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Abstract

In this paper, we study the asymptotic behavior of the Klein-Gordon
equation in the nonrelativistic limit regime. By employing the techniques in
geometric optics, we show that the solution of the quadratic Klein-Gordon
equation can be approximately described by a linear Schrédinger equation with
an error of order O(g) over a long time interval of order O(¢~1). With general
nonlinearities, we show that the Klein-Gordon equation can be approximated
by nonlinear Schrédinger equations over time of order O(1).

Résumé: Comportement au temps long de I’équation de Klein-
Gordon quadratique dans le régime de limite non-relativiste.

Dans cet article, nous étudions le comportement asymptotique de I’équation
de Klein-Gordon dans le régime de limite non-relativiste. En utilisant les
techniques dans l'optique géométrique, nous montrons que la solution de
I’équation de Klein-Gordon quadratique peut étre approximativement décrite
par une équation de Schrodinger linéaire avec une erreur d’ordre O(e) dans
un intervalle de temps long d’ordre O(s~!). Avec nonlinéarités générales, nous
montrons que ’équation de Klein-Gordon peut étre approchée par les équations
de Schrédinger nonlinéaires au temps d’ordre O(1).
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1 Introduction

The Klein-Gordon equation is a relativistic version of the Schrédinger equation and
is used to describe the motion of a spinless particle. The non-dimensional Klein-
Gordon equation reads as follows

1
(1.1) 20pu — Au + E—Qu + f(u)=0, t>0, z¢€ R

Here u = u(t, z) is a real-valued (or complex-valued) field, and f(u) is a real-valued
function (or f(u) = g(|u|?)u if u is complex-valued). The non-dimensional parameter
€ is proportional to the inverse of the speed of light.

For fixed e, the well-posedness of the Klein-Gordon equation is well studied
[5, 6]. In this paper, our concern is the asymptotic behavior of the solution in the



nonrelativistic limit (¢ — 0) with real initial data of the form
1
(1.2) u(0) =upe, (Opu)(0) = lLe

1.1 Background

The nonrelativistic limit of (1.1)-(1.2) has gained a lot interest both in analysis and
in numerical computations, see [17, 22, 18, 12, 13, 15, 20, 1, 2] and references therein.
In particular, for complex valued unknown u and nonlinearity f(u) = A|u|%u with
0<qg< ﬁ, Masmoudi and Nakanishi [15] showed that a wide class of solutions u
to (1.1)-(1.2) can be described by using a system of coupled nonlinear Schrédinger
equations. More precisely, for H' initial data of the form

(1.3) uge = 0o +epe,  ure = Yo+ e,
it was shown in [15] that
(1.4) u(t,z) = ¥ vy +e My + R(t, ),

where v = (vy,v_) satisfies

(1.5) 2iv; — Av + f(v) =0,  v(0) := (po — itbo, Po + i),
with f(v) = (f1(v), f-(v)) defined by

2T
(1.6) Fo(v) = % [ f0s+ )i

The error term R(t,z) satisfies the following estimate
(1.7) IRl oo 0,7:22) = 0(e*/?),  for any T' < T,

where T* is the maximal existence time of the coupled nonlinear Schrodinger
equations (1.5).
Furthermore, if f € C?, for H? initial data of the form

(1.8) Upe = o+ Ep1 + EXpae,  Ule = Yo + P + X,

it was shown in [15] the following second order approximation result

(1.9) Hu — (5it/52 (vy + ewy) + e (T + ew_) HLOO(O,T;Hl(Rd)) = o(e),
where w = (w4, w_) is the solution to the following Cauchy problem of a linear
Schréginder equation

2iw; — Aw + Df(v).w =0, w(0):= (p1 — i, p1 + 1),



where we use the notation in [15]:
Df(v).w := 8, f(v)wy + Oy f(0)w_ + Bz, f(v)y + Oz, f (V) _.

We point out that in [15], the authors study the problem mainly in energy
spaces and the convergence results are obtained by using Strichartz estimates and
Bourgain spaces. In this paper, we adopt a different point of view by treating the
non-relativistic limit problem as the stability problem in the framework of geometric
optics—the study of highly oscillating solutions to hyperbolic systems. We show that
the Klein-Gordon equation with quadratic nonlinearity can be well approximated by
a linear Schrodinger equation over a long time interval of order O(e~1). For general
nonlinearities satisfying some regularity assumptions, we show convergence results
over a time interval of order O(1), as in [15]. However compared to the results in
[15], we obtain better convergence rates: O(e) in (1.7) and O(¢?) in (1.9).

Our results also give uniform estimates for ||e20;ul|g» for any pu > d/2. Indeed,
we are working in the new unknown U for which £20;u is one component (see Section
2.1). Then the uniform estimates for U give uniform estimates for e20;u. This
justifies the technical assumption (A) in [1], which is the key to design a uniformly
convergent numerical scheme (see Theorem 4.1 in [1]).

1.2 Quadratic nonlinearity and long time approximation

The convergence results in previous works [22, 18, 12, 13, 15] are obtained in time of
order O(1). A natural question is whether one can obtain the asymptotic behavior of
the solution over longer time. By employing the methods in the study of geometric
optics, we find that for the Klein-Gordon equation with f(u) = Au? and real-valued
u, the solution can be uniformly approximated by a linear Schrédinger equation over
a long time interval of order O(e™1).

To obtain the convergence results beyond the time O(1) up to O(s~1), one needs
to develop more structure of the equation. To this end, in Section 2, we rewrite (1.1)
into a symmetric hyperbolic system. We then use the WKB method to construct
an approximate solution which is global-in-time well defined. Moreover, the leading
terms of this approximate solution satisfy linear Schrodinger equations. Now the
question becomes the stability of such approximate solution. Thus we study the
purebred system which is the system in the difference of the exact solution and the
approximate solution.

Some compatible conditions are introduced by Joly, Métivier and Rauch in [7],
which are called strong transparency conditions using the terminology there. These
conditions allow us to use the so-called normal form reduction method to eliminate
the O(1) source term in the perturbed system (see equation (4.10)) up to a remainder
term of order O(g). Then we can apply the classical theory for symmetric hyperbolic
systems to obtain a long existence time of order O(e~!), even with O(1) amplitude
initial data.



The transparency conditions are analogous to the null conditions introduced by
Klainerman [8]. The normal form reduction method extended from the Poincaré’s
theory of normal forms for the ordinary differential equations is essentially a proper
change of unknown, and is analogous to the analysis of Shatah [19].

Unfortunately, the strong transparency conditions are not satisfied in our setting.
We cannot simply use the normal form reduction method to obtain the long time
existence. To overcome this difficulty, we decompose the O(1) linear source term
By in the perturbed system into the transparent part B! (the part that satisfies
the strong transparency conditions) and the non-transparent part B"*. We use the
normal form reduction method to eliminate the transparent part. Then we carry
out a singular localization to the non-transparent part BJ'. This localization is
done by introducing a cut-off function y around the resonance and decomposing
B? into two parts, x(D,)BM and (1 — x)(D,)B. We show x(D,)B? is of order
O(e) by observing a partially strong transparency condition (see (4.28) later on).
We use again the normal form reduction to eliminate (1 — x)(D,)B? with a O(e)
remainder. This localization is said to be singular due to our semiclassical setting
where a localization of the form x(eD,) is compatible. Indeed, this localization by
using x(D;) is in fact localized in a shrinking neighborhood of the resonance. In
the limit € — 0, this neighborhood converges to the resonance points. Then in the
normal form reduction for the part (1—x)(D,)B}" localized outside of this shrinking
neighborhood, there arises a factor =1 which may cause some troubles (see Section
4.3 for more details). This idea of singular localization is inspired by the shrinking
cut-off method introduced by Germain, Masmoudi and Shatah [4].

Our main result is stated as follows.

Theorem 1.1. Assume that the real initial datum (uo e, u1 ) has the form in (1.3)
with

(¢0,%0) € (H®)? independent of €,

1.10
(1.10) {(gog,l/}a,€V<p5)}0<a<0 uniformly bounded in (H*~4)d+2

for some s > d/2 + 4. Then there exists eg > 0 such that for any 0 < & < &g
the Cauchy problem (1.1)~(1.2) with f(u) = Au?, X\ € R admits a unique solution
u € L>® (0, %;HS%) for some T > 0 independent of €. Moreover, there exists a

constant C independent of € such that

o (o Y,y <

L=(0,Z;H5-4) —
where v € L*(0,00; H®) is the solution to the following Cauchy problem of linear
Schrodinger equation

_ o — o

(1.11) 2ivy — Av =0, v(0) 5



We give a remark to explain why we have a linear Schrodinger equation instead
of a nonlinear one in Theorem 1.1.

Remark 1.2. The nonlinear terms fy and f_ in (1.5) and (1.6) are respectively
the Fourier coefficients of order 1 and —1 to the Fourier series of f(ug) in 6 where
up(0) := evy + e Pp_:

27
(1.12) Fluo®) = S M fer = 5 [ e o(6)db.

keZ

Indeed, under the gauge invariance assumption as in [15] which means that f(e**u) =
e f(u), (the nonlinearities of the typical form g(|u|?*)u satisfy such gauge invariance
assumption), for any s € R, direct calculation implies

fr=r, f-=fa

Under the quadratic nonlinearity f(u) = Au? in Theorem 1.1, we have
(1.13) f(uo(8) = AMePvy + e 5.)2 = A <62i9v3_ + 2u40- + e_%%z) .

