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Preprint no. 2014-26

http://ncmm.karlin.mff.cuni.cz/



Convergence to equilibrium for solutions of an abstract
wave equation with general damping function
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1 Another introduction

This work has been inspired by a result presented in Chergui [4]. In particular, Chergui
has studied the following semilinear damped wave equation

utt + |ut|αut −∆u = f(u, x). (1)

He proved that every bounded solution is relatively compact and that every relatively
compact solution converges to an equilibrium point for certain values of α, where the set
of admissible α’s depends on the Lojasiewicz exponent of the operator ∆ + f(·, x).

The main goal of this paper is to study the above equation with more general damping
functions and obtain convergence to equilibrium for relatively compact solutions for a large
class of damping functions. We will prove our result in a more general setting assuming
an abstract operator M(u) instead of ∆u− f(u, x).

utt(t) + g(|ut(t)|)ut(t) = M(u(t)), t > 0, (2)

2 Introduction

Let us denote V := H1
0 (Ω), H := L2(Ω), V ′ := H−1(Ω), where Ω ⊂ RN is open and

bounded. Let E ∈ C2(V ), M := E ′ ∈ C1(V, V ′) and g : [0,+∞)→ [0,+∞). Consider the
following problem

utt + g(|ut|)ut = M(u(t)), t > 0 (3)

with initial values
u(0) = u0 ∈ V, u̇(0) = u1 ∈ H.

Let us assume there exists a solution u ∈ C1(R+, H) ∩ C(R+, V ) such that u2
t · g(ut) ∈

L1(R+, L
1(Ω)) and assume that the trajectory (u(t), ut(t))t≥0 is relatively compact in V×H.
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Then there exists a sequence tn → +∞ such that (u(tn), ut(tn)) converge to (ϕ, ψ) ∈ V ×H
and one can show that ψ = 0 (see [4]). The question we are interested in is

Is lim
t→+∞

u(t) = ϕ? (Q)

This problem was studied by Chergui in [4] for functions g(z) = zα, α ∈ (0, 1). The
answer was positive (under suitable assumptions on M) if α satisfies the following two
conditions:

(1) 0 < α < θ
1−θ , where θ is a ‘Lojasiewicz exponent’ depending on M and E,

(2) α < 4
N−2

.
Condition (1) says that the damping term g(|ut|)ut is not too small near zero (which

seems to be reasonable condition). It also estimates the growth at infinity but it can be
seen from the proof that we do not need this estimate. In any case, the decay at zero
cannot be u2

t or faster. Condition (2) says that the growth of g at +∞ is not too fast
(a Sobolev imbedding is needed in the proof but it is not clear, whether bigger damping
should destabilize the system) and also that the growth of g at zero is not too small (but
we will show that this estimate at zero is not necessary). From physical interpretation we
would say that the bigger is the damping term, the better will be the convergence or the
stabilisation effect.

We give positive answer to the question (Q) for certain more general functions g. Let us
first formulate the assumptions and prove the result with these assumptions (Section 2). In
Section 3, we give some comments and examples of functions g and finally we reformulate
the Theorem with more clear assumptions on the damping function g. In the last section,
we mention some corollaries for ordinary second order equations.

3 Main result

Let Ω ⊂ RN be a bounded domain, H := L2(Ω), V := H1
0 (Ω) and V ′ be the dual space to

V , V ↪→ H ↪→ V ′. We will usually denote real numbers by s, r, vectors in RN by z, w.
Letters u, v will be used for members of V ′ (and its subspaces V , H) or functions of two
variables, e.g. u ∈ C(R+, H). If u is a function of t ∈ R and x ∈ RN , we often write u(t)
instead of u(t, ·).

By |z| we denote the norm in RN (or absolute value in R). We will denote ‖ · ‖ the
norm in H and ‖ · ‖∗ the norm in V ′ and similarly the scalar products 〈·, ·〉 and 〈·, ·〉∗. By
BV (ϕ, ε) we denote the open ball in V with radius ε and centered at ϕ. We denote by
K : V ′ → V the duality mapping given by 〈u, v〉∗ = 〈u,Kv〉, u ∈ H, v ∈ V ′.

Let p := 2N
N+2

for N > 2 and p := 1 for N ≤ 2. In this way Lp(Ω) is embedded to V ′

since V is embedded to Lq(Ω) with q ≤ 2N
N−2

. Since p < 2 and p′ = 2N
N−2

> 2, we have

V ↪→ Lp
′
↪→ H ↪→ Lp ↪→ V ′ for N > 2, and with p = 1, p′ = ∞ for N = 2, too. Further

〈u, v〉V ′,V = 〈u, v〉Lp,Lp′ = 〈u, v〉H , u ∈ H, v ∈ V . For a function g̃ : R → R we define
g̃1(z) := zg̃(z) and g̃2(z) := z2g̃(z) and similarly for h we define h1, h2. For the damping
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function g : R → R we define g1 : RN → RN a g2 : RN → R by g1(z) := g(|z|)z and
g2(z) := 〈g1(z), z〉 = g(|z|)|z|2.

