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Abstract. The paper is concerned with a class of mathematical models for polymeric flu-

ids, which involves the coupling of the Navier–Stokes equations for a viscous, incompressible,

constant-density fluid with a parabolic-hyperbolic integro-differential equation describing the
evolution of the polymer distribution function in the solvent, and a parabolic integro-differential

equation for the evolution of the monomer density function in the solvent. The viscosity co-

efficient appearing in the balance of linear momentum equation in the Navier–Stokes system
includes dependence on the shear-rate as well as on the weight-averaged polymer chain length.

The system of partial differential equations under consideration captures the impact of poly-

merization and depolymerization effects on the viscosity of the fluid. We prove the existence of
global-in-time, large-data weak solutions under fairly general hypotheses.

1. Viscosity models for polymers – formulation of the problem

Contemporary approaches to the modelling of polymeric fluids have exploited multi-scale de-
scriptions in an essential way. Mathematical models have thus been built by coupling systems of
partial differential equations describing the motion of the solvent with equations that track the
evolution of the microscopic behaviour of the solute in the solution. In this paper we focus on the
modelling and the analysis of two phenomena: we wish to explore how the rheological properties
of the fluid are affected by the presence of, possibly very long, chains of macromolecules; and,
second, we aim to investigate the possible mechanisms for polymerization and depolymerization
effects that can also heavily depend on the properties of the flow. The solvent is considered to be
an incompressible fluid and we assume that the possible changes of the density are negligible rel-
ative to other phenomena. Thus, the underlying system of equations under consideration consists
of the balance of linear momentum and the incompressibility constraint, i.e.,

∂t(%v) + divx(%v ⊗ v)− divxTTT = %f ,

divx v = 0.
(1)

These equations are assumed to be satisfied in a time-space cylinder Q := (0, T )×Ω, with Ω ⊂ Rd
being the physical flow domain. Here, v : Q → Rd denotes the velocity of the solvent, % is the
constant density, f : Q → Rd represents the density of volume forces and TTT : Q → Rd×d is the
Cauchy stress. In order to close the system (1), one also needs to relate the Cauchy stress to other
quantities describing the qualitative behaviour of the material. Despite their importance, in the
present paper we shall, for the sake of simplicity, neglect all thermal effects and will focus instead
on mechanical properties of the fluid in the isothermal setting. In particular, we are interested in
models that link the Cauchy stress to the shear rate and to the contribution of the microscopic
polymer molecules, in order to investigate how the level of interaction between polymer chains,
their lengths, and their configuration influence the Cauchy stress.
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That the presence of macromolecules in a solvent dramatically changes the properties of the
flow was already observed in [13], and has been, ever since, the focus of mathematical models. In
general terms, one can find two different approaches to the problem: the empirical (rheological)
one, where one typically fits the observed data in the model and introduces empirical formulae
for the viscosity, ν, based on the ratio of the magnitude of the Cauchy stress and the magnitude
of the shear rate; and a second one, based on modelling the microstructure of the polymer under
consideration using tools from statistical mechanics. The second approach has been particularly
common in the case of dilute polymers, i.e., when the concentration of polymer molecules in the
solvent is very low, so that the interactions of the macromolecules can be neglected. Because
of this, in such models the Cauchy stress is influenced by the presence of macromolecules by an
additive elastic stress tensor. This then leads to a closed system of equations; for a derivation of
the model and further related mathematical results and references in this direction we refer the
reader to Barrett & Süli [2, 3, 4, 5, 6] and Buĺıček, Málek & Süli [9]; see also [18] and [1].

On the other hand, in the case of concentrated polymers one has to take into account the
interactions of the polymer molecules (see, for example, [12]). Here we shall be concerned with
models in which the only important property of the microstructure that influences the macroscopic
flow equations is the polymer chain length, in the sense that the viscosity coefficient appearing
in the balance of linear momentum equation is considered to be a function of the polymer chain
length, resulting in a family of viscosity models. There is an evident contrast between mathematical
studies of such models, which ignore the dependence of the viscosity coefficient on the lengths of
polymer chains, and the vast set of experimental data indicating the influence of the polymer chain
length on the viscosity, see [7, 17, 13, 19, 20] among others. In particular, none of the approaches
mentioned above considered the impact of polymerization and depolymerization effects on the flow
properties. The goal of this paper is therefore to fill this gap by proposing a viscosity model that
incorporates the influence of polymerization and depolymerization effects on the macroscopic flow
variables. Specifically, we provide a rigorous proof of the existence of a global in time, large-data
weak solution to the class of models under consideration.

1.1. Viscosity models: the relationship between the viscosity, the shear rate and the
polymer chain length. It was experimentally observed more than seventy years ago already (cf.
[13], for example,) that the properties of the solvent heavily, and nonlinearly, depend on both the
number of polymer chains in the solvent and the polymer chain lengths. Flory had studied the
relationship between the viscosity of the solvent and the number of polymer chains in the solvent
for linear polyesters at constant temperature, pressure and shear-rate. Guided by experimental
evidence he then proposed that for linear polyesters the logarithm of the viscosity should be a
linear function of the square-root of the so-called weight-averaged chain length. Moreover, it was
also observed that this relationship is independent of the type of distribution function for the
species in the polymer. To be more concrete, if we denote by ψ(r) the distribution function of
polymer chains of length r (meaning that the polymer chain consists of r monomers) and denoting
the minimal length of a polymer by r0, the total weight of the polymer can be considered to be
proportional to ∫ ∞

r0

rψ(r) dr.

This is indeed the case if one considers r0 � 1, but must be corrected for lower values of r0, see
[13]. Thus, the weight-averaged chain length can be defined as

ψ̃ :=

∫∞
r0
r2ψ(r) dr∫∞

r0
rψ(r) dr

.

It was empirically shown in [13] that

ln ν ∼
√
ψ̃,

in the case when one considers linear polyesters; see [14] for a more detailed account. These ex-
periments indicate that, generally, one does not need to consider specific values of the distribution
function but that its average in the above sense will suffice from the point of view of accurate
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macroscopic modelling. This was also conjectured to be the case in many other situations, and
quite recently also in the case of amines at high pressures, see [20]. In that paper, the authors
showed that the logarithm of the viscosity is not necessarily related to the square-root of the
averaged chain length but it can be a more general function, though still dependent only on the
averaged properties and not on the fine details of ψ(r).

Further, it was common belief (based on laboratory experiments at nonconstant shear rates)
that many such phenomena can be explained by using a shear-dependent viscosity instead of a
polymer-length-dependent viscosity. However, this is not the case for concentrated polymers. For
example, in [17], the authors studied the simultaneous influence of the shear-rate and the polymer-
length on the viscosity for polydisperse polymer melts. Up to a certain critical value of the shear
rate, the fluid was seen to behave as a Newtonian fluid with viscosity depending only on the
chain length, while for large shear-rates significant shear-thinning was observed. Moreover, it was
also shown that, asymptotically, the viscosity depends only on the shear-rate and the influence of
the chain length in large shear-rate regions can be neglected. It furthermore transpired from the
experiments that the weight-averaged chain length was not an appropriate quantity in the cases
considered, and the authors suggested instead the following general form of weighting:

(2) ψ̃ :=

∫∞
r0
ω(r)rψ(r) dr∫∞
r0
rψ(r) dr

,

where the function ω represents the most significant lengths of the polymer chains. Surpris-
ingly, during the last decade, it was observed that there exist materials (e.g. polystyrene-decalin,
polyethylen) that exhibit the opposite phenomenon: shear-thickening, see [16]. For all these rea-
sons, we consider a much more general form of the Cauchy stress:

TTT := SSS− p III,

where p is the pressure and SSS represents the viscous part of the Cauchy stress; we further assume
that SSS is of the form

(3) SSS(ψ̃,DDDxv) := ν(ψ̃, |DDDxv|)DDDxv,

where DDDxv is the symmetric velocity gradient and ψ̃ is a general weight-averaged chain length
function of the form (2), which we frequently simplify (without lost of generality) to the form

ψ̃ :=

∫ ∞
r0

γ(r)ψ(r) dr.

We shall not specify the particular form of ν, but will instead admit a general class of viscosities
so as to enable the consideration of both shear-thinning and shear-thickening fluids.

1.2. Polymerization models. In the above system the microscopic parameter that is taken into
account is the polymer chain length, and we describe the process of elongation of these chains (by
binding free monomers to polymer chains) as well as the process of breaking longer chains into
shorter ones. We shall view this microscopic structure as an evolution of two populations: the
population of polymer chains and the population of monomers. This kind of description is akin
to the model for prion dynamics considered in [15]; see also [10, 11]. As the model formulated
in the current paper can be seen as an extension of the prion proliferation model in those papers
to the case with spatial effects (transport by a solvent and spatial diffusion) we shall discuss it
in more detail. The authors of [15, 10, 11] study how the healthy prion protein and infectious
prion protein populations interact in an infected organism. The infectious prions are abnormal
pathogenic conformations of the normal ones. The proposed model considers the infectious prion
proteins to be a polymeric form of normal prion proteins. Polymers of infected prions can split
into shorter chains. Such a splitting transforms one infectious polymer into two shorter infectious
polymers, which can then attach again to normal prion proteins. However, when the length of a
part of a split polymer falls below a certain critical value, it immediately degrades into a normal
prion protein, namely a monomer. By ψ we denote the distribution function of polymer chains of
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length r > r0 that satisfy the following equation:

∂tψ(t, r) + τφ(t)∂rψ(t, r) = −β(r)ψ(t, r) + 2

∫ ∞
r

β(r̃)κ(r, r̃)ψ(t, r̃) dr̃.(4)

The term τφ(t)∂rψ(t, r) represents the gain in length of polymer chains due to polymerization with
rate τ > 0, β(r) is the fragmentation rate, namely the length-dependent likelihood of splitting of
polymers to monomers, κ(r, r̃) is the probability that a polymer chain will split into two shorter
polymer chains of length r and r̃ − r, respectively, the term −β(r)ψ(t, r) is the loss of polymer
chains subject to the splitting rate β(r), and the last term is the count of all the polymer chains
of length r resulting from the splitting of polymer chains of length greater than r.

