamical Systems

Υ

Γ

Ω

The most essential parameters in classical equilibrium Thermodynamics:
Internal Energy E and Entropy S, depending on extensive variables

Here:
Internal Energy E and Entropy S, depend on several parameters that are
intersting to us, in order to provide a complete description of the system

As the parameters usually are given as functions on Ω, Γ, Υ, the quantities E
and S are functionals
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Thermodynamical Systems

Υ

Γ

Ω

As the parameters usually are given as functions on Ω, Γ, Υ, the quantities E
and S are functionals

Examples are

I velocity, density, concentrations on Ω

I normal velocity, tangential velocity, concentration on Γ or Υ

I shape of Γ and Υ
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Thermodynamical Systems

Υ

Γ

Ω

We consider isolated systems, i.e.

d

dt
E = 0 and

there is no exchange of entropy with the surrounding of Ω (to be specified
later), in particular,

d

dt
S ≥ 0.
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Assumptions

Υ(0)

Γ (0)

Ω(0)

Υ(t)
Γ (t)

Ω(t)

γ (t)

The evolution is given by an evolution trajectory γ(t), containing information on

parameters such as density %, velocity υ etc.

shape of Ω(t), Γ(t) and subdomains Υ(t)
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Assumptions

Υ(0)

Γ (0)

Ω(0)

Υ(t)
Γ (t)

Ω(t)

γ (t)

The dissipation of the system along any valid trajectory γ(t) is given through
Ξ (γ(t), ”∂tγ(t)”)

any physical trajectory is such that it maximizes Ξ with respect to the
constraint Ξ (γ(t), ∂tγ(t)) = d

dtS(γ(t)).

Physical interpretation (as we will see later):

I Ξ adds a (Riemannian) geometry to the space of thermodynamical states.
I Any admissible trajectory is such that it follows the steepest decent of S

according to this geometry.
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Thermodynamical Systems

Υ(0)

Γ (0)

Ω(0)

Υ(t)

Γ (t)

Ω(t)

γ (t)

We assume that the shape is preserved

γ(t) is then given by internal variables such as %, υ, etc. ....

we assume there are no further (fixed ore evolving) structures Υ ≡ ∅.
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Quantities and Parameters

E =

∫
Ω

%E +

∫
Γ

EΓ S =

∫
Ω

%η(%, c,E ,υ) +

∫
Γ

ηΓ(EΓ, c)

In Ω:
Energy E = ẽ(%, c, η) + 1

2 |υ|
2 where

% =̂ mass density
υ =̂ velocity
c =̂ mass concentration of one of the
constituents
e = ẽ(%, c, η) =̂ internal energy per
mass
η =̂ entropy per mass
Assume ∂ẽ

∂η > 0, ⇒
η = η̃(%, c,E ,υ)

On Γ
EΓ = ẼΓ(c, ηΓ) =̂ surface energy
ηΓ =̂ surface entropy

Assume ∂ẼΓ

∂ηΓ
> 0, ⇒

ηΓ = η̃Γ(c,EΓ)
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Basic Assumptions

Using the notation ȧ = ∂ta + υ · ∇a , ȧ = ∂ta + (∇a)υ ,
we start from continuum mechanics

%̇+ %divυ = 0 %Ė − divh = 0

%υ̇ − divT = 0 %ċ + div j =
+

c

where T is the stress tensor, j is diffusive flux of c,
+

c is production of c and h is
the generalized heat flux.

Aim: Find constitutive equations for T, h, j and
+

c

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 14 / 34
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we start from continuum mechanics

%̇+ %divυ = 0 %Ė − divh = 0
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⊕

E and (TnΓ)τ

We have the following balance equations on Γ:
%∂tc + %υτ · ∇τc =

⊕
c

∂tEΓ − divτ hΓ =
⊕

E

E = Ẽ (η, %,υ, c,∇c) =
1

2
|υ|2 + E0(η, %, c) +

σ

2%
|∇c|2

EΓ = ẼΓ(ηΓ, c,∇τc) = Ê (ηΓ, c) +
σΓ

2
|∇τc|2 .
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Energy conservation

Local energy conservation:
⊕

E = −h · nΓ

yields
d

dt
E = 0
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Time derivative of S

S =

∫
Ω

%η(%, c,E ,υ) +

∫
Γ

ηΓ(EΓ, c)

leads to
d

dt
S =

∫
Ω

%η̇ +

∫
Γ

d

dt
ηΓ

where we get the time derivatives from constitutive assumptions via

%Ė = %
∂E

∂η
η̇ + %

∂E

∂%
%̇+ %

∂E

∂υ
· υ̇ + %

∂E

∂c
ċ + %

∂E

∂∇c
· ∇̇c ,

∂tEΓ =
∂EΓ

∂ηΓ
∂tηΓ +

∂EΓ

∂c
∂tc +

∂EΓ

∂(∇τc)
∂t(∇τc) .