We introduce our assumptions. Let us start with definition of a KL–function. We say
that Θ : R+ → R+ is a KL–function if it is nondecreasing, sublinear (Θ(s+r) ≤ Θ(s)+Θ(r)
for all r, s ≥ 0) and satisfies Θ(s) > 0 for all s > 0 and Θ(s) ≤ c

√
s for some c > 0 and all

s ∈ [0, τ ] (for some τ > 0).

Remark 3.1. (i) Since the assumptions on Θ below ((e1) and (h2)) involve only arguments
near zero, we could define a KL–function on a neighborhood of zero only (any such function
can be extended to R+ such that it has the above properties on the whole R+.

(ii) The sublinearity assumption could be weakened to Θ(s + r) ≤ C(Θ(s) + Θ(r)) for
some C > 0 and all r, s ≥ 0.

Our assumptions on the operator E are following.
(E) Assume that E ∈ C2(V ) and M := E ′ ∈ C1(V, V ′) satisfy:

(e1) there exists a KL–function Θ such that E satisfies the Kurdyka- Lojasiewicz gra-
dient inequality with function Θ on a neighborhood of NM := {ϕ ∈ V : M(ϕ) = 0}, i.e.,
for each ϕ ∈ NM there exists η, C > 0 such that

‖E ′(u)‖∗ ≥ CΘ(|E(u)− E(ϕ)|) (4)

for all u ∈ BV (ϕ, η),
(e2) for all u ∈ V , KM ′(u) extends to a bounded operator on H and sup ‖KM ′(u)‖L(H)

is finite when u ranges over a compact subset of V .
Let us mention that Chergui ([4]) works with M(u) = ∆u− f(x, u) which corresponds

to E(u) =
∫

Ω
1
2
|∇u|2−F (x, u)dx, where F (x, u) :=

∫ u
0
f(x, s)ds. It is shown in [4] that (if

f satisfies certain assumptions) this operator E satisfies  Lojasiewicz gradient inequality

‖E ′(u)‖∗ ≥ C(|E(u)− E(ϕ)|)1−θ (5)

with some θ ∈ [0, 1/2) in a neighborhood of NM .  Lojasiewicz inequality (5) is a special
case of Kurdyka– Lojasiewicz inequality (4) with a KL–function Θ(s) = s1−θ. It is easy to
see that Chergui’s operator M satisfies (e2), as well. Conditions (e1), (e2) also appear in
[5] (with (5) instead of (4)), where linear damping is considered.

Now, we introduce our assumption on the damping function.
(G) The function g : [0,+∞)→ R+ is continuous on (0,+∞) and there exists τ > 0 such
that

(g1) there exist C2 > 0 such that g(s) ≤ C2 on [0, τ).
(g2) there exist C3 > 0 such that C3 ≤ g(s) on [τ,+∞).
(g3) if N > 2 then there exist C4 > 0 such that g(s) ≤ C4s

4/(N−2) on [τ,+∞).
(H) For τ from condition (G) there exists a concave nondecreasing function h : [0, τ ]→ R+

with h(0) ≥ 0 such that
(h1) g ≥ h on [0, τ ]
(h2) function s 7→ (Θ(s)h(Θ(s)))−1 belongs to L1([0, τ ])
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(h3) function ψ(s) := h2(
√
s) is convex on [0, τ ].

We can see that no monotonicity is needed, only some estimates from above and from
below. Clearly, Chergui’s damping function sα, α < 4/(N − 2) satisfies (G)and it also
satisfies (H)with h(s) := sα, where our condition (h2) corresponds to Chergui’s condition
α ∈ [0, θ/(1−θ)). This is the condition coupling the damping function g with the operator
E.

We say that u ∈ W 1,1
loc (R+, V ) ∩W 2,1

loc (R+, H) is a strong solution to (3) if (3) holds in
V ′ for a.e. t > 0. The omega-limit set of u is

ωV (u) = {ϕ ∈ V : ∃ tn ↗ +∞, ‖u(tn)− ϕ‖V = 0}.

Theorem 3.2. Let E and g satisfy (E), (G)and (H). Let u be a strong solution to (3)
such that ⋃

t≥0

{(u(t), u̇(t))} is precompact in V ×H

and ϕ ∈ ωV (u). Then limt→+∞ ‖u(t)− ϕ‖V + ‖u̇(t)‖ = 0.

Remark 3.3. Assumptions (G)and (H)say that no monotonicity of g is needed, we need
only some estimates near zero and near infinity. Condition (H), which estimates g from
below on a neighborhood of zero, is more complicated than the others. In fact, this condition
is trivial if lim infs→0+ g(s) > 0, since then a small constant function h works (h2) is
satisfied due to Θ(s) ≤ c

√
s).