The evolution of monomers is described by means of the function φ(t), which is the concentration
of free monomers at time t, satisfying the equation

d

dt
φ(t) = 2

∫ r0

0

r

∫ ∞
r

β(r̃)κ(r, r̃)ψ(t, r̃) dr̃ dr − φ(t)

∫ ∞
r0

τψ(t, r) dr.(5)

The first term on the right-hand side represents the monomers gained when a polymer chain splits
with at least one polymer chain shorter than the minimum length r0, while the second term is the
loss of monomers as they are polymerized.

1.3. The complete model. We conclude this introductory section with the precise statement of
the complete system of equations under consideration. For a given Lipschitz domain Ω ⊂ Rd and a
given final time T > 0, we consider the balance of the linear momentum and the incompressibility
constraint in the form (after scaling by the constant density %)

∂tv(t, x) + divx(v(t, x)⊗ v(t, x)) +∇xp(t, x)− divxSSS(ψ̃(t, x),DDDxv(t, x)) = f ,

divxv(t, x) = 0,
(6)

where v : Q → Rd denotes the velocity of the fluid (solvent), p : Q → R is the pressure, and
f : Q → Rd is the density of the external body forces. The viscous part of the Cauchy stress
SSS : Q→ Rd×d is given by the formula

(7) SSS(ψ̃(t, x),DDDxv(t, x)) := ν(ψ̃(t, x), |DDDxv(t, x)|)DDDxv(t, x).

Here, DDDxv denotes the symmetric velocity gradient, i.e., DDDxv := 1
2 (∇xv + (∇xv)T), and the

viscosity coefficient ν : R≥0×R≥0 → R>0 is allowed to depend on the shear-rate |DDDxv| and on the

averaged polymer distribution function ψ̃ : Q→ R≥0, defined by

(8) ψ̃(t, x) :=

∫
R0

γ(r)ψ(t, x, r) dr,

where R0 := (r0,∞) and γ : R0 → R≥0 is a continuous nonnegative function, representing the
weight function associated with the averaging of polymer chain lengths. The distribution function
ψ : Q × R0 → R≥0, which in the absence of fluid motion satisfies (4), is now assumed to satisfy
the following equation:

∂tψ(t, x, r) + v(t, x) · ∇xψ(t, x, r) + τ(r)φ(t, x)∂rψ(t, x, r)−A(r)∆xψ(t, x, r)

=− β(r,v,DDDxv)ψ(t, x, r) + 2

∫ ∞
r

β(r̃,v,DDDxv)κ(r, r̃)ψ(t, x, r̃) dr̃,
(9)

in Q×R0. There are therefore two additional terms compared with (4): the convective/transport
term due to the presence of the velocity of the solvent, and the diffusion term A∆xψ associated
with the Brownian force acting on the polymer molecules immersed in the solvent. The parameter
r0 ∈ [0,∞) is a fixed minimal length of a polymer molecule, A(r) : R0 → R>0 denotes the rate
of diffusion for a particular value of r and is assumed here to be a nonincreasing function of r,
τ : [r0,∞)→ R≥0 is the polymerization rate, β : R0×Rd×Rd×d → R≥0 is the fragmentation rate
of polymer chains, which, unlike (4), will also be allowed to depend on the macroscopic quantities
in the model, namely on the fluid velocity and the shear rate, and, finally, κ(r, r̃) denotes the
probability that a polymer molecule of length r̃ will split into two polymer molecules of lengths
r and r̃ − r, respectively. The function φ appearing in (9) is the concentration of free monomers
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satisfying, in the absence of fluid motion, the identity (5), and which, in the presence of a moving
solvent, is assumed to satisfy the following equation:

∂tφ(t, x) + v(t, x) · ∇xφ(t, x)−A0∆xφ(t, x)

= −φ(t, x)

∫ ∞
r0

∂r(rτ(r))ψ(t, x, r) dr + 2

∫ r0

0

r

∫ ∞
r0

β(r̃,v,DDDxv)κ(r, r̃)ψ(t, x, r̃) dr̃ dr
(10)

in the space time cylinder Q. Here, the rate of diffusion A0 (caused by Brownian noise) is assumed
to be a positive constant and the additional transport term is due to the flow of the solvent.

We further assume that the velocity satisfies a Navier slip boundary condition, i.e.,

v · n = 0 on ∂Ω,

(SSSn)τ = −α∗v on ∂Ω,
(11)

where α∗ ≥ 0 is the domain-wall friction coefficient, n is the unit outward normal vector to ∂Ω, and
for any v we have denoted by vτ := v− (v ·n)n the projection of v on the tangent hyperplane to
the boundary. The function φ is assumed to satisfy a homogeneous Neumann boundary condition
with respect to the x variable, i.e.,

∇xφ · n = 0 on ∂Ω,(12)

and for ψ we also prescribe a homogeneous Neumann boundary condition with respect to the x
variable, i.e.,

∇xψ · n = 0 on ∂Ω.(13)

We shall further assume that ψ vanishes at infinity with respect to r, i.e.,

lim
r→∞

ψ(t, x, r) = 0.(14)

Finally, to complete the statement of the problem, we prescribe the following set of initial condi-
tions: for the velocity field we assume that

(15) v(0, x) = v0(x) in Ω, divx v0 = 0 in Ω, v0 · n = 0 on ∂Ω,

and for φ and ψ we assume that

φ(0, x) = φ0(x) in Ω, φ0 ≥ 0,(16)

ψ(0, x, r) = ψ0(x, r) in Ω× (r0,∞), ψ0 ≥ 0.(17)

1.4. Assumptions on the parameters. In what follows K will signify a universal constant. We
adopt the following assumptions on the data:

(A1) The diffusion rate A : R0 → R>0 is a continuous nonincreasing strictly positive function
defined on R0 such that limr→∞A(r) = 0.

(A2) The polymerization rate τ is a nondecreasing bounded globally Lipschitz continuous func-
tion such that τ(r0) = 0 and τ ′(r0) > 0. Consequently, we have that

(18) K−1r0 ≤ τ(r) + ∂rτ(r) + r∂rτ(r) +
τ(r)

r
≤ K.

(A3) The fragmentation rate β : R0×Rd×Rd×d → R≥0 is a smooth bounded function, which is
increasing with respect to its first variable, and satisfies, for all (r,v,DDD) ∈ R0×Rd×Rd×d,

(19) 0 < β(r,v,DDD) ≤ K.

Moreover, we require that the function η, defined by

(20) η(r) := sup
u∈Rd,DDD∈Rd×d

∂rβ(r,u,DDD)

β(r,u,DDD)
,

is measurable and nonnegative, and

(21) 0 ≤ (1 + r)η(r) ≤ K,
∫ ∞
r0

η(r) dr ≤ K.
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(A4) The kernel function κ is, for simplicity, defined as

(22) κ(r, r̃) :=


1

r̃
if r̃ > r0 and 0 < r < r̃,

0 otherwise.

It therefore follows that, for all α > 0,

(23)

∫ ∞
0

rα−1κ(r, r̃) dr =
r̃α−1

α
for r̃ > r0.

(A5) There exists a positive real number θ > 0 such that, for all r ∈ [r0,∞), one has

(24) γ(r) ≤ K(1 + r)θ.

(A6) We assume that ν : R≥0×R≥0 → R>0 is a continuous function such that, for some p > 2d
d+2

and for all ξ, ξ̃ ∈ Rd×d fulfilling ξ 6= ξ̃, one has (cf. (3))

|SSS(·, ξ)| ≤ K(1 + |ξ)p−1,

SSS(·, ξ) · ξ ≥ K−1|ξ|p −K,

(SSS(·, ξ)− SSS(·, ξ̃)) · (ξ − ξ̃) > 0.

(25)

1.5. The main result. Before introducing the definition of weak solution to problem (6)–(17)
we shall summarize our notational conventions. We denote by T ∈ (0,∞) the length of the time
interval and by Ω ⊂ Rd, d > 1, a bounded domain in Rd with C1,1-boundary ∂Ω; we then write
Ω ∈ C1,1. We also set Q := (0, T )× Ω and Γ := (0, T )× ∂Ω.

For p ∈ [1,∞] we define the Lebesgue space Lp(Ω) and the Sobolev spaces W 1,p(Ω) in the usual
way, and we denote the trace on ∂Ω of a Sobolev function u, if it exists, by tru. If X, Y are
Banach spaces, then Xd := X × · · · × X and we write X∗ for the dual space of X; Lp(0, T ;Y )
denotes the Bochner space of Y -valued Lp functions defined on (0, T ). For (scalar, vector- or
tensor-valued) functions f and g and · signifying the product of real numbers, scalar product of
vectors, or scalar product of tensors, as the case may be, we shall write

(f, g) :=

∫
Ω

f(x) · g(x) dx if f · g ∈ L1(Ω),

(f, g)∂Ω :=

∫
∂Ω

f(S) · g(S) dS if f · g ∈ L1(∂Ω),

〈g, f〉 := 〈g, f〉X∗,X if f ∈ X and g ∈ X∗.

We also require the space Cweak(0, T ;Lp(Ω)) consisting of all u ∈ L∞(0, T ;Lp(Ω)) such that
(u(t), ϕ) ∈ C([0, T ]) for all ϕ ∈ C(Ω).

We introduce the subspaces (and their dual spaces) of vector-valued Sobolev functions from
W 1,p(Ω)d, which have zero normal component on the boundary. First, we define, in the usual way,
for any p ∈ [1,∞),

Lpn,div := {v ∈ D(Ω)d; divx v = 0}
‖·‖p

,

where by D(Ω) we mean the set of all smooth functions with a compact support in the set Ω.
Then, by V and Vdiv we denote

V := {v ∈W d+2,2(Ω)d; v · n = 0 on ∂Ω}, Vdiv := V ∩ L2
n,div.