Clearly, the order one and minus one coefficients fi and f_1 of the Fourier series
in (1.13) are both zero. Hence, there is no nonlinear term in the approximate
Schrodinger equation.

1.3 General nonlinearity and local-in-time approximation

To complete our study, we consider the case with general nonlinearities f(u),
especially the nonlinearities of the form

(1.14) flu)y= T >0, qeZ;  f(u)=MulTu, ¢>0.

First of all, we point out that unlike the result for the case with quadratic
nonlinearity where we obtained a long time of order O(¢~!) approximation, for
general nonlinearities we only have the approximation of the Klein-Gordon equations
by Schrodinger equations over time of order O(1). Another main difference is
that the Klein-Gordon equations with general nonlinearities are approximated by
nonlinear Schrodinger equations instead of linear ones.

We also point out that compared to [15], here we are working in more regular
Sobolev spaces. Thus we need more regularity for f, but we do not need to control
the growth of f(u) with respect to u, thanks to the L* norm of u by Sobolev
embedding. This implies that we can handle the nonlinearities in (1.14) with ¢
arbitrarily large, while in [15] it has to be assumed that ¢ < 4/(d — 2).

We finally point out that we obtain better convergence rates for the error
estimates than the ones in [15]. For initial data in H®, s > d/2+4 and nonlinearities



f € C™ m > s, we improve the error in (1.7) from o(¢'/2) to O(e!). If f enjoys
more regularity in C™, m > s+ 1, we can improve the error in (1.9) from o(e!) to
O(£?). The error estimates are obtained in the Sobolev space H*~*. To prove such
results, we employ again the techniques in geometric optics.

The first result concerns a first order approximation. The result also gives an
extension of the error estimate (1.4)-(1.7) obtained in [15]. Our basic Schrédinger
equation is

(1.15) 2ivy — Av + f(v) = 0,
where

= 1

2
(1.16) fw) =5 / e f(e 7 + ¢?v)db.
T Jo

As in (1.11), the initial datum is chosen as
(1.17) v@:@%@.

By the classical theory for the local well-posedness of nonlinear Schrédinger
equations (see for instance Chapter 8 of [16]), if f € C™, m > s > d/2 + 4,
the Cauchy problem (1.15)-(1.17) admits a unique solution v € C ([0, 1y); H®) with
T3 > 0 the maximal existence time. Then we have

Theorem 1.3. For real initial data satisfying (1.3) and (1.10) with s > d/2 +
4 and nonlinearity f € C™, m > s, the Cauchy problem (1.1)—(1.2) admits a
unique solution u € C ([O,TE*); Hs*4) where T > 0 is the mazximal existence time.
Moreover, we have

(1.18) lim inf 77 > 75,

and for any T < min{T*, T}, there exists a constant C(T) independent of € such
that

1.1 _ it/82 —it/az— H < T
(1.19) Hu (e vte v) peozape sy < O

where v is the solution to (1.15)-(1.17).
The second result concerns a second order approximation. This also gives an
extension of the convergence result (1.9) obtained in [15].

Theorem 1.4. Under the assumptions in Theorem 1.3, if in addition f € C™, m >
s+ 1, and the initial datum is of the form (1.8) satisfying

(¢1,91) € (H®)? independent of ¢,

(1.20) , - —4
{(@2,a,¢2,575V902,e)}0<8<1 uniformly bounded in (H*™%)

d+2
)

7



then for any T < min{T}, T}, there exists a constant C(T') independent of € such
that

< C(T)&%,

I I O CE) |

where v is the solution to (1.15)-(1.17) and w is the solution to the Cauchy problem

(1.22) 2iwy — Aw = f(w), w(0) = ('OI_T“/}I

with

(1.23) Flw) =

2
= / e P f1(e7 % + ePv) (e W + Pw)df.
2T 0

We give several remarks on our results for general nonlinearities.

Remarks 1.5. e Under the assumptions in Theorem 1.4, the Cauchy problem
(1.22) admits a unique solution w € C([0,T§); H®). The mazimal existence
time is the same as that of v € C([0,T¢); H®) because f(w) in (1.23) is linear
mw.

e For f(u) = Attt ¢ >0, g €Z, we have f € C*™®. Thus our results apply to
such nonlinearities. For general f(u) = Au|%u, to make sure f € C™, m >
s>d/2+4 4, we need to assume q > d/2 + 4.

e For the typical cubic nonlinearity f(u) = \u?, the nonlinearity (1.16) of the
approzimate Schridinger equation is also cubic f(v) = 3\v3.

e By (1.18), there exists eg > 0 such that for any 0 < e < &g there holds T > T .
Then for e < g¢, the error estimates (1.19) and (1.21) hold for any T < T .

e Theorem 1.3 and Theorem 1.4 hold true if initial data ug. and uic in (1.1)
are independent of €, i.e. p. =1 =0 in (1.3).

e The results in Theorem 1.3 and Theorem 1.4 can be generalized to the Klein-
Gordon equation with complex-valued unknown u € C. The proof is rather
similar.

This paper is organized as follows. From Section 2 to Section 4, we give a proof
for Theorem 1.1. Section 5 is devoted to the proof of Theorem 1.3 and Theorem
1.4.

In the sequel, if there is no specification, C' denotes a constant independent of
e. Precisely, from Section 2 to Section 4, we have C' = C(s,d, Do) with

DO = ‘|(¢07¢0)HH$ + sup H(g067¢87€v§0€)”H5*4'
O<e<1



In Section 5, the dependency of C' is the same as above for the argument associate
with the proof of Theorem 1.3. Associate with the proof of Theorem 1.4, we have
C = (s,d, Dq) with

Dy = l(po, Yo)llars + ll(or ¥n)llars + sup (2.0 %2.0,6Vipne)llarss-
<e<

However, the value of C' may differ from line to line.

2 Proof of Theorem 1.1

We give a proof of Theorem 1.1 in this Section. We reformulate this nonrelativistic
limit problem as a stability problem in geometric optics and prove Theorem 1.1 by
proving the stability of WKB approximate solutions.

2.1 The equivalent symmetric hyperbolic system

We rewrite the Klein-Gordon equation into a symmetric hyperbolic system by
introducing

U:= (w,v,u) = (EVTU,&‘Zatu,U)T = (5(8$1u, e ,&Cdu),eQatu, u)T.

Then the equation (1.1) is equivalent to

1 1
(2.1) o,U — gA(ax)U + 6—2A0U = F(U),
where
Oaxa V 0 Oaxa 0 O 0
(2.2) A@y):=| VT 0 0], Ag:=| 0 0 1], FU)=—-|f(u
0 0 0 0o -1 0 0

Since we are now considering quadratic nonlinearity f(u) = Au?, we can write
(2.3) FU)=B(U,U)

with B a symmetric bilinear form defined as

0 wj
(2.4) B(Uy,Uz) = =X [ wuz |, forany U; = | v; |, je{1,2}.
0 Uj
Here the notation V := (9, -, 8“)T, and 04y« 4 denotes zero matrix of order d x d.

In what follows, we will use 04 to denote the zero column vector of dimension d.



Under the assumptions on the initial data in (1.2), (1.3) and (1.10), we have

(2.5) U(0) = (V7 (0 + ), o + etbe, 00 + £02)

which is uniformly bounded in Sobolev space H*~* with respect to «.

The differential operator on the left-hand side of (2.1) is symmetric hyperbolic
with constant coefficients. In spite of the large prefactors 1/e and 1/¢? in front of
A(0,) and Ap, the H*~* estimate is uniform and independent of ¢ because A(9,)
and Ay are both anti-adjoint operators. The well-posedness of Cauchy problem
(2.1)-(2.5) in C ([0, T); H*~*) is classical (see for instance Chapter 2 of Majda [14]
or Chapter 7 of Métivier [16]). Moreover, by the form of the quadratic nonlinearity
B(U), the classical existence time satisfies

1

lullzoe”

%
T «

This means, the classical existence time is O(1) in the nonrelativistic limit regime.

To study the solution of (2.1)-(2.5) beyond the classical time O(1), we turn to
study the stability of some approximate solutions called WKB solutions. First of
all, we construct an approximate solution over long time (here we actually construct
a global-in-time approximate solution) by WKB expansion, where the leading terms
of the approximate solution satisfy linear Schrodinger equations. We then consider
the perturbed system associate with this approximate solution (see (4.2) later on).
Compared to the original system (2.1), the perturbed system is less nonlinear in
the sense that the nonlinearity becomes small of order O(g). This makes the well-
posedness analysis easier. Indeed, we can show the existence and uniform bound
of the solution to the perturbed system over a long time interval of order O(s~1).
Together with the global uniform estimate for the approximate solution, we obtained
the following long time asymptotic behavior of the solution to (2.1)-(2.5) in the limit
e — 0

Theorem 2.1. There exists eg > 0 such that for any 0 < € < &g, the Cauchy
problem (2.1)-(2.5) admits a unique solution U € L* (0, %; H*™4) for some T > 0
independent of €. Moreover, there holds

||U - UCLHLOO(O7%;HS—4) S CE)

where U, is the approximate solution obtained in Proposition 2.2 in the next page.