If lim infs→0+ g(s) = 0, then necessarily h(0) = 0. Condition (h2) says that the growth
of h at zero must be steep enough. In fact, together with condition (Θ) (Θ(s) ≤ c

√
s)

we have that h′+(0) = +∞ and if lims→0+ g(z) = 0, then also g′+(0) = +∞. Assumption
(h3) is satisfied e.g. if h is increasing and h1 is convex (easy computations). Here the
first condition (h increasing) follows from concavity of h and h′+(0) = +∞ (we can take τ
smaller if neccessary). Finally, let us mention that every function

h(s) := sα(ln(1/s))α1(ln ln(1/s))α2 . . . (ln . . . ln(1/s))αn

with α ∈ (0, 1), n ∈ N, αi ∈ R satisfies condition (h3). This last assertion can be shown
by computing the first derivative of h and the second derivative of h1.

4 An equivalent set of assumptions

In this section, we will introduce another set of assumptions ((G0), (G̃), (Γ)) and show
that these assumptions are equivalent to assumptions (G), (H). These new assumptions
are motivated by the proof of Theorem 1.4 in [4]. Reading that proof carefully and trying
to minimize the assumptions needed lead us to this set and we will prove the assertion of
Theorem 3.2 under these new assumptions. Here we show that the old assumptions imply
the new ones. And we also show the opposite implication which says in some sense that
these assumptions are the best possible if we want to use the method from [4]. Here are
the new assumptions:
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(G0) there exists c3 > 0 such that g(s) ≤ c3s
4/(N−2) on a neigborhood of infinity (only if

N > 2),
(G̃) There exists g̃ : R+ → R+ positive on (0,+∞), such that

(g̃1) there exists c1 > 0 such that g ≥ c1g̃ on R+,
(g̃2) g̃ is concave on R+ and g̃(0) ≥ 0,
(g̃3) function ψ defined by ψ(s) := g̃2(

√
s) is convex on R+,

(g̃4) function s 7→ (Θ(s)g̃(Θ(s)))−1 belongs to L1([0, 1]).
(Γ) There exists a Young function γ : R+ → R+ (convex with γ(0) = 0, lims→+∞ γ(s) =
+∞) such that

(γ1) there exists d1 > 0 such that γ(|g1(z)|) ≤ d1g2(z) on Rn,
(γ2) there exists d2 > 0 such that γ(s) ≥ d2s

2 on a neighborhood of zero,
(γ3) the function γ̃ defined by γ̃(s) := γ(s1/p) is convex on R+.
(γ4) for every K > 0 there exists C(K) such that for all s > 0 it holds that γ(Ks) ≤

C(K)γ(s).
We say that function f : R+ → R+ has property K if for every K > 0 there exists

C(K) such that for all s > 0 it holds that f(Ks) ≤ C(K)f(s). So, (γ4) says that γ
has property K. Typically, nondecreasing functions with polynomial growth do have this
property, functions with exponential growth does not.

Lemma 4.1. Condition (G̃) implies that
(g̃5) g̃ is nondecreasing on R+,
(g̃6) sg̃′±(s) ≤ g̃(s) on R+,
(g̃7) g̃ has property K,
(g̃8) ψ has property K.

Proof. (g̃5), (g̃6) follow immediately from (g̃2) and positivity of g̃. (g̃7) holds with C(K) =
1 for K ≤ 1 since g̃ is nondecreasing and C(K) = K for K > 1 since g̃ is concave and
g̃(s) ≥ 0. We show that (g̃8) follows from (g̃7). In fact,

ψ(Ks) = Ksg̃(
√
Ks) ≤ KsC(

√
K)g̃(

√
s) = KC(

√
K)ψ(s).

Lemma 4.2. Denote by δ the convex conjugate function to γ. Then (γ2) is equivalent to
δ(s) ≤ d3s

2 on a neighborhood of zero for some d3 > 0.

Proof. By definition δ(r) = sups≥0(rs − γ(s)). From the shape of γ it follows that the
maximizer s0 of rs− γ(s) is small if r is small. Hence, maxs≥0(rs− γ(s)) ≤ maxs≥0(rs−
d2s

2) = r2/(2d2)2. And the converse implication γ(s) = maxr≥0(sr− δ(r)) ≥ maxr≥0(sr−
d3r

2) = s2/(2d3)2.

Proposition 4.3. The following are equivalent

(i) (G0), (G̃), (Γ)

(ii) (G), (H).

5



Proof. (i) ⇒ (ii): Upper bound on [τ,+∞), condition (g3), follows from (G)0 on a neigh-
borhood of infinity [K,+∞) and from continuity of g on the compact interval [τ,K]. Lower
bound on [τ,+∞), condition (g2), follows from positivity and concavity of g̃ and inequality
(g̃1). Concerning the upper bound on [0, τ) (condition (g1)) we distinguish two cases. The
first case lims→0+ sg(s) 6= 0 leads to contradiction. In fact, taking sk → 0, sk > 0 with
skg(sk) ≥ c > 0 and dividing the inequality in (γ1) by |g1(|z|)| we obtain

γ(skg(sk))

skg(sk)
≤ d1sk.

Here, the right-hand side tends to zero as k → ∞ and the left-hand side does not since
γ(r) ≥ ar for r ∈ [c,+∞) for some a > 0 (γ is increasing and convex). In the second case
lims→0+ sg(s) = 0 we have γ(sg(s)) ≥ ds2g(s)2 and γ(g1(s)) ≤ g(s)s2, hence g(s) ≤ C.
Condition (H)follows immediately taking h := c1g̃ on [0, τ ].