Assume for simplicity ϑ :=
∂E

∂η
= ϑΓ :=

∂EΓ

∂ηΓ
on Γ.
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Rate of Entropy Production

d

dt
S =

∫
Ω

1

ϑ
ξ +

∫
Γ

1

ϑ
ξΓ

We find two local rates of entropy production:

ξ =
(
S̃ · Ddυ +

q

ϑ
· ∇ϑ+ (m̃ + p) divυ

)
− j · ∇ (µc + µ)

ξΓ = −Š · υτ + qΓ ·
∇τϑ
ϑ
− µΓ,c

⊕
c

where

Š := ((TnΓ)τ + µυ,Γ) S̃ := (T + Tc)− m̃I

qΓ := hΓ + %cµΓ,2υτ −
∂EΓ

∂(∇τc)
∂tc Dυ :=

1

2
(∇υ +∇υT )

m̃ :=
1

3
tr (T + Tc) Ddυ := Dυ − 1

3
(trDυ) I

q = (µc + µ) j + ∂∇cE div j + h− Tυ ,

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 17 / 34
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Maximum Rate of Entropy Production
We assume that global dissipation is given through

Ξ(Š,qΓ,
⊕
c , S̃,q, (m̃ + p), j) =

∫
Ω

ξ̃(S̃,q, (m̃ + p), j) +

∫
Γ

ξ̃Γ(Šτ ,qΓ,
⊕
c)

while we calculated
d

dt
S =

∫
Ω

1

ϑ
ξ +

∫
Γ

1

ϑ
ξΓ

with

ξ =
(
S̃ · Ddυ +

q

ϑ
· ∇ϑ+ (m̃ + p) divυ

)
− j · ∇ (µc + µ)

ξΓ = −Š · υτ + qΓ ·
∇τϑ
ϑ
− µΓ,c

⊕
c

and

ξ̃(S̃,q, (m̃ + p), j1) =
1

ν

∣∣∣S̃∣∣∣2 +
3

ν + 3λ
(m̃ + p)2 +

1

κ
|q|2 +

1

J
|j|2 ,

ξ̃Γ(Šτ ,qΓ,
⊕
c) =

1

β

∣∣Šτ ∣∣2 +
1

κΓ
|qΓ|

2 +
1

αc

∣∣∣⊕c∣∣∣2
Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 18 / 34
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Maximum Rate of Entropy Production

We whish to maximize Ξ(Š,qΓ,
⊕
c , S̃,q, (m̃ + p), j) w.r.t. Š,qΓ,

⊕
c , S̃,q, (m̃ + p), j

under the constraint

Ξ =
d

dt
S .

This is equivalent with

maximizing ξ̃(S̃,q, (m̃ + p), j) under the constraint

ξ̃(S̃,q, (m̃ + p), j) =
(
S̃ · Ddυ +

q

ϑ
· ∇ϑ+ (m̃ + p) divυ

)
− j · ∇ (µc + µ)

and

maximizing ξ̃Γ(Šτ ,qΓ,
⊕
c) under the constraint

ξ̃Γ(Šτ ,qΓ,
⊕
c) = −Š · υτ + qΓ ·

∇τϑ
ϑ
− µΓ,c

⊕
c

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 19 / 34
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Resulting equations

H., Málek & Rajagopal

∂t%+ div (%υ) = 0

%∂tυ + % (υ · ∇)υ − div (ν(%, c)∇υ) +∇p + div (σ∇c ⊗∇c) = 0

%∂tc + %υ∇c − div (f ′(c)∇c) + div

(
∇
(
σ

%
∆c

))
= 0

with the boundary conditions

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 20 / 34
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∇
(
σ

%
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with the boundary conditions

(2011 / 2012)

%∂tc + %υτ · ∇τc = αc

(
σ

%
∆τc − µΓ

%
−∇c · nΓ

)
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H. (2011 / 2012)

hΓ = κΓ
∇τϑ
ϑ
− (%cµΓ,2υτ − ∂zEΓ∂tc) (TnΓ)τ = −βυτ − (σ∆τc − µΓ)∇τc

h = Tυ + κ∇ϑ− (µc + µ) j− ∂∇cE div j
⊕
c = αc

(
σ

%
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%
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Example