2.2 WKB expansion and approximate solution

We look for an approximate solution to (2.1) by using WKB expansion which is a
typical technique in geometric optics. The main idea is as follows.

10



We make a formal power series expansion in € for the solution and each term in
the series is a trigonometric polynomial in 6 := t/e2:

Kq+1
(2.6) U= > €"Up, Up=> "0,  Ki€Zy, HyCL.
n=0 pEHR

The amplitudes U, p(t, z) are not highly-oscillating (independent of #) and satisfies
Un—p = Upnyp due to the reality of U,. Here H,, is the n-th order harmonics set
and will be determined in the construction of U,. The zero-order or fundamental
harmonics set H is defined as Ho := {p € Z : det (ip + Ap) = 0}. Since Ay # 0,
the set Ho is usually finite. Indeed, with Ay given in (2.2), we have

Ho={-1,0,1}.

Higher order harmonics are generated by the fundamental harmonics and the
nonlinearity of the system. In general there holds the inclusion H,, C Hn41-
We plug (2.6) into (2.1) and deduce the system of order O("):

(I)n,p = 8tUn,p - A(az)UnJrl,p + (Zp + AO) Un+2,p
(2.7) ~ Y B(UnipUnypy) =0, n€Z, n>-2andpeZ

ni+ne=n

p1+p2=p
In (2.7), we imposed Uy, = 0 for any n < —1. Then to solve (2.1), it is sufficient to
solve @, , = 0 for all (n,p) € Z2. This is in general not possible because there are
infinity of n. However, we can solve (2.1) approximately by solving ®,, = 0 up to
some nonnegative order —2 < n < K, — 1 with K, > 1, then U, solves (2.1) with a
remainder of order O(¢®«) which is small and goes to zero in the limit ¢ — 0. More
precisely, we look for an approximate solution U, of the form (2.6) satisfying

1 1
OUa = —A(02)Ua + 5 AoUa = B(Ua, Ua) — eKepe,
Ua(0,2) = U(0, ) — ¥ (x),

(2.8)

where |R%|fe0 + |¥¢| e is bounded uniformly in e. Parameters K, and K describe
the level of precision of the approximate solution U,.
We state the result in constructing the approximate solution:

Proposition 2.2. There exists U, € L (0,00; H*™*) solving (2.8) for all (t,z) €
(0,00) x R? with K, =2, K =1 and there holds the estimate

(2.9) sup (| R¥l| e 0 oestre—t) + [0 sre-1) < +oo.
0<e<1

Moreover, Uy is of the form (2.6) with U, € L>(0,00; H*"2), 0<n < K, +1, and
the leading term Uy is given by

(2.10) Uy = 67“/52(]07_1 + 6it/€2U0,1,

11



where
(2.11) Uoi = goes, Uo_1=goe_ ex:= (07 +i,1)T
with go the unique solution to

. —
(2.12) 2i0:g0 — Ago =0, go(0) = %Two-

2.3 Proof of Theorem 1.1

Let us admit Theorem 2.1 and Proposition 2.2. Then we have that the main
result Theorem 1.1 is a corollary of Theorem 2.1 and Proposition 2.2. Indeed,
by Proposition 2.2, we have

|Ua — UoHLoo(O’%Hs%) <Ce,

where Uy satisfies (2.10)-(2.12). Then going back to the original unknown u, by
Theorem 2.1, we obtain the results in Theorem 1.1.

Hence, it is left to prove Proposition 2.2 and Theorem 2.1. This is done in
Section 3 and Section 4 respectively.

3 Proof of Proposition 2.2

We now carry out the idea in Section 2.2 to construct an approximate solution
satisfying the properties stated in Proposition 2.2.

3.1 WKB cascade

We start from considering ®_», = 0 corresponding to the equations in the terms of
order O(£72). We reproduce such equations as follows

(3.1) (ip+ Ap)Up,p, =0, for all p.

It is easy to find that (ip + Ag) are invertible except p € Ho = {—1,0,1}. We then
deduce from (3.1) that

(3.2) Upp =0, for all p such that |p| > 2.

This is in fact how we determine Hy: for any p € Ho, necessarily Uy, = 0.
As in [15], we do not need to include the mean mode Uy o in the approximation.
Hence, for simplicity, we take

(3.3) U0 = 0.

12



For p = 1, (3.1) is equivalent to the so called polarization condition Uy, €
ker(ip + A). This implies

(3.4) Up1 = goes, ey = (0F,i, )T, g is a scalar function.
For p = —1, reality implies

(3.5) U07_1 = UO,l = goe—, €e_:=e€f = (Og, —1, 1)T.

We continue to consider the equations in the terms of order O(s~!) which are
‘1),171, =0:

(3.6) —A(0:)Uop + (ip+ Ag)Urp =0, for all p.

When p = 0, by the choice of the leading mean mode in (3.3), equation (3.6)
becomes
AU =0

which is equivalent to

(3.7) Uro = (h{,0,0)7  for some vector valued function hy € RY.
When p =1, by (3.4), equation (3.6) is equivalent to

(3.8) Uil = gies + (V7g0,0,0)7  for some scalar function g;.
When [p| > 2, the invertibility of (ip + Ap) and (3.2) imply

(3.9) Uip =0, forall psuch that [p| > 2.

The equations in the terms of order O(e%) are @y, = 0 as follows:

(3.10)  OUop — A(D)Urp + (ip+ A)Vap = > B(Upyp, Uoyp,), for all p.
p1+p2=p

When p =0, by (2.4), (3.2)-(3.5), equation (3.10) becomes
—A(9,)Un0 + AoUso = 2B(Up 1, Up—1) = —2A(0], 90|, 0)"
which is equivalent to (by employing (2.2) and (3.7))
(3.11) Uyp = (hg, 0,divhy — 2)\|go|2)T for some vector valued function hy € R%.
When p =1, by (2.2), (2.4), (3.2) and (3.3), equation (3.10) becomes

(3.12) OUo,1 — A(0x)Urp + (i + Ao)Uz1 = 0.
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By (3.4) and (3.8), equation (3.12) is equivalent to

{ 2090 — Ago = 0,

(3.13) T T )
Usq = gee4 + (V' 91,0:90,0)", for some scalar function gs.

This is how we obtain the linear Schrédinger equation (1.11) and (2.12). The initial
datum of g is determined in such a way that Uy(0) = (OdT,wo, ©o)" which is the
leading term of initial data U(0) (see (2.5)). This imposes

(3.14) go(0) = L2210

When p = 2, by (2.2), (2.4), (3.2)-(3.4), (3.9), equation (3.10) becomes
(2i + Ao)Us2 = B(Uop,Uo1) = —2A(07, g5,0)"

which is equivalent to

A . T
(3.15) Usp = 3 (057219(2)798) .
When |p| > 3, equation (3.10) implies

Usp =0, for all p such that |p| > 3.

We finally consider the equations of order O(e), that are ®1, = 0:

(3.16) 01y — A(02)Uzp + (ip+ Ag)Usp =2 > B(Uopy,Uty,), forall p.
p1+p2=p

When p = 0, by (2.2), (2.4), (3.2)—(3.5), (3.8), (3.9), equation (3.16) becomes
U1 — A(0y)Uso + AgUs g = ARB(Uo1, Uy, 1) = —4A(07, R(g0g1),0)"
which is equivalent to (by (3.7) and (3.11))
(3.17) Ohy =0, Usg = (hi,0,divhy — 4AR(g0g1))",

for some vector valued function hs € R%. The notation Ra stands for the real part
of a.

Here we take a trivial solution h; = 0 to the equation d;h; = 0 in (3.17). By
(3.7), this means

(3.18) Ui =0.

When p =1, by (2.4), (3.2), (3.3), (3.9) and (3.18), equation (3.16) becomes

Uiy — A(0z)Usz1 + (1 + Ag)Us 1 =0
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which is equivalent to

2i0rg1 — Ag1 = 0,
Us1 = g3eq + (VTQQ, g1, O)T, for some scalar function gs.

Here we used (3.8) and (3.13).

We find that g; satisfies the same linear Schrodinger equation as gg. Since we
do not need to include initial data of g; (this is needed sometimes in order to have
a better initial approximation), we will take a trivial solution g; = 0.

When p = 2, by (2.2), (2.4), (3.4), (3.2), (3.8), (3.9) and (3.18), equation (3.16)

becomes
—A(0z)Us 2 + (2i + Ag)Us 2 = 2B(Up1,Ur1) = —2M(0%, gog1,0)"

which is equivalent to (by (3.15))

2 ) T
Uso = 3 (90V7 g0, 2igog1, 9091)

When [p| > 3, (3.16) is equivalent to

Usp, =0, for all p such that |p| > 3.

Now we are ready to prove Proposition 2.2.