(ii) ⇒ (i): (G)0 follows immediately from (g3). To show (Γ) let us define

γ(s) :=

{
c1s

2 for s ∈ [0, τ)

c2s
p − c3 for s ∈ [τ,+∞),

where c1, c2, c3 > 0 are such that γ is continuous in τ and convex, i.e.,

γ−(τ) = c1τ
2 = c2τ

p − c3 = γ+(τ). (6)

γ′−(τ) = 2c1τ ≤ pc2τ
p−1 = γ′+(τ). (7)

Then γ is a Young function and we show that it satisfies (γ2)–(γ4). Since its Young
conjugate on [0, τ) is again a multiple of s2, (γ2) holds. For K ≤ 1 (γ4) holds with
C(K) = 1. For K > 1 we distinguish three cases: 1. if s < τ/K, then γ(Ks) = c1K

2s2 =
K2γ(s). 2. if s ∈ [τ/K, τ ], then

γ(Ks) = c2K
psp − c3 =

c2K
psp − c3

c1s2
· γ(s) ≤ max

{
c2K

psp − c3

c1s2
; s ∈ [τ/K, τ ]

}
γ(s).

3. if s > τ , then

γ(Ks) = c2K
psp − c3 ≤

c2K
pτ p − c3

c2τ p − c3

γ(s),

where the last inequality holds since the function

s 7→ c2K
psp − c3

c2sp − c3

is decreasing on (τ,+∞). Then we take C(K) as maximum of the three numbers on the
right-hand sides and (γ4) is proven.

Condition (γ3) clearly holds on [0, τ p], since γ̃(s) = c1s
2/p is convex (p < 2). On

(τ p,+∞) we have γ̃(s) = c2s− c3, so it is convex again. Hence, if

γ̃′−(τ) =
2c1

p
τ 2/p−1 ≤ c2 = γ̃′+(τ) (8)
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holds, then γ̃ is convex on R+.
Let us take c2 > 0 arbitrarily and then take c1 > 0 small enough such that (7), (8) hold

and c1τ
2 < c2τ

p. Finaly, define c3 such that (6) holds (c3 > 0).
To show (γ1) we first take any z satisfying |g1(z)| < τ . Then

γ(|g1(z)|) = c1|z|2g(|z|)2 ≤ d1g(|z|)|z|2 = d1g2(|z|)

if d1 ≥ c1 sup{g(|z|) : |g1(z)| ≤ τ} (the supremum is finite, since the set is compact and g
is bounded on [0, τ ]). If z is such that |g1(z)| ≥ τ then

γ(|g1(z)|) ≤ c2|z|pg(|z|)p = g(|z|)|z|2 · c2g(|z|)p−1|z|p−2. (9)

We need to show that g(|z|)p−1|z|p−2 is bounded on M := {z : |g1(z)| ≥ τ}. It is clear if
p = 1 since the closure of M does not contain zero. If p > 1 and |z| ≥ τ , then

g(|z|) ≤ c3|z|4/(N−2) = c3|z|
2−p
p−1 , therefore c2g(|z|)p−1|z|p−2 ≤ c2c3.

For z ∈M , z ≤ τ , both 1/|z| and g(|z|) are bounded from above by positive constants, so
g(|z|)p−1|z|p−2 is bounded. (Γ) is proven.

Now, we will prove (G̃). If h(0) > 0, then g is bounded from below on R+ by a
positive constant and we define g̃ ≡ 1. This function satisfies (g̃1) with c1 small enough
and conditions (g̃2)–(g̃4) are obvious.

If h(0) = 0, then h′− is positive on a neighborhood of zero (see Remark 3.3). Take
δ ∈ (0, τ) such that h′−(δ) > 0 and h(δ) < C3 := infs≥τ g(s). Let us define

g̃(s) :=

{
h(s)/2 for s ∈ [0, δ)

h(δ)/2 + c5/δ − c5/s for s ∈ [δ,+∞).

We show that if c5 is small enough (in particular c5 ≤ h(δ)δ/2, c5 ≤ h′−(δ)δ2/2), then g̃

satisfies (G̃) (observe that for such c5 we have g̃(s) ≤ h(δ) for all s).
Clearly, g̃ is positive and continuous on (0,+∞). We will show (g̃1) with c1 = 1. For

s ∈ (0, δ) we have g̃(s) ≤ h(s) ≤ g(s). For s ∈ [δ, τ ] we have g̃(s) ≤ h(δ) ≤ h(s) ≤ g(s).
For s ∈ (τ,+∞) we have g̃(s) ≤ h(δ) ≤ C3 ≤ g(s).

Clearly, g̃ is concave on (0, δ) and (δ,+∞). Moreover, we have

g̃′−(δ) = h′−(δ)/2 ≥ c5/δ
2 = g̃′+(δ)

and g̃ is concave on R+, i.e. (g̃2) holds.
We show convexity of function ψ(s) := g̃2(

√
s) = sg̃(

√
s). On s ∈ (0, δ2) convexity

follows from (h3). For s > δ2 we have

ψ′′(s) = (sh(δ)/2 + sc5/δ − c5

√
s)))′′ = c5

1

4
s−3/2 > 0.