Note that V ⊂ W 1,∞(Ω)d and therefore we can finally introduce the following spaces for any
p ∈ [1,∞):

W 1,p
n := V‖·‖1,p , W−1,p′

n :=
(
W 1,p
n

)∗
(p′ = p/(p− 1)),

W 1,p
n,div := Vdiv

‖·‖1,p
, W−1,p′

n,div :=
(
W 1,p
n,div

)∗
.

Moreover, for any α > 1 we introduce the space Lpα(R0) := {ϕ ∈ Lp(R0) :
∫
R0
rαϕp(r) dr < ∞};

analogously, we let Lpα(Ω×R0) := {ϕ ∈ Lp(Ω×R0) :
∫

Ω

∫
R0
rαϕp(x, r) dr dx <∞}, R0 := (r0,∞).
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Theorem 1.1. Let the assumptions (A1)–(A6) be satisfied. Then, for any Ω ∈ C1,1, T ∈ (0,∞),
any v0, f , and any nonnegative ψ0, φ0 satisfying
(26)

v0 ∈ L2
n,div, f ∈ Lp

′
(0, T ;W−1,p′

n ), ψ0 ∈ L1(Ω;L1
θ∗1

(R0)) ∪ L2(Ω;L2
3(R0)), φ0 ∈ L∞(Ω),

with some θ∗1 > θ and θ∗1 ≥ 1, there exists a quadruple (p,v, ψ, φ) and q∗ > 1 such that

p ∈ Lq
∗
(Q),(27)

v ∈ Cweak(0, T ;L2
n,div) ∩ Lp(0, T ;W 1,p

n,div),(28)

ψ ∈ L∞(0, T ;L2
3(Ω× R0)) ∩ L2(0, T ;L2

loc(R0;W 1,2(Ω))) ∩ L1(0, T ;L1(Ω;L1
θ∗1

(R0))),(29)

φ ∈ L∞((0, T )× Ω) ∩ L2(0, T ;W 1,2(Ω)),(30)

with ∂tv ∈ Lq
∗
(0, T ;W−1,q∗

n,div ), ∂tψ ∈ Lq
∗
(0, T ; (W 1,2(R0 × Ω) ∩ W 1,(q∗)′(R0 × Ω))∗) and ∂tφ ∈

L2(0, T ;W−1,2(Ω)), which attains the initial conditions in the following sense:

lim
t→0+

‖v(t)− v0‖22 + ‖φ(t)− φ0‖22 + ‖ψ(t)− ψ0‖22 = 0,(31)

and solves, for almost all t ∈ (0, T ), the equations (6)–(13) in the following sense: for all w ∈W 1,1
n

such that ∇xw ∈ L∞(Ω)d×d,

〈∂tv,w〉+ (SSS,∇xw)− (v ⊗ v,∇xw) + α∗(v,w)∂Ω − (p,divxw) = 〈f ,w〉;(32)

for all ϕ ∈W 1,∞(Ω;D(R)),

〈∂tψ,ϕ〉 − (vψ,∇xϕ)− (∂r(τϕ), φψ) + (A(r)∇xψ,∇xφ)

= −(βψ, ϕ) + 2

(∫ ∞
r

βκψ dr̃, ϕ

)
;

(33)

and for all z ∈W 1,2(Ω),

〈∂tφ, z〉 − (vφ,∇xz) +A0(∇xφ,∇xz)

= −
(
φ

∫ ∞
r0

∂r(rτ)ψ dr, z

)
+ 2

(∫ r0

0

r

∫ ∞
r0

βκψ dr̃ dr, z

)
.(34)

A key difficulty in the mathematical analysis of the problem under consideration is that the
partial differential equation (9), governing the evolution of the distribution of polymer chains, is
a hyperbolic equation with respect to the variable r with a nonlocal term, which is nonlinearly
coupled to the evolution equations (6) and (10).

2. Analytical framework

An essential part of the existence proof relies on Lipschitz approximations of Bochner functions
taking values in Sobolev spaces. We recall from [8] the following lemma, which collects the
properties of the approximation in a simplified setting (omitting the generality of Orlicz spaces
used in [8]).

Lemma 2.1. Let Ω ⊂ Rd be a bounded open set, let T > 0 be the length of the time interval and
suppose that 1

p + 1
p′ = 1, with p ∈ (1,∞). For any function HHH and arbitrary sequences {un}∞n=1

and {HHHn}∞n=1, we consider

an := |HHHn|+ |HHH| and bn := |DDDxun|,

such that, for a certain C∗ > 1,∫
Q

|an|p
′
+ |bn|p dxdt+ ess.supt∈(0,T )‖un(t)‖22 ≤ C∗,

un → 0 a.e. in Q := (0, T )× Ω.

(35)
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In addition, let {GGGn}∞n=1 and {fn}∞n=1 be such that GGGn is symmetric and

GGGn → 0 strongly in L1(Q)d×d,(36)

fn → 0 strongly in L1(Q)d,(37)

and suppose that the following identity holds in D′(Q)d:

(38) ∂tu
n + divx(HHHn −HHH +GGGn) = fn.

Then, there exists a β > 0 such that, for arbitrary Qh ⊂⊂ Q and for arbitrary λ∗ ∈ (1,∞) and
arbitrary k ∈ N, there exists a sequence of {λnk}∞n=1, a sequence of open sets {Enk }∞n=1, Enk ⊂ Q,

and a sequence {un,k}∞n=1 bounded in L∞loc(0, T ;W 1,∞
loc (Ω)d), such that, for any 1 ≤ s <∞,

λnk ∈ [λ∗, C(λ∗)p
k

], ∀n ∈ N,(39)

un,k → 0 strongly in Ls(Qh)d,(40)

‖DDDx(un,k)‖L∞(Qh) ≤ C(h,Ω)λnk ,(41)

un,k = un in Qh \ Enk ,(42)

lim sup
n→∞

|Qh ∩ Enk | ≤ C(h,Ω)
C∗

(λ∗)p
.(43)

Moreover,

lim sup
n→∞

∫
Qh∩Enk

(|HHHn|+ |HHH|) |DDDx(un,k)|dxdt ≤ C(h,C∗)

(
1

(λ∗)p−1
+

1

kβ

)
,(44)

and the following bound holds for all g ∈ D(Qh):

− lim inf
n→∞

∫ T

0

〈∂tun,un,kg〉dt ≤ C(g, h, C∗)

(
1

(λ∗)p−1
+

1

k

)β
.(45)

3. Uniform a priori estimates

In this section, we shall formally derive the uniform estimates that will play a crucial role in
the proof of existence of weak solutions to the problem. All of the statements below are valid
for sufficiently smooth solutions. First, we recall a minimum principle. However, we will prove
it for the following slightly modified problem (we shall only indicate the dependence of functions
on the variable r, except in cases when it is necessary to emphasize the dependence on the other
independent variables as well):

∂tψ + v · ∇xψ −A∆xψ = −βψ − τφ∂rψ+ + 2

∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ+(·, r̃) dr̃,(46)

∂tφ+ v · ∇xφ−A0∆xφ = −φ
∫ ∞
r0

∂r(rτ)ψ+ dr + 2

∫ r0

0

r

∫ ∞
r0

β(r̃, ·)κ(r, r̃)ψ+(·, r̃) dr̃ dr,(47)

where ψ+ := max(ψ, 0).

Lemma 3.1 (Minimum principle for ψ and φ). Let ψ0 and φ0 be nonnegative; then, the functions
ψ and φ that solve the coupled system (46) and (47) are also nonnegative.

It directly follows from Lemma 3.1 that we can replace ψ+ by ψ and then (46), (47) reduce to
(9), (10).

Proof. We test the equation (46) by ψ−, where ψ− = min(ψ, 0) and integrate with respect to x
and r. Using the Neumann boundary condition on ψ we get, after integration by parts, that

1

2

d

dt
‖ψ−(t)‖22 +

∫
Ω

∫ ∞
r0

(
A(·)|∇ψ−|2 + β(r, ·)|ψ−|2

)
dr dx

=
1

2

∫
Ω

∫ ∞
r0

(divx v)|ψ−|2 + τφψ−∂rψ+ + 2

∫
Ω

∫ ∞
r0

ψ−

∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ+(·, r̃) dr̃ dr,

(48)
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where we have used the fact that v · n = 0 on ∂Ω. Then, the first term on the right-hand side
is identically zero since divx v = 0. The same is true for the second term on the right-hand side
since ψ−∂rψ+ = 0. Finally, since β is nonnegative, we see that the last term is nonpositive.
Consequently, we get

d

dt
‖ψ−(t)‖22 ≤ 0,

and since we have assumed that ψ0 ≥ 0, we deduce that ψ ≥ 0 almost everywhere. Using a similar
procedure, we obtain an identical result also for φ. �

Our next estimate is a maximum principle for φ.

Lemma 3.2 (Maximum principle for φ). There exists a constant C, depending only on K, such
that, if φ0 ∈ L∞(Ω), then

(49) ‖φ‖∞ ≤ max(C, ‖φ0‖∞).

Proof. We begin the proof with a pointwise bound on the right-hand side of (10). Using the
nonnegativity of φ (Lemma 3.1) and the assumptions on τ and β and the definition of κ, we
observe that

− φ
∫ ∞
r0

∂r(rτ)ψ dr + 2

∫ r0

0

r

∫ ∞
r0

β(r̃, ·)κ(r, r̃)ψ(r̃) dr̃ dr

≤ −φ
∫ ∞
r0

(τ + r∂rτ)ψ dr +K

∫ r0

0

r

∫ ∞
r0

ψ(r̃)

r̃
dr̃ dr

≤ −K−1r0φ

∫ ∞
r0

ψ dr +K

∫ r0

0

r

∫ ∞
r0

ψ(r̃)

r0
dr̃ dr

= −K−1r0φ

∫ ∞
r0

ψ dr +
Kr0

2

∫ ∞
r0

ψ dr

≤ −K−1r0

(∫ ∞
r0

ψ(r) dr

)(
φ−K2

)
≤ −K−1r0

(∫ ∞
r0

ψ(r) dr

)
(φ−M) ,

where M is defined as M := max(K2, ‖φ0‖∞). Hence, by multiplying (47) with (φ −M)+ and
integrating over Ω, we get (using integration by parts, the Neumann data and the fact that the
velocity is a solenoidal function) that

d

dt
‖(φ−M)+‖22 ≤ 0.