3.2 Approximate solution and end of the proof

By (1.10), we have go(0) € H® with s > d/2 4+ 4. Then classically there exists a
unique global-in-time solution gy to the Cauchy problem (3.13),-(3.14) in Sobolev
space H?®. Moreover we have the estimates

(319) ”atgo”Loo(O,oo;HS*% < CHQOHL‘X’(O,OO;HS) < C”(¢07¢0)HH5

To construct an approximate solution, we need to determine g; and hj, j € {1,2,3},
appeared in Section 3.1. To prove Proposition 2.2, it suffices to take

g1 =92 =93 =h1 =hy = h3z =0.

This gives, by employing the argument in Section 3.1, that

Vo 04
Uop=goer, Uip=| 0 |, Ugo=-2A| 0 N
(3.20) 0 |90]
04 L g0Vgo
Uy1=|0g0 |, Uz2= 3 2igs |, Usz = 0 ;
0 g3 0
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and U, , = 0 for all other (n,p) € Z*, p >0, and U, , = Uy, for p < 0.
We observe that all the components in (3.20) are determined by the leading
amplitude go. By the estimate of go in (3.19), we have for any (n,p) € Z*:

(3.21) Upnp € L®(0,00; H™2),  0,Up, € L(0,00; H?).
Plugging all such Uy, into (2.6) gives an approximate solution U, of the form
Us = Up + €Uy +e*Us + £°Us

which solves the following Cauchy problem globally in time

1 1
o U, — EA(&U)U@ + 8—QAOUQ = B(U,,U,) — €*FR°,

3.22
52 Ua(0) = (V" 00, %0, 00)" + £2U2(0) + £*U3(0),
where
R® = 2B(Uy, Us) + B(U1,Uy) + 2eB(Uy, Uz) + £2B(Us, Us)
(3.23)

3
_ Z 6n—2 Z €ipt/826tUn,p o Z €ipt/a2A(az)U3,p.
n=2 V4 p

Now, Proposition 2.2 follows directly from (1.10), (3.20)-(3.23).

4 Proof of Theorem 2.1

This section is devoted to prove Theorem 2.1. This is the stability of the approximate
WKB solution obtained in Proposition 2.2 over long time of order O(¢™1).

Associated with the approximate solution U, in Proposition 2.2, we define the
perturbation

(4.1) U:= :

where U € C([0,77); H?) is the local-in-time solution to original Cauchy problem
(2.1)-(2.5). Then at least over time interval [0,77), the perturbation U solves

oU — EA(&E)U + ?AOU = 2B(Ua>U + 5B(U7 U) + €R€7
U(0) = 0°,

(4.2)

where the linear operator B(V) for some V € C4*2 is defined as
B(V)W := B(V,W), for any W € C%+2,

where B is defined by (2.4). The remainder (R, U¢) satisfies the uniform estimate
given in (2.9).

To prove Theorem 2.1, it is sufficient to show the well-posedness of (4.2) in the
Sobolev space H*~* over some time interval [0, %] with T' > 0 independent of €.
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4.1 Preparation

The perturbed system (4.2) has small nonlinearity of order O(g). By careful, rather
classical analysis (L? estimate and Grownwall’s inequality), it can be shown that
the maximal existence time, denoted by T, to Cauchy problem (4.2) satisfies

lim 77 = oo.

e—0

By employing the arguments in [3], we can even show the existence up to the time
of the logarithmic order:

Tr > Ty|lne|,  for some Ty > 0 independent of e.

To achieve an even larger scale of the maximal existence time as

. T

T > —, for some T > 0 independent of ¢,

€
as well as the uniform estimate in L°°(0, %; H*~%), we need to make use of more
structure of the system (4.2).

4.1.1 Classical and semiclassical Fourier multipliers

We introduce some concepts about Fourier multipliers. This will be needed in the
coming sections.

We say a smooth scalar, vector or matrix valued function o(§) to be a classical
symbol of order m provided

0ga(E)] < Caf&)™ %, (§) = (1 + |§]2)% , for any a € N%.

We use S™ to denote the set of all classical symbols of order m. The classical Fourier
multiplier associated with a symbol o () is denoted by o(D,), and is defined as

(4.3) o(Dy)u = F Ho()a(€)] = F o] *u,

where 4(¢) = F[u](€) is the Fourier transform of u and §~! denotes the inverse of
Fourier transform.

The semiclassical Fourier multiplier associated with a symbol o (&) is denoted by
o(eD,), and is defined as

(4.4) o(eDy)u:=F o (e€)u(§)] = F 'o(e)] xu=e"F (o] (g> -

The definitions in (4.3) and (4.4) can be generated to any o as long as the
definitions make sense.

We now give two properties that we will use in this paper for classical and
semiclassical Fourier multipliers. The first one is rather direct:

17



Lemma 4.1. Let 0 € L™, then for any s € R:
lo(Dz)ullers + [lo(eDa)ull s < [lo(-)l|zoe[le s

The second one is about the commutator estimates.

Lemma 4.2. Let 0 € C! such that |Veo| = < oo and g(z) € HY/*T1Hm0 g scalar
function for some nmg > 0. Then there holds for any s > 0:

llo(eDz), g(x)]ullms < € Cpo 2°[|[Veo| o= (IIQIIHgHM0 [l z2s + ||9||HS+1”UHHg+nO> :

The point of Lemma 4.2 is that the commutator of a semiclassical Fourier
multiplier and a regular scalar function is of order e.

Proof of Lemma 4.2. Let

1(¢) = §[lo(eDy), g()]u] (§).

Then
l[o(eDz), g(@)lullms = [[(€)°1(&) ]l L2-

By the definition of semiclassical Fourier multiplier, we have

1(§) = lo(eDz)(gu)] = lgo(eDq) ()] = o(€)S[(gu)] — Flgo(eDx)(u)]
= o(e€)(g* @)(€) = (§* (o(e)) (¢
( )

)
) / Gma(e —mdn — | ana(et — en)ile —n)dn
= [ i) (r(e) = (et - enyale

2

1
= [ ot [ en- (Veo)leg (1~ e —
R4 0
Then
(1) < el Veolu [ (€ lnllatnllats —wldr
<elVeolux( [, @ mlamllae —nldn

+ [ @ nlsCollate - nldn)
< c2*|[Veo| 1 / 0 llg(m)l i€ — )| di

+/|< (€~ nnlla(o)] (€ — ) dn)

< e2°||Veol|z (1(€)°1g(&)] * [a(€)] + 1€3(E)] * (&) a(€)]) -
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Young’s inequality yields

) 1(E)l 2 < e2°|Veallzeo (I4€) a2 lla(€)ll e + €GN L ll(E)*a€)l] 2) -

Hoélder’s inequality implies

€3Izt < Coo{EOYHTHMG(E) L2, [[4(E) |1 < Copp IE)V2TMU(E) | 12

Finally, we obtain

HE IO 2 < o2’ Feolio (191, arimg lullre + lgllzesallull g )

This completes the proof of Lemma 4.2. O

4.1.2 Spectral decomposition

We rewrite the linear differential operator on the left-hand side of (4.2) as
8 + 8% (—A(eDy) + AgJi), Dy := y/i.
The symbol of the semiclassical Fourier multiplier (—A(e¢Dy) 4+ Ao/i) is

—A(§) + Ao/i

which is a symmetric matrix for any ¢ € R%. Direct calculation gives the following
smooth spectral decomposition

(4.5) —A(§) + Ao/i = M (IL(E) + A2(TT2(E) + A3(§)3(¢)

with the eigenvalues

(4.6) M) = VIR =), M) =-VI+[P=-(), M) =0

and eigenprojections

gr & —ig
R Idg 0 —i¢
@) mE=g L 1 | m@= |0 0 o
. . . ) 2 )
2l Y ITEENigr o e
DYDY
where j € {1,2}, € = (&1, ,&)T is a column vector and Id; denotes the unit

matrix of order d. It is direct to check that \; € S!and II; € SY for any j € {1,2,3}.
According to (4.5), we can write

—A(EDJU) + Ao/i = Al(EDx)Hl(é‘Dx) + )\Q(EDQ;)HQ(ED;E).
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4.1.3 Diagonalization

We want to go deep to the structure of the system in (4.2). Hence, we consider the
system mode by mode, though the following change of variable

. U} I1, (e D, )U
U= |02 = [ Ha(eD,)U | € RIF2 x RIF2 x RIH2,
U II3(eD,)U

We remark that, by Lemma 4.1, I1;(e D, ), j € {1,2,3} are linear operators bounded
from H?® to H?® for any s € R. Hence

UL (t, ) |s < CIU(, )| s, for any s € R and any ¢ > 0.
Inversely, we can reconstruct U via U; due to the fact
I; + Iy + I3 = Id.
We observe that
(4.8) B(U,) = B(Uy) +eB(U,), U, :=U; +¢eUy + £*Us.

Then by (4.2), the equation in Uj is of the form
(4.9) 8tUl + €%A1(5D1‘)U1 = BlUl + &‘PlUl + EFl(Ul, Ul) +eR;.

The propagator A; on the left-hand side is a diagonal matrix valued semiclassical
Fourier multiplier

Ai1(eD,) := diag {\1(eD.), A2(¢D,), 0}.
The leading linear operator B; on the right-hand side is

By =2 (H,-(ng)B(UO)Hj(EDm))lgmgs,

which is of matrix form and is associate with the leading term Uj.