For s = δ2 we have

ψ′−(δ2) = h(δ) + δ2h′−(δ)
1

2δ
> h(δ), ψ′+(δ2) = h(δ)/2 + c5/δ − c5

1

2δ
< h(δ).

So, ψ is convex on R+, (g̃3) holds. Condition (g̃4) follows immediately from (h2) and the
proof is complete.
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5 Proof of Theorem 3.2

Let the assumptions (E), (G), (H) or equivalently (E), (G0), (G̃), (Γ) hold. We start with
the following lemma

Lemma 5.1. If u is a strong solution to (3), then

(i) t 7→ g2(ut(t)) ∈ L1(R+, L
1(Ω)),

(ii) ‖ut(t)‖ → 0 for t→ +∞,

(iii) ϕ ∈ ωV (u) then M(ϕ) = 0 (ω(u) ⊂ NM).

Proof. (i) Take the scalar product (resp. duality) of the equation (3) with ut and integrate
over [s, T ]. We obtain

1

2
‖ut(T )‖2 − 1

2
‖ut(s)‖2 +

∫ T

s

∫
Ω

g2(ut(t))dt = E(u(T ))− E(u(s)).

This implies that E(u(·))− 1
2
‖ut(·)‖2 is nonincreasing. Relative compactness of the range

then yields that t 7→ g2(ut(t)) ∈ L1(R+, L
1(Ω)).

(ii) follows from Theorem 2.8 in [2].
(iii) Let ϕ ∈ ωV (u) and tn → +∞, u(tn)→ ϕ in V . Then

u(tn + s) = u(tn) +

∫ tn+s

tn

ut(r)dr

Since the integral tends to zero in L2(Ω), compactness of the trajectory implies that u(tn+
s) → ϕ for every s ∈ [0, 1] in V (Otherwise there exists s ∈ [0, 1] and ε > 0, such that
‖u(tnk) − ϕ‖V ≥ ε, by compactness we can take a subsequence and a ϕ̃ 6= ϕ such that
‖u(tnkl )− ϕ̃‖V → 0, so ‖u(tnkl )− ϕ̃‖H → 0, so ϕ̃ = ϕ, contradiction).

The following equalities hold in V ′:

M(ϕ) =

∫ 1

0

M(ϕ)ds = lim
n→∞

∫ 1

0

M(u(tn + s))ds

= lim
n→∞

∫ 1

0

utt(tn + s) + g1(ut(tn + s))ds

= lim
n→∞

ut(tn + 1)− ut(tn) +

∫ tn+1

tn

g1(ut(s))ds = lim
n→∞

∫ tn+1

tn

g1(ut(s))ds

(the second equality follows from Lebesgue dominated convergence theorem and the last
one from (ii)). We show that last limit is equal to zero. Let τ be from (G). On Ωs,τ :=
{x ∈ Ω : |ut(x, s)| < τ} we have |g1(ut)| ≤ C2|ut| by (g1). On Ω′s,τ := Ω \ Ωs,τ we have
|g1(ut)|p ≤ d1g2(ut) (by (g3) and the choice of p). Hence,∫ tn+1

tn

‖g1(ut(s))‖∗ds ≤ C

∫ tn+1

tn

‖g1(ut(s))‖Lp(Ω)ds

8



≤ C

∫ tn+1

tn

(∫
Ωs,τ

C2|ut(s, x)|pdx

)1/p

ds+ C

∫ tn+1

tn

(∫
Ω′s,τ

d1g2(ut(s, x))dx

)1/p

ds.

The first integral converges to zero, since ‖ut(s)‖Lp(Ω) ≤ c‖ut(s)‖L2(Ω) → 0 as s→ +∞ by
(ii). The second integral to power p can be estimated by Jensen’s inequality by

C̃

∫ tn+1

tn

∫
Ω

g2(ut(s, x))dxds

and this tends to zero by (i).

Lemma 5.2. There exists C > 0 such that for every v ∈ L2(Ω) it holds that

g̃(‖v‖∗)‖v‖2 ≤ Cψ(‖v‖2) and ψ(‖v‖2) ≤ C

∫
Ω

g2(v(x))dx,

where ψ is from (g̃3).

Proof. The following computation holds

g̃(‖v‖∗)‖v‖2 ≤ g̃(c‖v‖)‖v‖2 ≤ Cg̃(‖v‖)‖v‖2 = Cψ(‖v‖2),

since g̃ is nondecreasing (first inequality) and has property K (second inequality). The first
estimate is proven. We show the second estimate. By Jensen’s inequality (ψ is convex) we
have

ψ

(
1

|Ω|

∫
Ω

|v|2
)
≤ 1

|Ω|

∫
Ω

ψ(|v|2).

It follows that∫
Ω

g2(v) ≥
∫

Ω

g̃(|v|)|v|2 =

∫
Ω

ψ(|v|2) ≥ |Ω| ψ
(

1

|Ω|

∫
|v|2
)

= |Ω| ψ(|Ω|−1‖v‖2).