We consider the following system:

∂tu + div (A(u,∇u)∇ (∆u − s ′(u))) 3 0 on (0,T ]× Ω ,

(A(u,∇u)∇ (∆u − s ′(u))) · nΓ = ∇u · nΓ = 0 on (0,T ]× Γ ,

u(0) = u0 for t = 0 .

with the weak formulation

∫ T

0

∫
Ω

∂tuψ −
∫ T

0

∫
Ω

(
A(u,∇u)∇

(
∆u − s ′(u)

))
· ∇ψ = 0 ∀ψ ∈ L2(0,T ;H1

(0)(Ω))

∇u · nΓ = 0 on (0,T ]× Γ , u(0) = u0 for t = 0 .

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 22 / 34
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Example

Set H1
(0)(Ω) :=

{
u ∈ H1(Ω) :

∫
Ω

u = 0

}
, ‖u‖H1

(0)
=

∫
Ω

|∇u|2

For u ∈ H̃ := H1
(0)(Ω), we define for r1, r2 ∈ H := H−1

(0) (Ω):

gu(r1, r2) =

∫
Ω

∇pu
1 A(u,∇u)∇pu

2 =

∫
Ω

r1pu
2 = 〈r1, p2〉H−1

(0)
,H1

(0)
,

where A : R× Rn → R3×3, A ∈ C 1,1(R× Rn), ξ · A(c, d)ξ ≥ a0 |ξ|2
∀ ξ ∈ R3 a.e. (c, d) ∈ R× R3, A symmetric and

pu
i ∈ H1

(0)(Ω) is the unique solution to

−div (A(u,∇u)∇pu
i ) = ri for i = 1, 2 .
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Example

gu(r1, r2) =

∫
Ω

r1p2 = 〈r1, p2〉H−1
(0)
,H1

(0)
= 〈r2, p1〉H−1

(0)
,H1

(0)

We introduce

S : H = H−1
(0) (Ω)→ R

S(u) =

{∫
Ω

1
2 |∇u|2 +

∫
Ω

s(u) for u ∈ H1
(0)(Ω)

+∞ for u ∈ H\H1
(0)(Ω)

with subdifferential (Abels & Wilke 2008) dS(u) = −∆(∆u − s ′(u))

and the notation:

δ ∈ ∇uS(u) ⇔ ∃δ̃ ∈ dS(u) s.t. gu(δ, ϕ) =
〈
δ̃, ϕ
〉
H
∀ϕ ∈ H
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Example

∫ T

0

∫
Ω

∂tuψ −
∫ T

0

∫
Ω

(
A(u,∇u)∇

(
∆u − s ′(u)

))
· ∇ψ = 0 ∀ψ ∈ L2(0,T ;H1

(0)(Ω))

∇u · nΓ = 0 on (0,T ]× Γ , u(0) = u0 for t = 0 .

⇔

gu(∂tu, ϕ) = gu(−∇S, ϕ) ∀ϕ ∈ H , u(0) = u0 for t = 0 .

⇔

∂tu = −∇uS(u), ∇uS(u) = −div (A(u,∇u)∇ (∆u − s ′(u)))
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General Setting

Definition

We call any tuple (H0, H̃,H, g) of Hilbert spaces H0, H̃, H and a mapping
g• : H̃ → B(H) satisfying 1 and 2 an entropy space:

1 H0 ↪→ H̃ ↪→ H, densely, H0 ↪→ H̃ is compactly.

2 ∃ 1 ≤ G∗ < +∞ such that

√
G∗
−1
|〈x , y〉H| ≤ |gu(x , y)| ≤

√
G∗ |〈x , y〉H| ∀u ∈ H̃, ∀x , y ∈ H ,

and : if un → u strongly in H̃ and ϕn ⇀ ϕ weakly in H as n→∞, then

gun(ϕn, ψ)→ gu(ϕ,ψ) as n→∞ ∀ψ ∈ H .
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General Setting

Definition

S : H → (−∞,+∞] is an entropy functional on (H0, H̃,H, g) if it satisfies :

1 D(S) ⊂ H̃ and S : H → R being proper, lower semicontinuous.

2 ∃ τ∗ > 0 such that sets{
v ∈ H : S(v) +

1

2τ
min

{
1,
√

G∗
−1
}
‖v‖2
H < C

}
are compact for any τ < τ∗ and any C > 0 and ∃ S0 > 0 s. t.