The remainder linear operator P is

P =2 (Hi(€Dm)B(Ur)Hj(5DfL"))lgi,j§3 ’

which is associated with the remainder term U, defined in (4.8).

The nonlinear term Fj is

@.0)| . =00+ 07



Finally the remainder R; is
I, (eD,)R®

1(eD
R1 = H2(5Dx)R6
II3(cD,)Re

To avoid notational complexity, we rewrite (4.9) in the following more compact
form

(4.10) atUl + ;*QAl(ng)Ul = BlUl + eRq,

where R is the sum of all the O(¢g) terms. By Proposition 2.2 about the approximate
solution, Lemma 4.1 and Lemma 4.2 about the actions of Fourier multipliers, we
have the estimate

IRy (t, )| e < C (1 + U, ')HL°°> T, )| e, forall 0 < p<s—4,
where s > d/2 +4 is from the regularity assumption on the initial data (1.10). The
initial datum of U; is
I, (e D, ) U°
Iy (c D, ) U°
I5(c Dy ) U°

(4.11) U1(0) =

To show long time well-posedness for (4.10) with O(1) initial datum (4.11), the
idea here, as well as in [7, 21, 9, 11, 10], is to eliminate the O(1) term Bj on the
right-hand side of (4.10) up to a O(e) remainder. This implies a small right-hand
side of order O(g). However, the strong transparency conditions are not satisfied in
our setting, so we cannot use the normal form reduction method to achieve this.

To this end, we first decompose Bj into the transparent part B} and the non-
transparent part B*. We use normal form reduction method to eliminate the
transparent part (see Section 4.2 for more details).

Then we carry out a singular localization to the non-transparent part BJ.
Together with another normal form reduction, we obtain an O(e) remainder. This
is done in Section 4.3 and Section 4.4.

Thus, we improve the right-hand side from O(1) to O(e). The classical theory
in the well-posedness for symmetric hyperbolic systems implies the existence up to
time of order O(e71).

4.2 First normal form reduction

We decompose B; into the transparent part and the nontransparent part as

By = Bi + BY"
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with

I B(Up)II; 1L B(Up)llz 0 0 0 ezit/ezﬂlB(Uo,l)H:a
B =2 [IL,B(Uo)I; TaB(Ug)y 0| +2(0 0 e /< T,B(Up_1)3 |
0 0 0 00 0

00 eiit/€2H1B(U0,—1)H3
B"=2(0 o e“/EQHQB(Uo,l)H?) )
0 0 0

where we used the fact
Up = /Uy s + e Uy 1, T3B(Up)I; = 0, for any j € {1,2,3}

and the simplified notation (and we will use this simplified notation in the sequel
unless there is a specification)

I, =1I;(eD,), forany j € {1,2,3}.

We introduce the following formal change of variable

(4.12) Uy = (1d+&2M) ' T,
where M is of the following form
(g oy o0 ena
(4.13) M=% e py® y® o+ |0 0 et/
p=+1 0 0 0 00 0

with Mi(;’ ) to be determined.

Then, by (4.10), the system in Us has the form
(4.14)

0, Uy + g%Al(er)Ug = By'U, + (Id + 52M)’1 (B — i[A1(eDy), M] — 20,M ) Uy
+ (1d+e2M) ! (sQBiMUQ +2(BM, MUy + 5R1> .

The idea is to determine the operator M such that the second O(1) term on the
right-hand side of (4.14) is eliminated with a O(e) remainder. This is done in the
following proposition.

Proposition 4.3. Recall gy from (3.4) and (3.13)-(3.14), and we introduce the
notations

9(()1) ‘= 9o, 9(_1) = go-
There exist ]\Aji(jp) € 8% 1<i,5 <3, pe {-1,1}, such that M defined in (4.13)
with Mi(jp) = g(()p)]\z(]p) (eD,) satisfies

B! —i[A1(eDy), M] — 20, M = eM,.,
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where M, is a linear operator satisfying
| Myul|ge < Cllullgu, forany d/2 <p<s—2.
Proof. Given M of the form (4.13), we calculate
[A1(eDy), M| = A1(eDz)M — M A, (eDy,)
MMP — MPx aME - ME A, 0
=22 M ) - M oM - M 0

p==£1 0 0 0
0 0 eit/EaM

+lo 0 e MG |
0 0 0

where we used the fact A3 = 0 and the simplified notation \; := X\;j(eD,), j €
{1,2,3}.
We then calculate

) (P o) (oo am N
oM =" M ip) | M MP o|+|0 0 et (—pymGY | +e MDY,
p==1 0 0 0 00 0
where
: w My M o 00 e#/iatMl(;)
@15) MO =" e o [ M@ P o+ 0 0 e iPo Y
=1 0O 0 0 0 0 0
Then
Z'[Al(ﬁDx), M] + 528tM
L (MP O =24 MP(h =X 4p) 0
. ipt
=i ) M MP O — M +p) MP (o da+p) 0
p=+1 0 0 0
00 et/EMY (N +1)
+ilo 0 et MGY (0 —1) | +EMY + M,
0 0 0
where
e (D] DM o
M =2 3 D ] Do) 0
p==1 0 0 0
(4.16)

L0 0 S M)
o000 e, Mg Y]
0 0 0
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Now we are ready to give the definitions of ]\’Zfi(jp ) (&):
(4.17)

MP(€) = =2i(M\i(€) = M(€) +p) ' L(€) Be) I (), 1<, j <2, p = £1,
Mg (€) = —2i(M () + 1) 'L (€) Be)3(€),
MV (€) = ~2i(Aa(€) — 1) Ta(€) Ble-1)T3(6)-
Here the notation e,, p € {—1,1} is defined as

(4.18) e1:=e4, €_1:=e€_,

where e; and e_ are given in (3.4) and (3.5).
By the expression of the eigenvalues ); in (4.6), we have for all ¢ € R%:

Xi(§) = Ai(€) +pl =21, 1<i,j<2 p==l,

(4.19) M) + 1] = o) 1] 2 2.

Then it is direct to prove all the ]\Z(f ) given in (4.17) belong to the symbol class S°.
Let M be defined as in (4.13) with Mi(]p) = g((]p)J\Z(jp) (eDg). By (3.19), we have

(4.20) || Mu||ge < C|’go||Lm(07m;Hs)||u||HM < Cllullgn, forany d/2<p<s—2.
We recall

LB = Y e/ ILB(g" )11y = Y /= gl M1 B(ep)TL; + M

p==%1 p==%1
with
(4.21) Z e (11, 87| Be,)TI;.
p +1
Then
B! —i[Ay(eDy), M] — 20;M = M,
with

M, = —eM® — M@ + MO,

It is left to show the uniform bound for the operator M,. By Lemma 4.2 about the
commutator estimate, we have for any j € {1,2,3}:

IM ]| g < Clgoll oo (0,005 [l e < Cllull g, for any d/2 < p < s—2.

We complete the proof.

24



Let M be the operator determined in Proposition 4.3. By the uniform operator
norm for M obtained in (4.20), there exist 9 > 0 such that for any 0 < ¢ < ¢¢, the
linear operator Id + £?M is uniformly bounded and invertible. Then the change of
variable (4.12) is well defined, and the system (4.14) in Uy becomes

(4.22) 8 Uy + E%Al(ngE)UQ = BT, + Ry,

where there hods the estimate

IRa(t, Y larn < OO+ Uat )l arn) |Uat, ) sn,  for any d/2 < p<s—4.

For a better understanding of the normal form method, we introduce the
definitions and properties for resonances and transparencies in the following remark.

Remark 4.4. In the proof of Proposition 4.3, a key observation is that the factors
Xi — Aj + p presented in (4.17) are away from zero (see (4.19)). This makes sure

that the operators ]\Z(Jp) in (4.17) are well defined.

We call resonances the frequencies & satisfying \i(§) — X\j(&) +p = 0 for some
(i,4,p). We say the strong transparency conditions are satisfied provided for all &
and all (i,7,p) there holds

(4.23) [T (&) B(ep)T; (§)] < ClAi(€) — Aj(€) + pl-

The terms on the left-hand side of (4.23) are called interaction coefficients and the
factors on the right-hand side are called resonance equations. If (4.23) is satisfied
for some (i, j,p), we say the (i, ], p)-interaction coefficient is strongly transparent.

If there is no resonance, under some reqularity assumption for the eigenvalues
and eigenprojections, for instance \;(€) € S, I;(&) € SY corresponding to our
setting, strong transparency conditions are satisfied.

In our setting, it is direct to check that the coefficients in B! are strongly
transparent and the coefficients in B are not. Indeed, we already showed in the
proof of Proposition 4.3 that there is no resonance associated with the interaction
coefficients in Bt (see (4.19)); this implies the coefficients in BY are strongly
transparent. Associated with the two coefficients in B, the resonance sets are

Riz:={&: M(§) —1=0} ={04}, Roz:={§: A2(§) +1=0}={04}.