By property K we have

ψ(‖v‖2) = ψ(|Ω| · |Ω|−1‖v‖2) ≤ C(|Ω|)ψ(|Ω|−1‖v‖2)

and the assertion follows with C = C(|Ω|)|Ω|−1.

Proof of Theorem 3.2. For a strong solution u from the Theorem, let us denote v(t, x) :=
ut(t, x). Let us define (for all s ≥ 0 and (u, v) ∈ V ×H)

Φ(s) :=

∫ s

0

1

Θ(ξ)g̃(Θ(ξ))
dξ and E(u, v) := Φ(H(u, v)),

where

H(u, v) =
1

2
‖v‖2 − E(u)− εg̃(‖v‖∗)〈M(u), v〉∗

9



and functions g̃, Θ, M , E are defined in the assumptions and ε > 0 (small enough) will be
specified later. It is sufficient to show that E is nonincreasing along solutions and that

− d

dt
E(u(t), v(t)) ≥ C‖v(t)‖∗

holds for almost all t ∈ R+ such that u(t) ∈ BV (ϕ, η), where η is taken from condition
(e1). Then the convergence u(t)→ ϕ follows by Corollary 2.9 in [2].

Then for solution (u(t), v(t)) of (3) we have

d

dt
E(u(t), v(t)) =

1

Θ(H(u(t), v(t)))g̃(Θ(H(u(t), v(t))))
· d
dt
H(u(t), v(t)). (10)

Let us fix t > 0 and write (u, v) instead of (u(t), v(t)). We compute (the first equality holds
since u ∈ W 1,1

loc (R+, V ) ∩W 2,1
loc (R+, H) and the second holds since u is a strong solution to

(2))

d

dt
H(u(t), v(t)) =

d

du
H(u(t), v(t))ut +

d

dv
H(u(t), v(t))vt = 〈v, v̇〉 − 〈M(u), u̇〉

−ε
[
g̃′(‖v‖∗)‖v‖−1

∗ 〈v, v̇〉∗〈M(u), v〉∗ + g̃(‖v‖∗)〈M ′(u)u̇, v〉∗ + g̃(‖v‖∗)〈M(u), v̇〉∗
]

= −〈g1(v), v〉V ′,V − ε
[
g̃′(‖v‖∗)‖v‖−1

∗ 〈v,M(u)〉2∗ − g̃′(‖v‖∗)‖v‖−1
∗ 〈v, g1(v)〉∗〈M(u), v〉∗

+g̃(‖v‖∗)〈M ′(u)v, v〉∗ + g̃(‖v‖∗)〈M(u),M(u)〉∗ − g̃(‖v‖∗)〈M(u), g1(v)〉∗
]
.

The rest of the proof works for weak solutions. Here we used (G0), which guarrantees that
g1(v) ∈ Lp ↪→ V ′ (since v ∈ V ↪→ Lp

′
). For the first term it holds that

−〈g1(v), v〉V ′,V = −
∫

Ω

g2(v(t, x))dx.

The second term is less or equal to zero. The third term can be estimated (with help of
Cauchy–Schwarz inequality, (g̃6) and g1(v) ∈ Lp(Ω) ↪→ V ′ which follows from (G0)) by

εg̃(‖v‖∗)‖M(u)‖∗‖g1(v)‖∗ ≤ εcpg̃(‖v‖∗)‖M(u)‖∗‖g1(v)‖p.

The fourth term is estimated (with help of (e2), Cauchy–Schwarz inequality and precom-
pactness of the range of u) by

εg̃(‖v‖∗)C‖v‖2.

The fifth term is equal to
−εg̃(‖v‖∗)‖M(u)‖2

∗.

The last term is estimated by (here we use again Cauchy–Schwarz and g1(v) ∈ Lp(Ω) ↪→ V ′)

εg̃(‖v‖∗)‖M(u)‖∗‖g1(v)‖∗ ≤ cpεg̃(‖v‖∗)‖M(u)‖∗‖g1(v)‖p.
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Alltogether, we have

d

dt
H(u(t), v(t)) ≤ −

∫
Ω

g2(v(t, x))dx− εg̃(‖v‖∗)‖M(u)‖2
∗+

2εcpg̃(‖v‖∗)‖M(u)‖∗‖g1(v)‖p + εg̃(‖v‖∗)C‖v‖2. (11)

By Lemma 5.2, the last term is dominated by the first one. In fact,

εg̃(‖v‖∗)C‖v‖2 ≤ εC̃

∫
Ω

g2(v) ≤ 1

4

∫
Ω

g2(v) (12)

if ε is small enough. We show that the third term on the right-hand side of (11) is
dominated by the sum of the first and second terms. By Young inequality we have (δ is
convex conjugate to γ)

‖M(u)‖∗‖g1(v)‖p ≤ δ(‖M(u)‖∗/K) + γ(K‖g1(v)‖p).

Since ‖M(u)‖∗ is bounded, ‖M(u)‖∗/K is uniformly small if K is large enough, and by
Lemma 4.2 and (γ2) we have

δ(‖M(u)‖∗/K) ≤ d3

K2
‖M(u)‖2

∗.