Consequently, we immediately arrive at (49). �

The next result concerns conservation of mass.

Lemma 3.3 (Conservation of mass). Let the pair of functions (ψ, φ) be a solution to (9), (10);
then, the following identity holds:

(50)
d

dt

[∫
Ω

φ(t, x) dx+

∫ ∞
r0

r

∫
Ω

ψ(t, x, r) dxdr

]
= 0.

Consequently, for a.a. t ∈ (0, T ),

(51)

∫
Ω

φ(t, x) dx+

∫ ∞
r0

r

∫
Ω

ψ(t, x, r) dx dr =

∫
Ω

φ0(x) dx+

∫ ∞
r0

r

∫
Ω

ψ0(x, r) dx dr =: E0.

Proof. First, we integrate (9) over Ω. Since divxv = 0, the transport term is equal to divx(vψ)
and then both the transport and diffusion terms vanish thanks to the zero Neumann boundary
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condition for ψ. Hence, we obtain

∂t

∫
Ω

ψ(t, x, r) dx+

∫
Ω

φ(t, x)τ∂rψ(t, x, r) dx

=−
∫

Ω

β(r, ·)ψ(t, x, r) dx+ 2

∫
Ω

∫ ∞
r

κ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dx.

(52)

In the next step we multiply (52) by r and integrate over the interval (r0,∞). Consequently,

d

dt

∫ ∞
r0

r

∫
Ω

ψ(t, x, r) dxdr +

∫ ∞
r0

∫
Ω

rτφ(t, x)∂rψ(t, x, r) dxdr

= −
∫ ∞
r0

∫
Ω

rβ(r, ·)ψ(t, x, r) dxdr + 2

∫ ∞
r0

∫
Ω

r

∫ ∞
r

κ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dxdr.

(53)

Finally, assuming that ψ vanishes sufficiently quickly at infinity, we can integrate by parts with
respect to r (note that since τ(r0) = 0 the second boundary term also vanishes); this yields the
identity

d

dt

∫ ∞
r0

r

∫
Ω

ψ(t, x, r) dxdr −
∫ ∞
r0

∫
Ω

∂r(rτ)φ(t, x)ψ(t, x, r) dxdr

= −
∫ ∞
r0

∫
Ω

rβ(r, ·)ψ(t, x, r) dxdr + 2

∫ ∞
r0

∫
Ω

r

∫ ∞
r

κ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dxdr.

(54)

Next we integrate (10) over Ω. Similarly as above, after integration by parts, the transport and
the diffusion terms vanish and we get

d

dt

∫
Ω

φ(t, x) dx = −
∫

Ω

∫ ∞
r0

φ(t, x)∂r(rτ)ψ(t, x, r) dr dx

+ 2

∫
Ω

∫ r0

0

r

∫ ∞
r0

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr dx.

(55)

Moreover, using the fact that κ(r, r̃) = 0 for r̃ < r0, we can rewrite the last term to obtain the
identity

d

dt

∫
Ω

φ(t, x) dx = −
∫

Ω

∫ ∞
r0

φ(t, x)∂r(rτ)ψ(t, x, r) dr dx

+ 2

∫
Ω

∫ r0

0

r

∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr dx.

(56)

Thus, by summing (54) and (56) and using Fubini’s theorem, we have that

d

dt

(∫
Ω

φ(t, x) dx+

∫
Ω

∫ ∞
r0

rψ(t, x, r) dr dx

)
= −

∫
Ω

∫ ∞
r0

rβ(r, ·)ψ(t, x, r) dr dx+ 2

∫
Ω

∫ ∞
0

r

∫ ∞
r

κ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dr dx.

(57)

Finally, we evaluate the last term. Changing the order of integration and using the fact that
κ(r, r̃) = 0 for r̃ ≤ r0, we deduce that

2

∫
Ω

∫ ∞
0

r

∫ ∞
r

κ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dr dx

= 2

∫
Ω

∫ ∞
0

∫ ∞
0

χr̃≥rrκ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dr dx

= 2

∫
Ω

∫ ∞
0

∫ r̃

0

rκ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr dr̃ dx

= 2

∫
Ω

∫ ∞
r0

(∫ r̃

0

rκ(r, r̃) dr

)
β(r̃, ·)ψ(t, x, r̃) dr̃ dx

(23)
=

∫
Ω

∫ ∞
r0

r̃β(r̃, ·)ψ(t, x, r̃) dr̃ dx.

Consequently, we see that the right-hand side of (57) is identically zero, and we deduce (50). �
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We shall now develop further bounds on the function φ.

Lemma 3.4 (Parabolic regularity of φ). Let ψ0, φ0 be nonnegative, φ0 ∈ L∞(Ω) and E0 < ∞
(cf. (51)); then,

(58)

∫
Q

|∇φ|2 dxdt ≤ C(‖φ0‖∞, E0,K).

Proof. Let us rewrite equation (10) as follows:

(59) ∂tφ+ v · ∇xφ−A0∆φ = F,

where F is the right-hand side of (10). First, we deduce a pointwise bound on F . Using the
minimum principle for ψ in conjunction with the properties of β and τ , we get

F (t, x) = −φ(t, x)

∫ ∞
r0

∂r(rτ)ψ(t, x, r) dr + 2

∫ r0

0

r

∫ ∞
r0

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr

≤ 2

∫ r0

0

r

∫ ∞
r0

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr ≤ 2K

∫ r0

0

r

∫ ∞
r0

κ(r, r̃)ψ(t, x, r̃) dr̃ dr

= 2K

∫ ∞
r0

(∫ r0

0

rκ(r, r̃) dr

)
ψ(t, x, r̃) dr̃ ≤ K

∫ ∞
r0

r0ψ(t, x, r̃) dr̃

≤ K
∫ ∞
r0

rψ(t, x, r) dr.

(60)

Thus, upon multiplying (59) by φ, integrating over Ω, using the nonnegativity of φ, partial inte-
gration (noting that all boundary terms again vanish) together with (51) and Lemma 3.2 give:

1

2

d

dt
‖φ(t)‖22 +A0‖∇φ(t)‖22 ≤ K

∫
Ω

φ(t, x)

∫ ∞
r0

rψ(t, x, r) dr dx

≤ K‖φ‖∞
∫

Ω

∫ ∞
r0

rψ(t, x, r) dr dx

(49),(51)

≤ KE0C(M, ‖ψ0‖∞).

Hence (58) directly follows. �

The next step is to establish a bound on high-order moments of the function ψ.

Lemma 3.5 (High-order moments of ψ). Let ψ be nonnegative and suppose that it satisfies (9);
then for all α ≥ 0,

(61) ess.supt∈(0,T )

∫
Ω

∫ ∞
r0

rαψ(t, x, r) dr dx ≤ C(α,K, T, ‖φ‖∞)

∫
Ω

∫ ∞
r0

rαψ0(x, r) dr dx.

Proof. We first integrate (9) over Ω to get

∂t

∫
Ω

ψ(t, x, r) dx = −
∫

Ω

β(r, ·)ψ(t, x, r) dx+ 2

∫
Ω

∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dx

−
∫

Ω

τ(r)φ(t, x)∂rψ(t, x, r) dx.

We then multiply the result by rα, where α ≥ 0, and integrate over (r0,∞) to deduce that

d

dt

∫
Ω

∫ ∞
r0

rαψ(t, x, r) dr dx = −
∫

Ω

∫ ∞
r0

rαβ(r, ·)ψ(t, x, r) dr dx

+ 2

∫
Ω

∫ ∞
r0

rα
∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr dx−
∫

Ω

∫ ∞
r0

τ(r)rαφ(t, x)∂rψ(t, x, r) dr dx.
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Next, we evaluate the second term on the right-hand side. Using Fubini’s theorem, we arrive at

2

∫ ∞
r0

rα
∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr = 2

∫ ∞
r0

∫ ∞
r0

rαχr≤r̃β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr

= 2

∫ ∞
r0

∫ r̃

r0

rαβ(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr dr̃

= 2

∫ ∞
r0

(∫ r̃

0

rακ(r, r̃) dr

)
β(r̃, ·)ψ(t, x, r̃) dr̃ − 2

∫ ∞
r0

(∫ r0

0

rακ(r, r̃) dr

)
β(r̃, ·)ψ(t, x, r̃) dr̃

(23)
=

2

α+ 1

∫ ∞
r0

rαβ(r, ·)ψ(t, x, r) dr − 2rα+1
0

α+ 1

∫ ∞
r0

β(r, ·)ψ(t, x, r)

r
dr.

Hence, we have that

d

dt

∫
Ω

∫ ∞
r0

rαψ(t, x, r) dr dx+
2rα+1

0

α+ 1

∫
Ω

∫ ∞
r0

β(r, ·)ψ(t, x, r)

r
dr dx

=
1− α
α+ 1

∫
Ω

∫ ∞
r0

rαβ(r, ·)ψ(t, x, r) dr dx−
∫

Ω

∫ ∞
r0

τ(r)rαφ(t, x)∂rψ(t, x, r) dr dx.

Using the nonnegativity of ψ, the boundedness of φ and integration by parts in the last integral,

d

dt

∫
Ω

∫ ∞
r0

rαψ(t, x, r) dr dx ≤ 1− α
α+ 1

∫
Ω

∫ ∞
r0

rαβ(r, ·)ψ(t, x, r) dr dx

+

∫
Ω

∫ ∞
r0

∂r(τ(r)rα)φ(t, x)ψ(t, x, r) dr dx

≤ C(α,K)(1 + ‖φ‖∞)

∫
Ω

∫ ∞
r0

rαψ(t, x, r) dr dx,

where we have used the assumptions on τ and β. Thus, (61) follows by using Gronwall’s lemma. �

Now we can prove the desired bounds on ψ.