We now calculate the interaction coefficients I11 () B(e—)II3(§) and I12(&) B(e4 )II3(€)
and check the strong transparency conditions.
Direct calculation gives

B(e_) =B(es) = —A

o O O
o O O
O = O
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On one hand, together with (4.7), we obtain the interaction coefficients are

e ) el

I () B I - —A ZélT Ié\l12

7)\£T O Z|§2

4.24 ! !
(4.24) i€e™ ) €lel
I (&) B(e I — —A Z?QT |2|22

e 0 il¢]?

A2 A2

On the other hand, the resonance equations satisfy

1 _ VIR
VIFIER -1 I

We find that |111(§) B(e-)I3(€)| - [A(€) = 1| 7" and [I2(&) B(es )5(8)] - [A2(€) + 1|7
are unbounded near £ = 0q4. This implies that the strong transparency conditions
(4.23) are not satisfied when (i,j,p) = (1,3,—1) or (i,7,p) = (2,3,1).

(425) =1 = el — 1! =

4.3 A singular localization

This section together with Section 4.4 are devoted to improve the non-transparent
part B from O(1) to O(e) such that we can obtain the existence in long time
of order O(¢™1) for (4.22). As observed in Remark 4.4, the interaction coefficients
in B do not satisfy the strong transparency conditions. We cannot employ the
normal form method as in Proposition 4.3 to eliminate B}

We introduce a cut-off function near the resonance £ = 0g:
(4.26) X € CX(B(04,2)), x=1on B(04,1).
We then consider the decomposition
(4.27) By = x(Dg)BY" + (1 — x)(D2) BY" = Bin + Bout-

We first show that B;, is small of order O(g). This can be achieved because of an
observation from (4.24)-(4.25) that some transparency type conditions are satisfied:
(4.28)

[0 (€)B(Uo,-1)s(€)] < CA() = 1Y%, [Ha(§) BUa)3(§)] < ClAa(€) + 12

Compared to (4.23), the conditions in (4.28) are weaker. Thus we may call such
conditions as partially strong transparency conditions.

Proposition 4.5. There holds

| Binw|| e < e Cllgollmsl|vl| e, forall d/2 <p<s—1.
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Proof. Tt is sufficient to show for all d/2 < u < s — 1 that

Ix(D2) I B(Uo,~1)zul| e < Cllgol as |[ul| e,

4.29

(4.29) (D) T B (U, )Tt < C o |zl
By Lemma 4.2,

(4.30) Iy B(Up,—1)l3 = I} B(e—)II3g0 + €R13

with Rq3 satisfying
[Rasullge < Cligollms||ullgwe,  for any d/2 <p<s—1.
By (4.24), we find

11, (§) B(e-)13(¢)
€]

113 (§) B(e+)1I3(§)
€]

(4.31) Bi3(€) := €Sl By(6) = €St

Then
X(D)IIy B(e- )3 = X(Dr)|5Dm‘B13(5Dr) = e X(Dy)|Ds|B13(eDy).

Recall s > d/2 + 4, then for any d/2 < p < s—1,
(4.32)
Ix(e D)1l B(e-)3(gow) | e < el[x(§)I€|Bis(e€)| o | goull e < & Cllgol s l[ull v

The estimate (4.29), follows directly from (4.30)-(4.32). The proof of (4.29), can
be done similarly.
O

4.4 Second normal form reduction

Since By is localized outside of the resonance & = 04, then the normal form
reduction method as in the proof of Proposition 4.3 can be employed. Some
troubles may arise because of the singular localization in Bgy,. Indeed, by (4.31),
the quantities

(1= OMEBE(EE) _ (1=0E) 5 o206y 1 1),

(4.33) Ai(e€) — 1 e [€]
' (1 — )(OTa(e6) Ble)T3(6) (1 x)(€)
et = g B0 + 1)

are of order O(¢~1). This implies the operator M as well as the remainder M,
defined through the normal form reduction method in the proof of Proposition 4.3
are no longer uniformly bounded (see (4.16), (4.17)).
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This problem can be solved. Indeed, even if M is of order O(¢~1), the change of
variable in (4.12) is still valid because e2M is of order O(e). By the fact A\3(&) =0
independent of &, we can find a way to avoid the O(¢~!) remainder in (4.16) (see
Remark 4.7). The other remainders defined as in (4.15) and (4.21) are uniformly
bounded and is of order O(1). The details are given as follows.

We consider another change of variable

(4.34) Us = (1d + £2N) ' U,
where N is of the form
0 0 e /"Ny
(4.35) N=10 0 ¢t/ Ny
0 0 0

with Nq3 and No3 to be determined. ‘
By (4.22) and (4.27), the system in Us has the form

8,5 + {:_12141(513%)(73 = (1d + 2N) " (Bout — i[A1(eDy), N] — €20,N) Us
(4.36) . . .
+ BinUs + (I1d + »SQN)_1 <52BoutNU3 + €2[Bin, N|U3 + 5722) .

Then we have:

Proposition 4.6. There exist Ny3(€) and Nos(€) in symbol class S° such that N
defined as (4.35) with

Ni3(D.)g Nog(D
(4.37) N = 13( x)907 N = 23(Dz) g0
€ €
satisfies
(4.38) Bout — i[A1(eDy), N] — €20;N = N,
for some linear operator N, satisfying
(4.39) |Nyullge < Cllul|ge, for anyd/2 <p<s—2.

Proof. Direct calculation gives

00 67”/52(A1 - 1)N13
Z[Al(eDCL‘%N} +€2atN =1(0 0 eit/sz()\2 + 1)N23 +52N£1),
0 0 0

where o
0 0 e “9Ny3
Nﬁl) =10 0 eit/‘EQ@tNQg

0 0 0
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We define

Fus(€) o= (—20) LX) ,ﬂ”%lg(ef)(x%(ss)+1>,
Nas(€) o= (—2i) L= _‘;,“)

By (4.6), (4.26), (4.24) and (4.31), we have

Bas(e€)(M5(e€) + 1).

Ni3(€) € 8% Naa(€) € S°.
By (4.33), there holds
e Ni3(8) = —2i(1 — \)(©) (M (e€) — 1) 'y (€€) Be )T (8),
e N3 (€) := —2i(1 = x) () (Na(e€) + 1)~ I () B(e )TI5 (<€)
Then for Ni3 and Nag defined by (4.37), we have
(4.40)

0 0 e */°1I,B(e_)sgy
i[A1(eDy), N] + 29N =2(1 —x)(Dy) [0 0 e/=* Iy B(e, )50 | +eNP,
0 0

0
where o~
0 0 e ™ Ni3(Dy)0kgo
NP =10 0 ¢ Noy(Dy)dig0
0 0 0
satisfies
(4.41)  |INPu|gu < Cllgoll s |lullze < Cllullpn, for all d/2 < p<s-—2.

‘We observe

o O

e”/a HQB(€+)H390

0
(4.42) Bout = 2(1 = x)(Da) (0
0 0 0

e~ /11, B(e_ )35
2 + €N7£3)’

where

)

¢/=* Iy B(e+) [go, T3]

e~ "/=* 1, B(e_)[go, H3])
0

2
&
[\}
—~
—_
|
SN—
—~
T
B
SN—
/
o O O
o O

By Lemma 4.2, NT(3) satisfies
INOulsn < Cligollaullin < Cllullsn, for all d/2<pu<s—1.

By (4.40), (4.41) and (4.42) we obtained (4.38) with N, := N\*) — N\? which satisfies
(4.39).
0
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Remark 4.7. Compared to the proof of Proposition 4.3, a key point in the proof
of Proposition 4.6 is that we avoid the commutator as in (4.16), which becomes of
order O(¢71) instead of O(1) in the setting of Proposition 4.6 where N13 and No3
are indeed of order O(e71).

We can avoid this commutator due to observing that the eigenvalue A3 associated
with I3 is a constant (zero actually) such that the commutator [As,I13] is zero. We

then define N13 and Nog is a different way compared to Mi(]p): we changed the order

of the Fourier multipliers (]\Nf” and ]\Z(]P)) and the scalar multipliers (go and go).
Then in the normal form reduction, there arises the commutator [As,Il3] which is
zero instead of [\1,111] and [A2,Ils] which are non-zero.

The operator N determined in Proposition 4.6 is of the form

L 0 0 efit/22ﬁ13§0
N = EN’ N:={(0 0 €% Naygo |
0 0 0

where N is uniformly-in-¢ bounded from H* to H* for any d/2 < < s — 2. Then
there exist g9 > 0 such that for any 0 < ¢ < &g, the operator (Id+&2N) = (Id+¢N)
as well as (Id +e2N)~! = (Id+N)~! are well defined and uniformly-in-e bounded
from H* to H" for any d/2 < p < s — 2. Together with Proposition 4.5, we can
rewrite (4.36) as

(4.43) aUs + ;?Al(er)Ui‘ = eRs,

where there holds the estimate

IRa(t, )l < CL+ |Us(t, ) lme)1Us(t, )|z, for any d/2 < p<s—4.