Moreover, it holds that

γ(K‖g1(v)‖p) = γ̃

(∫
Ω

Kp|g1(v)|p
)
≤ 1

|Ω|

∫
Ω

γ̃(|Ω|Kp|g1(v)|p) =
1

|Ω|

∫
Ω

γ(|Ω|1/pK|g1(v)|)

≤ 1

|Ω|
C(K|Ω|1/p)

∫
Ω

γ(|g1(v)|) ≤ C̃(K)

∫
Ω

g2(v).

Here the first equality is the definition of γ̃, the second inequality is Jensen’s inequality (γ̃
is convex), the third equality is again definition of γ̃, the fourth inequality is property K
for γ and the last inequality is (γ1). Hence,

‖M(u)‖∗‖g1(v)‖p ≤
d3

K2
‖M(u)‖2

∗ + C̃(K)

∫
Ω

g2(v).

Taking K so large that 2cpd3/K
2 ≤ 1/2 and ε so small that 2εcpC̃(K)g̃(‖v‖∗) ≤ 1/2 we

obtain

2εcpg̃(‖v‖∗)‖M(u)‖∗‖g1(v)‖p ≤
ε

2
g̃(‖v‖∗)‖M(u)‖2

∗ +
1

2

∫
Ω

g2(v).

Inserting this inequality and (12) into (11) we obtain

d

dt
H(u(t), v(t)) ≤ −1

4

∫
Ω

g2(v(t, x))dx− ε

2
g̃(‖v‖∗)‖M(u)‖2

∗,

11



If we estimate the integral by Lemma 5.2 we get

d

dt
H(u(t), v(t)) ≤ −cg̃(‖v‖∗)

(
‖v‖2 + ‖M(u)‖2

∗
)
≤ − c

2
g̃(‖v‖∗) (‖v‖+ ‖M(u)‖∗)2 . (13)

So, E is nonincreasing along solutions.
Now, let us assume t > 0 is such that u = u(t) ∈ BV (ϕ, η). We can write

Θ(H(u, v)) ≤ Θ(‖v‖2) + Θ(E(u)) + Θ(εg̃(‖v‖∗)‖M(u)‖∗‖v‖∗)

≤ Θ(‖v‖2) + c‖M(u)‖∗ + Θ(εg̃(‖v‖∗)‖M(u)‖2
∗) + Θ(εg̃(‖v‖∗)‖v‖2

∗) ≤ C(‖v‖+ ‖M(u)‖∗)

by sublinearity of Θ (first inequality), Kurdyka– Lojasiewicz gradient inequality, Cauchy–
Schwarz inequality, monotonicity and sublinearity of Θ (second inequality), Θ(s) ≤ C

√
s

and boundedness of g̃(‖v‖∗)) (last inequality). Using property K of g̃ we have

Θ(H(u, v))g̃(Θ(H(u, v))) ≤ C(‖v‖+ ‖M(u)‖∗)g̃(‖v‖+ ‖M(u)‖∗). (14)

Then by (10), (13) and (14)

− d

dt
E(u(t), v(t)) ≥ c

g̃(‖v‖∗)(‖v‖+ ‖M(u)‖∗)2

(‖v‖+ ‖M(u)‖∗)g̃(‖v‖+ ‖M(u)‖∗)
= cg̃(‖v‖∗)

‖v‖+ ‖M(u)‖∗
g̃(‖v‖+ ‖M(u)‖∗)

.

Since ‖v‖+ ε‖M(u)‖∗ ≥ c‖v‖∗ and the function z 7→ z/g̃(z) is nondecreasing (this follows
from (g̃6)), we have

‖v‖+ ‖M(u)‖∗
g̃(‖v‖+ ‖M(u)‖∗)

≥ c‖v‖∗
g̃(c‖v‖∗)

≥ c‖v‖∗
C(c)g̃(‖v‖∗)

,

where the last inequality follows from property K of g̃ (condition (g̃7)). Hence, for t
satisfying u(t) ∈ BV (ϕ, η) we have

− d

dt
E(u(t), v(t)) ≥ cg̃(‖v(t)‖∗)

‖v(t)‖∗
g̃(‖v(t)‖∗)

= c‖v(t)‖∗.

The proof is complete.

6 Some extensions of the main result

In this section, we show that the main result holds even for more general damping functions
and that it can be also applied to ordinary differential equation

ü+G(u, u̇) = M(u)

and it generalizes the result presented in [1].
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6.1 More general damping function

Let us consider the following three steps of generalizing the damping funtion g.
1st step. Take G(ut)ut with G : RN → R+ instead of g(|ut|)ut, in other words, g does not
have to be radially symmetric (anisotropic medium).
2nd step. Take G(ut) with G : RN → RN instead of G(ut)ut with G : RN → R+, i.e.,
the damping function does not act exactly in the direction opposite to velocity. However,
it should act almost in that direction, an angle condition 〈G(z), z〉 ≥ C5|G(z)||z| should
hold (with some c5 > 0).
3rd step. Take G(u, ut) instead of G(ut), i.e., damping depends on the position (inho-
mogeneous medium); however, we will assume that all estimates of function G will be
independent of the variable u.