Lemma 3.6 (Parabolic-hyperbolic estimates for ψ). Let ψ solve (9). Then, for all p ∈ [3,∞),
the following inequality holds:

ess.supt∈(0,T )

∫
Ω

∫ ∞
r0

rpψ2(t, x, r) dr dx+

∫
Q

∫ ∞
r0

rpA(r)|∇xψ(t, x, r)|2 dr dxdt

≤ C(p,K, ‖φ‖∞)

∫
Ω

∫ ∞
r0

rpψ2
0(x, r) dr dx.

(62)

Proof. Let α(r) be an arbitrary nonnegative function. We multiply (9) by α(r)ψ(t, x, r) and
integrate over Ω× (r0,∞) to deduce that (note that the term containing v again vanishes)

1

2

d

dt

∫
Ω

∫ ∞
r0

α(r)ψ2(t, x, r) dr dx+

∫
Ω

∫ ∞
r0

α(r)A(r)|∇xψ(t, x, r)|2 dr dx

= −
∫

Ω

∫ ∞
r0

α(r)β(r, ·)ψ2(t, x, r) dr dx

+ 2

∫
Ω

∫ ∞
r0

∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ α(r)ψ(t, x, r) dr dx

− 1

2

∫
Ω

∫ ∞
r0

φ(t, x)τ(r)α(r)∂rψ
2(t, x, r) dr dx.

(63)
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We begin by focusing on the evaluation of the first two terms on the right-hand side. By simple
manipulations we deduce that

(64)

Y (t, x) := −
∫ ∞
r0

(
α(r)β(r, ·)ψ2(t, x, r)− 2α(r)ψ(t, x, r)

∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃

)
dr

= −
∫ ∞
r0

α(r)ψ(t, x, r)

(
β(r, ·)ψ(t, x, r)− 2

∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃

)
dr

= −
∫ ∞
r0

α(r)ψ(t, x, r)

(
β(r, ·)ψ(t, x, r)− 2

∫ ∞
r

β(r̃, ·)ψ(t, x, r̃)

r̃
dr̃

)
dr

=

∫ ∞
r0

α(r)ψ(t, x, r)

r
∂r

(
r2

∫ ∞
r

β(r̃, ·)ψ(t, x, r̃)

r̃
dr̃

)
dr

=:

∫ ∞
r0

α(r)ψ(t, x, r)

r
∂rI(t, x, r) dr.

Next, we rewrite ψ in terms of I(r) as follows:

rβ(r, ·)ψ(t, x, r) = −∂rI(t, x, r) + 2r

∫ ∞
r

β(r̃, ·)ψ(t, x, r̃)

r̃
dr̃ = −∂rI(t, x, r) +

2I(t, x, r)

r
.

Hence, substituting this identity into (64), we deduce that

(65)

Y (t, x) =

∫ ∞
r0

α(r)

r2β(r, ·)
rβ(r, ·)ψ(t, x, r)∂rI(t, x, r) dr

=

∫ ∞
r0

α(r)

r2β(r, ·)
∂rI(t, x, r)

(
−∂rI(t, x, r) +

2I(t, x, r)

r

)
dr

= −
∫ ∞
r0

α(r)

r2β(r, ·)
|∂rI(t, x, r)|2 dr +

∫ ∞
r0

α(r)

r3β(r, ·)
∂rI

2(t, x, r) dr

= −
∫ ∞
r0

α(r)

r2β(r, ·)
|∂rI(t, x, r)|2 dr −

∫ ∞
r0

∂r

(
α(r)

r3β(r, ·)

)
I2(t, x, r) dr

− α(r0)

r3
0β(r0, ·)

I2(t, x, r0).

Thus, returning to (63), we substitute Y (t, x) into the first two terms on the right-hand side, and
integrate by parts in the last term in (63) recalling that τ(r0) = 0; this yields

d

dt

∫
Ω

∫ ∞
r0

α(r)ψ2(t, x, r) dr dx+ 2

∫
Ω

∫ ∞
r0

α(r)A(r)|∇xψ(t, x, r)|2 dr dx

+ 2

∫
Ω

∫ ∞
r0

α(r)

r2β(r, ·)
|∂rI(t, x, r)|2 dr dx+ 2

∫
Ω

α(r0)

r3
0β(r0, ·)

I2(t, x, r0) dx

= −2

∫
Ω

∫ ∞
r0

∂r

(
α(r)

r3β(r, ·)

)
I2(t, x, r) dr dx

+

∫
Ω

∫ ∞
r0

φ(t, x)∂r (τ(r)α(r))ψ2(t, x, r) dr dx.

(66)
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By setting α(r) := r3β̃(r) with nonnegative β̃, using Hölder’s inequality for the last term, we get

d

dt

∫
Ω

∫ ∞
r0

r3β̃(r)ψ2(t, x, r) dr dx+ 2

∫
Ω

∫ ∞
r0

r3β̃(r)A(r)|∇xψ(t, x, r)|2 dr dx

+ 2

∫
Ω

∫ ∞
r0

rβ̃(r)

β(r, ·)
|∂rI(t, x, r)|2 dr dx+ 2

∫
Ω

β̃(r0)

β(r0, ·)
I2(t, x, r0) dx

≤ −2

∫
Ω

∫ ∞
r0

∂r

(
β̃(r)

β(r, ·)

)
I2(t, x, r) dr dx

+ ‖φ‖∞
∫

Ω

∫ ∞
r0

∣∣∣∣∣∂rτ(r) +
τ(r)∂rβ̃(r)

β̃(r)
+

3τ(r)

r

∣∣∣∣∣ r3β̃(r)ψ2(t, x, r) dr dx.

(67)

Consequently, if we choose β̃ such that for all (r,u,DDD) ∈ (r0,∞)× Rd × Rd×d there holds

∂r

(
β̃(r)

β(r,u,DDD)

)
≥ 0,

∣∣∣∣∣τ(r)∂rβ̃(r)

β̃(r)

∣∣∣∣∣ ≤ C(β̃),(68)

then it follows from our assumptions on τ (cf. (18)) that

d

dt

∫
Ω

∫ ∞
r0

r3β̃(r)ψ2(t, x, r) dr dx+ 2

∫
Ω

∫ ∞
r0

r3β̃(r)A(r)|∇xψ(t, x, r)|2 dr dx

≤ C(K, ‖φ‖∞)

∫
Ω

∫ ∞
r0

r3β̃(r)ψ2(t, x, r) dr dx

and by Gronwall’s lemma we get

ess.supt∈(0,T )

∫
Ω

∫ ∞
r0

r3β̃(r)ψ2(t, x, r) dr dx+

∫
Q

∫ ∞
r0

r3β̃(r)A(r)|∇xψ(t, x, r)|2 dr dxdt

≤ C(K, ‖φ‖∞)

∫
Ω

∫ ∞
r0

r3β̃(r)ψ2
0(x, r) dr dx.

(69)

In what follows, we focus on finding β̃ that satisfies (68). For any nondecreasing γ(r) ≥ 1 we
define

β̃(r) := γ(r) e
∫ r
r0
η(τ) dτ

,

where η is introduced in (20) and we verify (68). For the second inequality in (68), we observe
that

∂rβ̃(r)

β̃(r)
=
∂rγ(r)

γ(r)
+ η(r);

consequently, since τ(r) ≤ Cr and η satisfies (21), it suffices to choose γ such that

(70)
r∂rγ(r)

γ(r)
≤ C for all r ∈ [r0,∞]

to ensure the validity of the second inequality in (68). To verify also the first inequality in (68),
we begin by noting, with the aid of (20) and the fact that γ is nondecreasing, that

∂r

(
β̃(r)

β(r,u,DDD)

)
=
∂rβ̃(r)β(r,u,DDD)− β̃(r)∂rβ(r,u,DDD)

β2(r,u,DDD)
=

β̃(r)

β(r,u,DDD)

(
∂rβ̃(r)

β̃(r)
− ∂rβ(r,u,DDD)

β(r,u,DDD)

)

≥ β̃(r)

β(r,u,DDD)

(
∂rβ̃(r)

β̃(r)
− η(r)

)
=

β̃(r)

β(r,u,DDD)

∂rγ(r)

γ(r)
≥ 0.

Consequently, the first inequality in (68) is satisfied. In addition, setting γ(r) := (1 + r)α with
arbitrary α ≥ 0, we see that γ is increasing and also that (70) holds. Moreover, with such a choice,

it is not difficult to verify using the definition of β̃ that

γ(r) ≤ β̃(r) ≤ Cγ(r).

By substituting this relation into (69) we obtain (62). �
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4. Proof of the main Theorem

This section is devoted to the rigorous proof of our main result. To this end, we introduce
several levels of approximation. First, since the argument is based on the energy method, we add
a regularizing term to (6) as follows:

∂tv(t, x) + divx(v(t, x)⊗ v(t, x)) +∇xp(t, x)− divxSSS(ψ̃(t, x),DDDxv(t, x)) + ε|v|2p
′−2v = f ,

divxv(t, x) = 0.
(71)

Next, we also regularize the equation (9) for ψ by adding the term −δ∂rrψ to its left-hand side and
to improve the integrability we add the terms δ|ψ|2p−2ψ and δ|φ|2p−2φ to (9) and (10) respectively.
Moreover, in order to prove the minimum principle for ψ we replace ψ by its positive part ψ+ in
several places. Also, in order to justify the a priori estimates for the approximating problem, we
replace φ by Tk(φ), where the truncation function Tk(s) is defined as follows:

Tk(s) := min(|s|, k) sign s, s ∈ R.

Finally, we introduce r∞ > r0 and consider the following equation in Q× (r0, r∞), supplemented
by homogeneous Neumann boundary conditions on (0, T )×∂Ω×(r0, r∞) and (0, T )×Ω×{r0, r∞}:

∂tψ(t, x, r) + v(t, x) · ∇xψ(t, x, r) + τ(r)Tk(φ(t, x))∂rψ+(t, x, r)−A(r)∆xψ(t, x, r)− δ∂rrψ

+ δ|ψ(t, x, r)|2p−2ψ(t, x, r) = −β(r,v,DDDxv)ψ(t, x, r) + 2

∫ r∞

r

β(r̃,v,DDDxv)κ(r, r̃)ψ+(t, x, r̃) dr̃.