4.5 Long time well-posedness and end of the proof
By (4.11), (4.12) and (4.34), we have

I, (e D,) ¥
(4.44) Us3(0) = (Id + &*N) " H(Id + &*M) ™" | Hy(eD,)¥?
I3(sD,)¥e

for which the H%~% norm is uniformly bounded in e.
We consider another change of variable corresponding to a rescalling in time:

Uy(t) = Us(e ).
Then the equation and initial datum for Uy are
.U, + 6%/11 (eSDg;)U4 =Ry,
Us(0) = Us(0),

(4.45)
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where Ry4(t) := R3(e~'t) satisfies
[Ra(t, e < OO+ [Tt ) [Tt Y, or any d/2 < <5 — 4

Since s > d/2+4, then by the classical theory in the well-posedness of symmetric
hyperbolic systems (see for instance Chapter 2 of [14] or Chapter 7 of [16]), there
exists a unique local-in-time solution Uy € L>(0,T; H*=*) to Cauchy problem (4.45)
for some T > 0 independent of ¢.

Equivalently, there exists a unique solution Us € LOO(O,g;HS_‘l) to (4.43)-
(4.44). We go back to U and obtain the well-posedness in L>(0, %; H*=%). Since
the approximate solution U, is globally well defined and uniformly bounded in
L>®(0, 00; H*=%), we can reconstruct the solution U for (2.1)-(2.5) in L>(0, %; H %)
through (4.1). We then complete the proof of Theorem 2.1.

5 Proof of Theorem 1.3 and Theorem 1.4

This final section is devoted to the proof of Theorem 1.3 and Theorem 1.4.

5.1 The equivalent symmetric hyperbolic system

As in Section 2.1, we rewrite the Klein-Gordon equation into the form (2.1)-(2.2).
Armed with initial data (2.5) satisfying (1.10) with s > d/2 + 4, there exists a
unique solution in C ([0, 77); H*~*) with the maximal existence time T7 satisfying
liminf, ,o 7 > 0. Since the nonlinearity F(U) only depends on f(u), the classical
existence time satisfies (see for instance Chapter 2 of [14] or Chapter 7 of [16])

1
T o
© O ullzee)

and there is a criterion for the lifespan
T} < oo = lim ||u||fe = o0.
t—TF
To prove Theorem 1.3 and Theorem 1.4, we turn to prove the following two
theorems.

Theorem 5.1. Under the assumptions in Theorem 1.3, the Cauchy problem (2.1)—
(2.5) admits a unique solution U € C ([0, T7); H*™*) where the mazimal ewistence
time satisfies

(5.1) liminf T} > 17,

e—0

where Ty is the maximal existence time of the solution to (1.15)-(1.17). Moreover,
for any T < min{T}, T}, there exists a constant C(T) independent of € such that

(5.2) U - UOHLOO(O,T;HS*‘l) <C(T)e,
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where
(5.3) Uy = 6it/82’06+ + et/ pe_
with v the solution to (1.15)-(1.17).

Theorem 5.2. Under the assumption in Theorem 1.4, for any T < min{T*, T},
there exists a constant C(T) independent of € such that

(5.4) U —Uo - 5U1”Loo(o,T;Hs—4) < O(1) €,

where Uy is given in (5.3) and

(5.5) Uy = eit/e (wey + (VT0,0,0)7) + e /e (we— + (VT3,0,0)7)

with w the solution to (1.22)-(1.23).

Remark 5.3. It is direct to observe that Theorem 1.3 is a corollary of Theorem 5.1
and Theorem 1.4 is a corollary of Theorem 5.2. Hence, it is left and sufficient to
prove Theorem 5.1 and Theorem 5.2.

5.2 WKB expansion and approximate solutions

As in Section 2.2 and Section 3, we construct approximate solutions of the form
(2.6) to (2.1) by using WKB expansion.

5.2.1 WKB cascade

In the WKB cascade, the equations of order O(¢72) and O(¢~ 1) are the same as in
Section 3.1, so we do not repeat.

The equations which comprise all terms of order O(¢”) are
(5.6) atU(Lp — A(&z)Uljp + (ip + AO)UQ’p = F(Uo)p, for all p.

Here F(Up), is the p-th coefficient of the Fourier series of F'(Up) in 6. Precisely,

_ - 1 2
B:1) P = (O~ 0) o= flany =5 [ f(0)d0.
T Jo
where
(5.8) F(0) = f(uo)(0) := f(e™go + € g0)-

Here we used the notation for the corresponding components:

(5.9) U,=: v, |, foranyneZ, n>0.
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Lemma 5.4. For fp defined by (5.7) and (5.8), we have the estimates for any p € Z:

1o Ollze < C(f, lgo@)llz)lgo(t) |z, for any 0 < o <m,

~ O lgo(8) 1<)
o0l < =0

(5.10)

lgo ()| ey for any 0 <o <m—1,

where the dependency of the constant C is as follows

C(f lgo®llz=) =C | D 15 go(®))llze, lgo(®)] 2=

laj<m

Proof of Lemma 5.4. Since f € C™, m > s > d/2 + 4, then we have

(511) [f@llae <O D I @z, [ulls | lfulme, for any 0 <o < m.

la<m

For a proof of this fact (5.11), we refer to Theorem 5.2.6 in [16]. Then it is direct
to deduce (5.10);. We can obtain (5.10), by observing for any p # 0:

B 1 2

Ip: (ip) e f (e go + € go) (—ie " go + ie™ go)db.

When p = 0, equation (5.6) is equivalent to
(5.12)  Usg = (hd,0,divh; — fo)T for some vector valued function hy € R?.
When p = 1, equation (5.6) is equivalent to

{ 2idg0 — Ago + f1 = 0,

(5.13) e T ]
Usi = gee4 + (V' 91,0:90,0)", for some scalar function gs.

Here the equation (5.13), is exactly the nonlinear Schrodinger equation (1.15).
The way to determine the initial data of gy is the same as in (3.14) in Section
3.1. Since The initial data g(0) € H®, s > d/2 + 4, then by Lemma 5.4 and
the classical theory for the local well-posedness of Schroginder equations (see for
instance Chapter 8 of [16]), the Cauchy problem (5.13);-(3.14) admits a unique
solution g € C([0,Ty); H*) N CL([0,T7); H*~2) where T§ is the maximal existence
time. Moreover, there holds the estimate for any 7" < T

(5.14) ”8t90”L°°(0,T;H5—2) < C||90||L°°(0,T;HS) < C||(¢o, Vo)l ms-
When |p| > 2, equation (5.6) is equivalent to
(5.15) (ip + A())Ug,p = f~p <~ UQ’p = (ip + Ag)_lfp.

33



5.2.2 First order approximation

In this subsection, we are working under the assumptions in Theorem 1.3.
If we stop the WKB expansion by taking

in (3.7), (5.12) and (5.13),, we construct an approximate solution

(5.16) U .= Uy + €Uy + €205,
where
o (V9o
Uy = e't/e goe+ + c.c., Uy = e't/e 0 + c.c.,
0
5.17
(.17) W\ [ o B
Uy = 0~ 1 | git/e Oigo | +cc. | + Z ePt/e Uz p.
—fo 0 |p|>2

Here c.c. means complex conjugate and z + c.c. = 2Rz is two times of the real part
of z. Then we have:

Proposition 5.5. Under the assumptions in Theorem 1.3, the approximate solution
UM constructed by (5.16) and (5.17) satisfies vl e C([0,Ty); H*2) and solves

1 1
oUW — —A0,) UM + S AU = F(UM) — eRW
(5.18) tVa - ( ) a T £2 0Ya ( a ) el

UM ) =U(0) — ¥V,

£

Moreover, for any T' < T}, there holds the estimate

(5.19) sup (IR | oo zime—sy + 190 grams ) < +o0.
0<e<1

Proof of Proposition 5.5. By (5.10), in Lemma 5.4 and (5.15), we have

C(f: llgo(®)ll )
HU2,P(t)HH5*1 < (1 + ‘PDQ

By (5.14) and (5.17), we obtain for any t < T

lgo(t)||grs—1, [p] > 2.

(5.20) 1U2()l 752 < U2l 1152 < Cllgo(t) e
PEZL

34



Together with (5.14) and (5.17), we conclude vl e C([0,T¢); H52) solving
(5.18) with the remainders

(5.21)
(1) Vdigo
FU,’)-F . )
RW .= ( )E o) = [ 07 ) see | + A02)Uz — € P/ 04Us p,
0 PEZL

T
\I’t(gl) = (SVT905a¢55<p5) - SUQ(O)

By (1.3), (1.10), (2.5) and (5.20), we have the uniform estimate (5.19) for W',
It is left to show the uniform estimate (5.19) for Rgl). Direct calculation gives

F(U) - F(Uy)

1

- / F'(Uo + er(Ur + eU)) - (U + Us)dr.
0

Since f € C™, m > s, so des F'. Then

1
gHF(Uél))—F(UO)(t)IIHﬂ <C(f, Z 1Ujll ) Z 1Ujll e, for any 0 <o <m —1.
J J

Again by (5.17) and (5.14), we have for any t < Tj:
1
LR ~ F) (1)1 < €.
The proof of the uniform estimates for other terms in Rél) is similar and rather

direct by using the estimate (5.11). We omit the details.
O

This approximate solution Uél) in Proposition 5.5 will be used to prove Theorem
5.1 in Section 5.3.

5.2.3 Second order approximation

First of all, we point out that in this subsection, we are working under the
assumptions in Theorem 1.4.

We can continue the WKB process from the end of Section 5.2.1 where we
achieved the equations of order O(g?).