S(v) +
1

2τ∗
min

{
1,
√

G∗
−1
}
‖v‖2
H ≥ −S0 (1)

3

‖u‖H0
≤ C

(
S(u) + |∇S |2 (u) + 1

)
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Theorem (H. 2012)

Let dlS(u) the strong-weak closure of dS(u) be convex and closed for all u ∈ H.
Then, for each u0 ∈ H0 and every 0 < T ∈ R, there exists a solution
u ∈ H1(0,T ;H) ∩ L2(0,T ;H0) to

∂tu = −∇l,uS(u)

satisfying the Lyapunov inequality

1

2

∫ t

0

gu(∂tu, ∂tu) +
1

2

∫ t

0

|∇lS(u)|2 + S(u(t)) ≤ S(u(0)) for a.e. t ∈ (0,T ) .

If S additionally fulfills the continuity assumption

vn → v , sup
n

(|∇S(vn)| ,S(vn)) < +∞ ⇒ S(vn)→ S(v) as n↗∞

then, there is a negligible set N ⊂ (0,T ) such that

1

2

∫ t

s

|u′|2 +
1

2

∫ t

s

|∇lS(u)|2 +S(u(t)) ≤ S(u(s)) ∀t ∈ (s,T ), ∀s ∈ (0,T )\N .
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Application

We get solutions to a variety of problems:

H. 2012

∂tu + div (A(u,∇u)∇ (∆u − s ′(u))) 3 0 on (0,T ]× Ω ,

(A(u,∇u)∇ (∆u − s ′(u))) · nΓ = ∇u · nΓ = 0 on (0,T ]× Γ ,

u(0) = u0 for t = 0 .

s(·) = s0(·) + s1(·)

s0 ∈ C 2((a, b)) convex , s1 ∈ C 2(R)

limx→a s ′0(x) = −∞, limx→b s ′0(x) = +∞
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Application

We get solutions to a variety of problems:

H. 2012

∂tu ∈ −div (A(u,∇u)∇ (s ′(u)−∆u)) on Ω ,

0 = A(u,∇u)∇ (s ′(u)−∆u) · nΓ on Γ ,

∂tu ∈ AΓ(u) (∆Γu − s ′Γ(u)−∇u · nΓ) on Γ ,

s(·) = s0(·) + s1(·) sΓ(·) = s0(·) + s2(·)

s0 ∈ C 2((a, b)) convex , s1, s2 ∈ C 2(R)

limx→a s ′0(x) = −∞, limx→b s ′0(x) = +∞
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Application

We get solutions to a variety of problems:

H. 2012

∂tu − div (A(u,∇u,w)∇w) 3 0 on (0,T ]× Ω ,

w + ∆u − s ′(u) = 0 on (0,T ]× Ω ,

(A(u,∇u,w)∇w) · nΓ = ∇u · nΓ = 0 on (0,T ]× Γ ,

u(0) = u0 for t = 0 .

s(u) = s0(u) + s1(u)

s0(u) = |u|p for some p > 0

s1 ∈ C 3,1
b (R)
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Connection to Maximum Rate of Entropy Production

(2012)

In case there is no convection, we can show that Maximum Rate of Entropy
Production is equivalent with a gradient flow, provided we can identify a suitable
Hilbert spaces with suitable generalized Riemannian metric tensor.
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Conjecture

Can we discribe evolution of thermodynamical systems equivalently as a
“generalized version” of “gradient flows” or via the maximum rate of entropy
production???
Here, we mean by generalized gradient flows equations of the form

∆u

∆t
= −∇uS(u)

where ∆u
∆t is a generalized time derivative, such as

∆u

∆t
≡ %u̇ ,

∆u

∆t
≡ ∂tu , . . . . . .
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Interpretation

The evolution is given in such a way as to locally follow the steepest decent of the
entropy in the space of states of a system with respect to a given geometry.
With regard to Maupertuis’ principle, this geometry can be interpreted as the
“inertia” or “inertial mass” of the system.
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Outlook

Open Questions

Moving interfaces, membranes, interactions fluid / elastic body

Better understanding of physical implications

Is the conjecture true, i.e. are MREP and gradient flows at least informally
equivalent?

In particular: What about Navier-Stokes or Cahn-Hilliard-Navier-Stokes?

More mathematics is needed

Martin Heida (TU Dortmund) Integral Framework for Modeling in CT 18.09.2012 34 / 34


	Introduction and Motivation
	Energy and Entropy in Thermodynamical Systems
	Cahn-Hilliard Equation with Dynamic Boundary Conditions
	Gradient Flows and Entropy: A semi-formal introduction
	Outlook