(72)

Similarly, we replace the integral over the semi-infinite interval (r0,∞) by one over (r0, r∞) and
change the corresponding terms in (10) as follows:

∂tφ(t, x) + v(t, x) · ∇xφ(t, x)−A0∆xφ(t, x) + δ|φ(t, x)|2p−2φ(t, x)

= −Tk(φ(t, x))

∫ r∞

r0

∂r(rτ(r))ψ+(t, x, r) dr + 2

∫ r0

0

r

∫ r∞

r0

β(r̃,v,DDDxv)κ(r, r̃)ψ+(t, x, r̃) dr̃ dr,

(73)

subject to a homogeneous Neumann boundary condition on (0, T )× ∂Ω. Having introduced these
three levels of approximation, we then first let δ → 0 and r∞ →∞, and, finally, we let ε→ 0.

4.1. Existence of a solution to the ε-, δ-, r∞-approximating problem. The existence of a
solution to the approximating problem follows from the following result, which we state without
proof, as the argument, based on monotone operator theory and the Aubin–Lions lemma, is
completely straightforward.

Lemma 4.1. Let Ω ⊂ Rd be a Lipschitz domain, r∞ ∈ (r0,∞) and T > 0. Assume that (A1)–
(A5) are satisfied. Moreover, let v0 ∈ L2

n,div(Ω), φ0 ∈ L2(Ω), ψ0 ∈ L2(Ω × (r0, r∞)) and f ∈
Lp
′
(0, T ;W−1,p′

n,div ); then, there exists a triple (v, ψ, φ) such that

v ∈ C(0, T ;L2(Ω)d) ∩ Lp(0, T ;W 1,p
n,div) ∩ L2p′(0, T ;L2p′(Ω)d),(74)

∂tv ∈
(
Lp(0, T ;W 1,p

n,div) ∩ L2p′(0, T ;L2p′(Ω)d)
)∗
,(75)

ψ ∈ C(0, T ;L2(Ω× (r0, r∞))) ∩ L2(0, T ;W 1,2(Ω× (r0, r∞))) ∩ L2p(Q× (r0, r∞)),(76)

∂tψ ∈
(
L2(0, T ;W 1,2(Ω× (r0, r∞))) ∩ L2p(Q× (r0, r∞))

)∗
,(77)

φ ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)) ∩ L2p(Q),(78)

∂tφ ∈
(
L2(0, T ;W 1,2(Ω)) ∩ L2p(Q)

)∗
,(79)



16 M. BULÍČEK, P. GWIAZDA, E. SÜLI, AND A. ŚWIERCZEWSKA-GWIAZDA

satisfying, for all w ∈ Lp(0, T ;W 1,p
n,div) ∩ Lp′(Q)d,∫ T

0

〈∂tv,w〉 −
∫
Q

v ⊗ v · ∇xw + SSS(ψ̃(t, x),DDDxv(t, x)) · ∇xw + ε|v|2p
′−2v ·w dxdt

= −α∗
∫ T

0

∫
∂Ω

v ·w dS +

∫ T

0

〈f ,w〉dt;
(80)

for all ω ∈ L2(W 1,2(Ω× (r0, r∞))) ∩ L2p(Q× (r0, r∞)),∫ T

0

〈∂tψ, ω〉dt+

∫
Q×(r0,r∞)

−ψv · ∇xω + Tk(φ)τω∂rψ+ +A∇xψ · ∇xω + δ∂rψ∂rω dr dxdt

=

∫
Q×(r0,r∞)

−δ|ψ|2p−2ψω − β(·,v,DDDxv)ψω + 2ω

∫ r∞

r

β(r̃,v,DDDxv)κ(r, r̃)ψ+(r̃, ·) dr̃ dr dxdt;

(81)

for all θ ∈ L2(0, T ;W 1,2(Ω)) ∩ L2p(Q),∫ T

0

〈∂tφ, θ〉dt+

∫
Q

−φv · ∇xθ +A0∇xφ · ∇xθ + δ|φ|2p−2φθ dx dt

= −
∫
Q

Tk(φ)θ

∫ r∞

r0

∂r(rτ(r))ψ+(r, ·) dr dxdt

+ 2

∫
Q

∫ r0

0

θr

∫ r∞

r0

β(r̃,v,DDDxv)κ(r, r̃)ψ+(r̃, ·) dr̃ dr dxdt;

(82)

and fulfilling, in addition,

v(0) = v0, φ(0) = φ0, ψ(0) = ψ0

and

(83) SSS(ψ̃(t, x),DDDxv(t, x)) := ν(ψ̃(t, x), |DDDxv(t, x)|)DDDxv(t, x)

with

(84) ψ̃(t, x) :=

∫ r∞

r0

γ(r)ψ(t, x, r) dr.

4.2. A priori estimates. In this subsection, we derive bounds on the solution whose existence has
been stated in Lemma 4.1. Some of the bounds will be independent of the order of approximation;
if, on the other hand, something depends on one of the regularization parameters, this will be
clearly indicated. Moreover, since we shall be following, step-by-step, the formal bounds developed
in Section 3, some of the details will be omitted for brevity. Also, to abbreviate the notation, we
introduce Ωr∞ := Ω× (r0, r∞). We formulate the result in the following lemma.

Lemma 4.2. Let (v, ψ, φ) be a solution to (74)–(84) constructed in Lemma 4.1; then, the following
energy identity holds for all t ∈ (0, T ):

1

2
‖v(t)‖22 +

∫ t

0

∫
Ω

ε|v|2p
′
+ SSS ·DDDxv dx dτ + α∗

∫ t

0

∫
∂Ω

|v|2 dS dτ =

∫ t

0

〈f ,v〉dτ +
1

2
‖v0‖22.(85)

Consequently, we have the following uniform a priori bound:

ess.supt∈(0,T )‖v(t)‖2 +

∫ T

0

‖v‖p1,p + ‖SSS‖p
′

p′ + ‖v‖2L2(∂Ω) + ε‖v‖2p
′

2p′ dt≤ C

(
‖v0‖22 +

∫ T

0

‖f‖p
′

−1,p′ dt

)
.

(86)

Moreover, if ψ0 and φ0 are nonnegative almost everywhere, then

ψ ≥ 0 in Q× (r0, r∞), φ ≥ 0 in Q.(87)

In addition, if φ0 ∈ L∞(Ω), then the following uniform estimate holds:

‖φ‖L∞(Q) ≤ max(K2, ‖φ0‖∞),(88)
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and, for all q ≥ 3, we have the following δ-dependent bounds:∫ T

0

‖φ‖1,2 dt ≤ C(‖φ0‖∞)δ
1
2 (1 + r∞) + C(‖φ0‖∞,K)

∫
Ωr∞

rψ0 dr dxdt,(89)

ess.supt∈(0,T )

∫
Ωr∞

rqψ2(t) +

∫ T

0

∫
Ωr∞

A(r)rq|∇xψ|2 + δrq|ψ|2p + δrq|∂rψ|2 ≤ C(q)eCδT
∫

Ωr∞

rqψ2
0 ,(90)

ess.supt∈(0,T )

∫
Ωr∞

rq−2ψ(t) dr dx ≤ C(‖φ0‖∞, q,K)

(
δ

1
2 rq−1
∞ +

∫
Ωr∞

rq−2ψ0 + δ
1
2 rqψ2

0 dr dx

)
.(91)

Proof. First, the energy identity (85) directly follows by setting w := vχ[0,t] in (80). Then, the
uniform estimate (86) is a consequence of the assumption (25) on SSS. To obtain the minimum
principle for φ, we mimic the proof of Lemma 3.1. Thus, we set θ := φ− in (82), where φ− :=
min(0, φ). Hence, using the divergence-free constraint on the velocity v, the fact that ψ+, β and
τ are nonnegative and that τ is nondecreasing, we deduce that

d

dt
‖φ−‖22 ≤ 0.

Therefore, as φ0 is assumed to be nonnegative, we find that φ− ≡ 0 and φ ≥ 0 almost everywhere
in Q. The proof of the inequality ψ ≥ 0 is similar and is therefore omitted. Consequently, we can
replace ψ+ by ψ in (81) and (82). In order to prove (88), we mimic the proof of Lemma 3.2. To
this end, we begin by noting that the right-hand side of (82) can be, for nonnegative θ, bounded
as follows:

−
∫
Q

Tk(φ)θ

∫ r∞

r0

∂r(rτ(r))ψ+(t, x, r) dr dxdt

+ 2

∫
Q

∫ r0

0

θr

∫ r∞

r0

β(r̃,v,DDDxv)κ(r, r̃)ψ+(t, x, r̃) dr̃ dr dxdt

≤ −K−1r0

∫
Q

θ (Tk(φ)−M)

(∫ r∞

r0

ψ(r) dr

)
dx dt,

with M := max(‖φ0‖∞,K2). Therefore, by setting θ := (φ −M)+ in (82), using the fact that
divx v = 0, the nonnegativity of φ and the above estimate, we arrive at

d

dt
‖(φ−M)+‖22 ≤ 0.

Since φ0 ≤ M almost everywhere in Ω the estimate (88) directly follows. Thus, in what follows,
we assume that k ≥M and therefore we can replace Tk(φ) by φ in (81) and (82).

We see that all of the above estimates are independent of the order of the approximation. In
what follows, we shall establish several estimates that depend on some of the regularization pa-
rameters, but the estimates will become uniform by applying the relevant limiting procedure. Note
here that while in the proofs of Lemmas 3.3–3.6 we have formally used integration by parts with
respect to r, assuming that ψ vanishes sufficiently quickly at infinity, at the level of approximation,
in a rigorous argument, such a procedure is not allowed. Fortunately, using the minimum principle
for ψ and the fact that τ(r0) = 0, we can still integrate by parts in all of the desired terms at the
cost of finally changing the equality sign to an inequality sign.