Let us reformulate the problem and the assumptions. We consider the following problem

utt +G(u, ut) = M(u), t > 0. (15)

We will replace assumptions (G), (H) by the following
(GG) Function G : RN × RN → RN is continuous and there exists τ > 0 such that

(g1) there exist C2 > 0 such that |G(w, z)| ≤ C2|z| for all z ∈ B(0, τ), w ∈ RN .
(g2) there exist C3 > 0 such that C3|z| ≤ |G(w, z)| for all z ∈ Rn \B(0, τ), w ∈ RN .
(g3) if N > 2 then there exist C4 > 0 such that |G(w, z)| ≤ C4|z|4/(N−2)|z| for all

z ∈ RN \B(0, τ), w ∈ RN .
(g0) there exist C5 > 0 such that 〈G(w, z), z〉 ≥ C5|G(w, z)||z| holds on RN × RN .

(HH) For τ from condition (G) there exists a concave nondecreasing function h : [0, τ ] →
R+ with h(0) ≥ 0 such that

(h1) |G(w, z)| ≥ h(|z|)|z| for all z ∈ B(0, τ), w ∈ RN

(h2) function s 7→ (Θ(s)h(Θ(s)))−1 belongs to L1([0, τ ])
(h3) function ψ(s) := h2(

√
s) is convex on [0, τ ].

Note that (h2), (h3) remained unchanged, (g1)–(g3), (h1) were naturally reformulated
for function G(w, z) which corresponds to g(|z|)z and the angle condition (g0) was added.

Theorem 6.1. Let E and G satisfy (E), (GG) and (HH). Let u be a strong solution to
(15) such that ⋃

t≥0

{(u(t), u̇(t))} is precompact in V ×H

and ϕ ∈ ωV (u). Then limt→+∞ ‖u(t)− ϕ‖V + ‖u̇(t)‖ = 0.

Proof. Sections 4 and 5 remain valid with g1(z) replaced by G(w, z) and g2(z) replaced
by 〈G(w, z), z〉 and three further changes. First, the inequality in (g̃1) has to be replaced
by |G(w, z)| ≥ c1g̃(|z|)|z|, z, w ∈ RN . Second, in Proposition 4.3, (γ1) will be proved as
follows (with help of the angle condition (g0)). For |G(w, z)| < τ we have

γ(|G(w, z)|) = c1|G(w, z)|2 ≤ c1

C5

〈G(w, z), z〉 |G(w, z)|
|z|

≤ d1〈G(w, z), z〉,
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where boundedness of G(w, z)/|z| follows as in Proposition 4.3. For |G(w, z)| ≥ τ we have

γ(|G(w, z)|) = c2|G(w, z)|p ≤ c1

C5

〈G(w, z), z〉|G(w, z)|p−1

|z|
≤ d1〈G(w, z), z〉,

where the last inequality follows from (g3) by the same argument as in Proposition 4.3.
In the proof of second inequality in Lemma 5.2 we use the angle condition again, so

1/C5 appears in the estimate ∫
Ω

g2(v) ≥
∫

Ω

g̃(|v|)|v|2,

reformulated as ∫
Ω

〈G(u, v), v〉 ≥ 1

C5

∫
Ω

g̃(|v|)|v|2.

6.2 Ordinary differential equation

In [1] we studied ordinary differential equation

ü+G(u, u̇) = M(u) (16)

with more restrictive assumptions on the damping function G. However, the proof of
Theorem 3.2 (resp. Theorem 6.1) works also in case of ordinary differential equation. In
fact, all the assertions and proofs of Sections 4 and 5 remain valid if we change the setting
in the following way. Let V = H = V ′ = RN and all the norms and scalar products are
norms and scalar products in RN . Moreover, we can take p = 1 (the only purpose of p was
to make the embedding V ′ ↪→ Lp continuous, which is is true since the Lp-norm is replaced
by the norm in RN). The growth condition (g3) is not needed (it was needed only to show
condition (γ1) in case p > 1). Condition (e2) always holds in finite-dimensional settings.
Of course, all integrals over Ω and variable x has to be erased in the above sections. So,
we have proved the following result.

Theorem 6.2. Let E and G satisfy (e1), (g0)–(g2) of (GG), and (HH) with p = 1. Let
u ∈ W 1,∞ ∩W 2,1

loc (R+,RN) be a solution to (16) and ϕ ∈ ω(u). Then limt→+∞ ‖u(t)−ϕ‖+
‖u̇(t)‖ = 0.

This result generalizes Theorem 4 in [1], where we assumed that G is estimated by mul-
tiples of a radially symmetric concave function g̃ from below and above, i.e., cg̃(|z|)|z|2 ≤
〈G(w, z), z〉 ≤ Cg̃(|z|)|z|2, and we had a condition on ∇G. Moreover, we assumed Θ to be
concave, but in fact it was sublinearity, what was needed in the proof of Theorem 4 in [1].
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