The equations in the terms of order O(¢) are

(5.22) U1y — A(Dy)Usyp + (ip + Ag)Usp = —(0F, £,,0)T,  for all p,
where
= 1 2m . . ) . .
(5.23) fp = (f'(uo)ur)p = 277/ e f1(e= 05 + e g0) (e g, + € g1)db.
0

Here we used the notations in (5.9).
A similar proof as that of Lemma 5.4, we can obtain:
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Lemma 5.6. There holds the estimates for any p € Z:

| ®llze < C(F. g0 g0) (B2 (90, 91) Do, for any 0 < o < m — 1,

. CF. g0, 90) (D)1
I 7p(®)le <

H(907gl>(t)”H"7 fOT’ any0§0<m_27

where the dependency of the constant C is as follows

C(f, (g0, 9)Dll=) = C | D 15 (g0 ()l 2=, 1l (90, 91) ()|

la]<m
When p = 0, equation (5.22) becomes
01,0 — A(0:)U20 + AoUso = —(03, fo,0)"
which is equivalent to
(5.24) Ohy =0, Usg = (hL,0,divhy — fo)T

for some vector valued function hz € R,

When p = 1, equation (5.22) becomes

U1 — A(Dp)Usy + (i + Ag)Usy = — (0%, f1,0)7,

which is equivalent to

(5.25) { 2i0ig1 — Ag1 + f1 =0,

Us1 = g3eq + (Vng, Ot g1, O)T, for some scalar function gs.

We find that g; satisfies a Schrodinger equation where the source term fl is
actually linear in g; (see (5.23)). The initial data g1(0) is determined such that
U1(0) = (VTpo,v1,91)T which is the first order (O(g)) perturbation of U(0) (see
(2.5) and (1.8)). This imposes

91(0) +g1(0) = 1, ig1(0) —ig1(0) = ¢,

which is equivalent to

(5.26) g = “_T“/’l € H*.

This is exactly the initial condition in (1.22). Since m > s+1, s > d/2+4, by Lemma
5.6 and the classical theory, the Cauchy problem (5.25);-(5.26) admits a unique
solution in Sobolev space C ([0,T5), H®). Here we have the maximal existence time
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T} = T where T§} is the maximal existence time for the solution go € C([0,Tf), H®)
to (5.13),, because fi1 is linear in g;. Moreover, there holds for any T' < 15

(5.27) 10t91 1| oo 0,715 -2) < Cllgnllos(o,m;m5) < Cll(d1,¥1) || s

When [p| > 2, equation (5.22) becomes

—A@x)Usp + (ip + A))Us p = —(03, f, 0)",

which is equivalent to
(5.28) Usp = (ip+ A0) " (A(02)02 — (0, /,, 0)7) .

We stop the WKB expansion and take

g2=93=h1=hy=h3 =0

in (3.7), (5.12), (5.24) and (5.25),. Then we construct another approximate solution

(5.29) UP .= Uy + el + £2Us + €3Us,
where
L (Vo
Uy == "% goes + c.c., Up =% | ig1 | +cc.,
9
Od o ‘791 ) )
(5.30) Up:=1| 0 | + e [ 090 | +ce. | + Z ePE Uy,
—fo 0 lp|>2
Od o Od ‘ 5
Ug:=| 0 | + git/e Owg1 | +ce. | + Z ePt/e Us p.
—fo 0 p|>2

Then we have:

Proposition 5.7. Under the assumptions in Theorem 1.4, the approximate solution
U constructed by (5.29) and (5.30) satisfies Ul e C([0,Ty); H*3) and solves
au® — La,u® + L au® = PUR) - 2RO,
€ €

U2 (0) =U(0) — 20?.

a

Moreover, for any T' < Tj, there holds the estimates

(5.31) sup (HRE:Z)HLOO(O,T;HS*‘l) + H\IIE:Q)”HS*4> < to0.
0<e<1

The proof of Proposition 5.7 is the same as that of Proposition 5.5. So we omit
the details here.

The approximate solution Uf) in Proposition 5.7 will be used to prove Theorem
5.2 in Section 5.4.
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5.3 Proof of Theorem 5.1

Associate with the approximate solution UC(LI) in Proposition 5.5, we define the error

(5.32) U:=-—"2

where U € C([0,7TF); H*~%) is the exact solution to (2.1)-(2.5). Then at least over
the time interval [0, min{T,T}) , U solves

O — LA@)U + 5 Aol = * (FUP +<0) ~ FULM)) + B
(5'33) ‘ € 52 € a a e

U0) =wvh),

&€

where YY) and ¥tV satisfy the uniform estimate in (5.19).
Concerning the well-posedness of Cauchy problem (5.33), we have the following
proposition.

Proposition 5.8. Under the assumptions in Theorem 1.3, the Cauchy problem
(5.33) admits a unique solution U € C([0,1*); H*=*) where TS is the maximal
existence time. Moreover, there holds

(5.34) lim inf 77 > T,

and for any T < min{T¢, T} :

(5.35) sup. U | oo o,3115-2) < C(T).

<e<

Proof of Proposition 5.8. We calculate

1
€

. ) 1 (12
(FW® +e0) - FUM)) ZF/(Ua)U+€/O F(U, + erl) 02 27) dr.

Since U € C([0,T¢); H*=2) and F € C™, m > s with s > d/2 + 4, then for any
t < T}, there holds

L (P + <) — PO (t)‘

<
c a

Hs—4
(CENTB)112-4) + & CE, Tl o1, 1T () 12-2) ) 1T @)l o

(5.36)

The system in U is semi-linear symmetric hyperbolic and the initial datum is
uniformly bounded in H*~*. By (5.36), the local-in-time well-posedness of Cauchy
problem (5.33) in Sobolev space H*™* is classical (see for instance Chapter 7 of [16]).
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Moreover, if we denote fg* to be the maximal existence time, the classical solution
is in C([0,T¥); H*=*) and there holds the estimate

sup HU|’LOO(07T;H572) < C(T), for any T < min{T* T}
0<e<1

and the criterion of the life-span

(5.37) T¥ < 0o = lim ||U] = = oo.
t—Tx

It is left to prove (5.34) to finish the proof. Let T' < Tjj be a arbitrary number.
It is sufficient to show there exists eg > 0 such that f: > T for any 0 < € < g9. By
classical energy estimates in Sobolev spaces for semi-linear symmetric hyperbolic
system, we have for any ¢ < min{T, T*}:

d . . )
SNO@ s < OT) (12 COT@ N 0)) W@l s + 1B o o750

Here C(||U(t)||ps-4) is continuous and increasing in ||U(t)||s—a. Then Gronwall’s
inequality implies

(5.38) |U(8)[| re—s < exp (/0 (C(T)(l+EC(yyU(T)HHS,4))) d7> 1T(0)]] 754
+ TN RO | poo 0,7, 1251 -

Let
M(T) = exp (2C(T)T) [|U(0) || grs—1 + TR || oo (0.7 pr5-1) -

We then define ‘
T := sup {t N e otstre—) < M(T)} .

If T < min{7T,T*}, then for any t < T, the inequality (5.38) implies
U @)l z1-1 < exp {TC(T)[L + & CM D)} U O0) | o+ TR || oo 0,7:15-1)-

Let
0 == {20(M(T))} .

Then for any 0 < ¢ < g9, there holds
. 3 )
0@l < exp (SCTT) 10O lno-s + TV oo,
The classical continuation argument implies that

(5.39) T > min{T, T}, for any 0 < ¢ < &.

By (5.37), we have T* > T. Together with (5.39), we deduce T* > T'. Since T' < 15
is a arbitrary number, we obtain (5.34) and complete the proof. O
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~ Now we are ready to prove Theorem 2.1. Given Uél) as in Proposition 5.5 and
U the solution of (5.33), we can reconstruct U through (5.32):

U=0UWY 40

which solves (2.1)-(2.5). This implies that the maximal existence time 7. of the
solution U € C([0,T7); H**) satisfies

T > min{Ty, T}

By (5.34) in Proposition 5.8, we obtain (5.1) in Theorem 5.1.
Finally, by (5.14), (5.17) and (5.35), we deduce (5.2) and we complete the proof
of Theorem 5.1.

5.4 Proof of Theorem 5.2

Associate with the approximate solution UéQ) in Proposition 5.7, we define the error

(2)
. U - Ua
(5.40) Vi= gy

Then the equation and initial datum for V are

o1 1.1 .
OV = ZA@V + AV = 5 (FW® +2V) = FUM)) + B2,

(5.41) £2

where R? and ¥ satisfy the uniform estimate in (5.31).
Similar to Proposition 5.8, we have

Proposition 5.9. Under the assumptions in Theorem 5.2, thAe Cauchy problem
(5.41) admits a unique solution V € C([0,17); H*=*) where T/ is the maximal
existence time. Moreover, there holds

) PR Tk > T
(5.42) hIan_)lélf 7 > Tj

and for any T < min{Ty, T*}:

(5.43) sup. |V (oizss+—4) < C(T).
0<e<1
The proof is the same as the proof of Proposition 5.8. Theorem 5.2 follows from
Proposition 5.9 through a similar argument as in the end of Section 5.3.
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