We start with the bounds that are similar to those in Lemma 3.6. Hence, setting ω := α(r)ψχ[0,s]

in (81) with nonnegative α(r) we get (after denoting Ωr∞ := Ω× (r0, r∞)) the following equality:∫
Ωr∞

α(r)

2
(ψ2(s)− ψ2

0) dr dx+

∫ s

0

∫
Ωr∞

α(r)A(r)|∇xψ|2 + δα(r)|ψ|2p + δα|∂rψ|2 dr dxdt

=

∫ s

0

∫
Ωr∞

−β(·,v,DDDxv)αψ2 + 2αψ

(∫ r∞

r

β(r̃,v,DDDxv)κ(r, r̃)ψ(r̃) dr̃

)
dr dxdt

− 1

2

∫ s

0

∫
Ωr∞

φτα∂rψ
2 dr dxdt− δ

∫ s

0

∫
Ωr∞

α′ψ∂rψ dr dx dt.
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First, we use Young’s inequality in order to absorb part of the last term into the left-hand side,
to deduce the following inequality:∫

Ωr∞

α(r)

2
(ψ2(s)− ψ2

0) dr dx+

∫ s

0

∫
Ωr∞

α(r)A(r)|∇xψ|2 + δα(r)|ψ|2p +
δ

2
α|∂rψ|2 dr dxdt

≤
∫ s

0

∫
Ωr∞

−β(·,v,DDDxv)αψ2 + 2αψ

(∫ r∞

r

β(r̃,v,DDDxv)κ(r, r̃)ψ(r̃, ·) dr̃

)
dr dxdt

− 1

2

∫ s

0

∫
Ωr∞

φτα∂rψ
2 dr dxdt+ δ

∫ s

0

∫
Ωr∞

|α′|2

2α
ψ2 dr dx dt.

Next, we integrate by parts in the third term on the right-hand side to deduce that∫
Ωr∞

α(r)

2
(ψ2(s)− ψ2

0) dr dx+

∫ s

0

∫
Ωr∞

α(r)A(r)|∇xψ|2 + δα(r)|ψ|2p +
δ

2
α|∂rψ|2 dr dx dt

≤
∫ s

0

∫
Ωr∞

−β(·,v,DDDxv)αψ2 + 2αψ

(∫ r∞

r

β(r̃,v,DDDxv)κ(r, r̃)ψ(r̃, ·) dr̃

)
dr dxdt

− 1

2

∫ s

0

∫
Ω

φ(t, x)
(
τ(r∞)α(r∞)ψ2(t, x, r∞)− τ(r0)α(r0)ψ2(t, x, r0)

)
dxdt

+ δ

∫ s

0

∫
Ωr∞

|α′|2

2α
ψ2 dr dx dt+

1

2

∫ s

0

∫
Ωr∞

φ∂r(τα)ψ2 dr dxdt

≤
∫ s

0

∫
Ωr∞

−β(·,v,DDDxv)αψ2 + 2αψ

(∫ r∞

r

β(r̃,v,DDDxv)κ(r, r̃)ψ(r̃, ·) dr̃

)
dr dxdt

+ δ

∫ s

0

∫
Ωr∞

|α′|2

2α
ψ2 dr dx dt+

1

2

∫ s

0

∫
Ωr∞

φ∂r(τα)ψ2 dr dxdt,

(92)

where for the second inequality we have used the fact that τ(r0) = 0 and that φ, τ and α are non-

negative. We then follow, step-by-step, the proof of Lemma 3.6. By setting α := r3+γe
∫ r
r0
η(s) ds

,
with η given by (20) and nonnegative γ, we see that the first term on the right-hand side is
nonpositive and therefore∫

Ωr∞

α(r)

2
(ψ2(s)− ψ2

0) dr dx+

∫ s

0

∫
Ωr∞

α(r)A(r)|∇xψ|2 + δα(r)|ψ|2p +
δ

2
α|∂rψ|2 dr dx dt

≤ δ
∫ s

0

∫
Ωr∞

|α′|2

2α
ψ2 dr dxdt+

1

2

∫ s

0

∫
Ωr∞

φ∂r(τα)ψ2 dr dxdt.

(93)

Hence, by the assumption (18), the definition of α and Gronwall’s lemma, we see that for all q ≥ 3
(noting that we set γ := q − 3 in the definition of α) we have∫

Ωr∞

rqψ2(t) dr dx+

∫ T

0

∫
Ωr∞

rqA(r)|∇xψ|2 + δrq|ψ|2p +
δ

2
rq|∂rψ|2 dr dx dt

≤ C(q)eCδT
∫

Ωr∞

rqψ2
0 dr dx,

(94)

which is nothing else but (90). Next, in order to estimate the high-order moments of ψ, for any
q ≥ 1 we set ω := rqχ[0,s] in (81) to obtain

∫
Ωr∞

(rqψ(s)− rqψ0) dr dx+

∫ s

0

∫
Ωr∞

φτrq∂rψ + δq∂rψr
q−1 dr dxdt

= −
∫ s

0

∫
Ωr∞

δ|ψ|2p−2ψrq + β(·,v,DDDxv)ψrq − 2rq
(∫ r∞

r

β(r̃,v,DDDxv)κ(r, r̃)ψ(r̃, ·) dr̃

)
dr dxdt.

(95)

The first term on the right-hand side is nonpositive and can be therefore discarded. Next, we
integrate by parts in the second term on the left-hand side and use the fact that all functions
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involved are nonnegative (and thus we can neglect their values at r∞); and, finally, we use Young’s
inequality in the last term on the right-hand side to deduce that∫

Ωr∞

(rqψ(s)− rqψ0) dr dx ≤
∫ s

0

∫
Ωr∞

C(q)δ
1
2 (δrq+2|∂rψ|2 + rq−2) + φ∂r(τr

q)ψ dr dxdt

+

∫ s

0

∫
Ωr∞

−βψrq + 2rq
(∫ r∞

r

β(r̃,v,DDDxv)κ(r, r̃)ψ(r̃, ·) dr̃

)
dr dxdt.

(96)

For the first term on the right-hand side, we use the estimate (90) and for the remaining parts we
can follow the proof of Lemma 3.5 verbatim to complete the argument (by using the assumption
(18) on τ) (91).

Finally, we focus on (89). Setting θ := φ in (82), using the bound (88), and the assumptions
(A3) and (A4), we deduce that∫

Q

|∇xφ|2 + δ|φ|2p dxdt ≤ C(A0,K, ‖φ0‖∞)

∫
Q

∫ r∞

r0

rψ dr dxdt(97)

and (89) then follows by using (91) with q = 3. �

4.3. The limits δ → 0+ and r∞ → ∞. This subsection is devoted to passage to the limits
δ → 0+ and r∞ → ∞; i.e., we eliminate the presence of the elliptic regularization of ψ and we
pass from the bounded interval (r0, r∞) to (r0,∞). We shall use the notations Ω∞ := Ω× (r0,∞)
and Q∞ := (0, T )× Ω∞. The associated existence result is formulated in the following lemma.

Lemma 4.3. Let Ω ⊂ Rd be a Lipschitz domain and T > 0. Assume that (A1)–(A5) are satisfied.

Moreover, let v0 ∈ L2
n,div, f ∈ Lp

′
(0, T ;W−1,p′

n,div ), and let φ0 ∈ L∞(Ω) and ψ0 ∈ D(Ω∞) be

nonnegative; then, there exists a triple (v, ψ, φ) such that

v ∈ C(0, T ;L2(Ω)d) ∩ Lp(0, T ;W 1,p
n,div) ∩ L2p′(0, T ;L2p′(Ω)d),(98)

∂tv ∈
(
Lp(0, T ;W 1,p

n,div) ∩ L2p′(0, T ;L2p′(Ω)d)
)∗
,(99)

ψ ∈ Cw(0, T ;L2(Ω∞)) ∩ L2((0, T )× (r0, r∞);W 1,2(Ω)),(100)

∂tψ ∈
(
L2p′(0, T ;W 1,2p′(Ω∞) ∩W 1,2(Ω∞))

)∗
,(101)

φ ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)) ∩ L∞(Q),(102)

∂tφ ∈
(
L2(0, T ;W 1,2(Ω))

)∗
,(103)

which satisfies, for all w ∈ Lp(0, T ;W 1,p
n,div) ∩ Lp′(Q)d:

∫ T

0

〈∂tv,w〉dt−
∫
Q

v ⊗ v · ∇xw + SSS(ψ̃(t, x),DDDxv(t, x)) · ∇xw + ε|v|2p
′−2v ·w dxdt

= −α∗
∫ T

0

∫
∂Ω

v ·w dS +

∫ T

0

〈f ,w〉dt;
(104)

furthermore, for all ω ∈ L∞(0, T ;W 1,2(Ω∞) ∩W 1,∞(Ω∞)) ∩ L2p(Q∞) fulfilling w(∞, ·) = 0 one
has: ∫ T

0

〈∂tψ, ω〉dt+

∫
Q∞

−ψv · ∇xω − φ∂r(τω)ψ +A∇xψ · ∇xω dr dx dt

=

∫
Q∞

−β(·,v,DDDxv)ψω + 2ω

∫ ∞
r

β(r̃,v,DDDxv)κ(r, r̃)ψ(r̃, ·) dr̃ dr dx dt;

(105)
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and, for all θ ∈ L2(0, T ;W 1,2(Ω)) one has:∫ T

0

〈∂tφ, θ〉dt+

∫
Q

−φv · ∇xθ +A0∇xφ · ∇xθ dxdt

= −
∫
Q

φθ

∫ ∞
r0

∂r(rτ(r))ψ(r, ·) dr dxdt

+ 2

∫
Q

∫ r0

0

θr

∫ ∞
r0

β(r̃,v,DDDxv)κ(r, r̃)ψ(r̃, ·) dr̃ dr dx dt;

(106)

with v, φ and ψ attaining the initial data v0, φ0 and ψ0, respectively, in the sense that

(107) lim sup
t→0+

‖v(t)− v0‖22 + ‖φ(t)− ψ0‖22 + ‖ψ(t)− ψ0‖22 = 0,

and fulfilling (83). Moreover, the solution satisfies (85), (86), (87) and (88). In addition, for all
q ≥ 3 we have the following uniform estimates:∫ T

0

‖φ‖1,2 dt ≤ C(‖φ0‖∞,K)

∫
Ω∞

rψ0 dr dx dt,(108)

ess.supt∈(0,T )

∫
Ω∞

rqψ2(t) dr dx+

∫ T

0

∫
Ω∞

A(r)rq|∇xψ|2 dr dxdt ≤ C(q)

∫
Ω∞

rqψ2
0 dr dx,(109)

ess.supt∈(0,T )

∫
Ω∞

rq−2ψ(t) dr dx ≤ C(‖φ0‖∞, q,K)

∫
Ω∞

rq−2ψ0 dr dx.(110)

Proof. To prove Lemma 4.3 we use the existence result obtained in Lemma 4.1 in conjunction
with the uniform estimates derived in Lemma 4.2. Thus we set δ := n−1 and r∞ := lnn in
Lemma 4.1 and denote the corresponding solution by (vn, φn, ψn). Using the estimates (86)–(91),
the fact that ψ0 is a smooth compactly supported function, and defining all functions involved
to be identically zero outside (r0, r∞), we deduce the existence of a subsequence that we do not
relabel and the existence of (v, φ, ψ,SSS), where φ and ψ are nonnegative functions, such that

vn ⇀ v weakly in Lp(0, T ;W 1,p
n,div) ∩ L2p(Q)d,(111)

SSSn ⇀ SSS weakly in Lp
′
(Q)d×d,(112)

φn ⇀∗ φ weakly∗ in L∞(Q),(113)

φn ⇀ φ weakly in L2(0, T ;W 1,2(Ω)),(114)

ψn ⇀ ψ weakly in L2(Q∞) ∩ L2(0, T ;L2
loc(r0,∞;W 1,2(Ω))).(115)

Moreover, using the weak lower semicontinuity of the norm function, and the special choices of δ
and r∞ made above, we deduce that the following uniform estimates hold for q ≥ 3:

‖φ‖L∞(Q) ≤ C(K, ‖φ0‖∞),(116)

ess.supt∈(0,T )‖v(t)‖2 +

∫ T

0

‖v‖p1,p + ‖SSS‖
p′

p′ + ‖v‖
2
L2(∂Ω) + ε‖v‖p

′

p′ dt ≤ C(v0,f),(117) ∫ T

0

‖φ‖1,2 dt ≤ C(‖φ0‖∞,K)

∫
Ω∞

rψ0 dr dx dt,(118)

ess.supt∈(0,T )

∫
Ω∞

rqψ2(t) dr dx+

∫ T

0

∫
Ω∞

A(r)rq|∇xψ|2 dr dxdt ≤ C(q)

∫
Ω∞

rqψ2
0 dr dx,(119)

ess.supt∈(0,T )

∫
Ωr∞

rq−2ψ(t) dr dx ≤ C(‖φ0‖∞, q,K)

∫
Ωr∞

rq−2ψ0 dr dx.(120)

Our objective is to let n → ∞ (and consequently δ → 0+ and r∞ → ∞)) in (80)–(82). To do
so, we first observe that (80)–(82) imply the following weak convergence results:

∂tv
n ⇀ ∂tv weakly in

(
Lp(0, T ;W 1,p

n,div) ∩ L2p(Q)d
)∗
,(121)

∂tφ
n ⇀ ∂tφ weakly in (L2(0, T ;W 1,2(Ω)))∗,(122)

∂tψ
n ⇀ ∂tψ weakly in (Lq(0, T ;W 1,2(K) ∩W 1,q(K)))∗,(123)
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for sufficiently large q and any K := Ω × (r0, k) with arbitrary fixed k ∈ R. In addition, in view
of the uniform (with respect to r∞) bounds (116)–(120), we see that the weak limit ∂tψ satisfies
(101). Consequently, we can use the Aubin–Lions lemma to deduce strong convergence, and then
extract subsequences still labelled by the index n (i.e., without indicating the subsequences in our
notation), such that

vn → v a.e. in Q,(124)

φn → φ a.e. in Q.(125)

However, we cannot claim the same convergence result for ψn because of the lack of the compact-
ness with respect to r. Nevertheless, we will show that, for arbitrary z ∈ D(r0,∞), we have∫ rn∞

r0

z(r)ψn(t, x, r) dr →
∫ ∞
r0

z(r)ψ(t, x, r) dr strongly in L2(Q).(126)

First of all, it follows from (115) that∫ rn∞

r0

z(r)ψn(t, x, r) dr ⇀

∫ ∞
r0

z(r)ψ(t, x, r) dr weakly in L2(Q).(127)

Hence the limit is defined uniquely. Next, denoting

(128) ψ̃nz (t, x) :=

∫ r∞

r0

z(r)ψn(t, x, r) dr,

we can set in (81) ω := z(r)ϕ(t, x), where ϕ ∈ D(Ω) is arbitrary, and for sufficiently large n such
that lnn is not in the support of z we obtain the identity

∫ T

0

〈
∂tψ̃

n
z , ϕ

〉
dt+

∫
Q

−ψ̃nz v · ∇xϕ+∇xψ̃nAz · ∇xϕdxdt

=

∫
Q

ϕ

(∫ ∞
r0

−δ|ψn|2p−2ψnz − β(·,vn,DDDxvn)ψn + 2z

(∫ ∞
r

β(r̃,vn,DDDxv
n)κ(r, r̃)ψn(r̃, ·) dr̃

)
dr

)
dxdt

−
∫
Q

φϕ

(∫ ∞
r0

−∂r(τz)ψn dr
)
+ δϕ

(∫ ∞
r0

∂rψ
n∂rz dr

)
dxdt.

(129)

Consequently, using the a priori estimates (86)–(91), we see that, for sufficiently large q,

∂tψ̃
n
z ⇀ ∂tψ̃z weakly in Lq(0, T ;W 1,q

0 (Ω)).(130)

On the other hand, using (90) we also have that∫ T

0

‖ψ̃nz ‖21,2 dt ≤ C(z)

∫
Q∞

|ψn|2 +A(r)r3|∇xψn|2 dr dx dt ≤ C,

where the first inequality follows from the fact that z has a compact support. Hence the Aubin–
Lions lemma completes the proof of (126).

Next, we shall apply a similar convergence argument to ψ̃n, which is defined in (8). Since γ is a
continuous function, we can find a sequence of γε ∈ D(r0,∞) such that γε ↗ γ almost everywhere
and also locally in C(r0,∞). For such an approximation, we can however use the convergence
result (126) and obtain∫ rn∞

r0

γε(r)ψ
n(t, x, r) dr →

∫ ∞
r0

γε(r)ψ(t, x, r) dr strongly in L2(Q).(131)
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Hence, for the original function ψ̃n we have that∫
Q

|ψ̃n − ψ̃|2 dxdt :=

∫
Q

∣∣∣∣∫ ∞
r0

γ(r)(ψn(r, t, x)− ψ(r, t, x)) dr

∣∣∣∣2 dx dt

≤ 2

∫
Q

∣∣∣∣∫ ∞
r0

(γ(r)− γε(r))(ψn(r, t, x)− ψ(r, t, x)) dr

∣∣∣∣2 dxdt

+ 2

∫
Q

∣∣∣∣∫ ∞
r0

γε(r)(ψ
n(r, t, x)− ψ(r, t, x)) dr

∣∣∣∣2 dx dt.

(132)

Consequently, using (131), we deduce that

lim
n→∞

∫
Q

|ψ̃n − ψ̃|2 dxdt ≤ 2 lim
n→∞

∫
Q

∣∣∣∣∫ ∞
r0

(γ(r)− γε(r))(ψn(r, t, x)− ψ(r, t, x)) dr

∣∣∣∣2 dxdt

≤ 4 lim
n→∞

∫
Q

∣∣∣∣∣
∫ r∗

r0

(γ(r)− γε(r))(ψn(r, t, x)− ψ(r, t, x)) dr

∣∣∣∣∣
2

dx dt

+ 4 lim
n→∞

∫
Q

∣∣∣∣∫ ∞
r∗
|γ(r)||ψn(r, t, x)− ψ(r, t, x)|dr

∣∣∣∣2 dxdt.

(133)

Thanks to the uniform convergence of γε on compact sets, we can also easily let ε→ 0+ (with the
aid of the uniform bound (91)) to get

lim
n→∞

∫
Q

|ψ̃n − ψ̃|2 dx dt ≤ 4 lim
n→∞

∫
Q

∣∣∣∣∫ ∞
r∗
|γ(r)||ψn(r, t, x)− ψ(r, t, x)|dr

∣∣∣∣2 dxdt

≤ 4

∫ ∞
r∗

dr

r2
dr lim

n→∞

∫
Q

∫ ∞
r∗
|γ(r)|2r|ψn(r, t, x)− ψ(r, t, x)|2 dr dx dt

≤ K(r∗)−1 lim
n→∞

∫
Q

∫ ∞
r∗

r2θ+1(|ψn(r, t, x)|2 + |ψ(r, t, x)|2) dr dx dt ≤ C(K,ψ0)(r∗)−1,

(134)

where we have used (24), the fact that ψ0 is compactly supported and the estimate (90). Conse-
quently, letting r∗ →∞ we observe that

ψ̃n → ψ̃ strongly in L2(Q).(135)

We now have all ingredients in place to complete the proof. First, it is standard to let n→∞
in (80) to deduce, for all w ∈ Lp(0, T ;W 1,p

n,div) ∩ L2p(Q)d, that∫ T

0

〈∂tv,w〉 −
∫
Q

v ⊗ v · ∇xw + SSS · ∇xw + ε|v|2p
′−2v ·w dx dt

= −α∗
∫ T

0

∫
∂Ω

v ·w dS +

∫ T

0

〈f ,w〉dt,
(136)

as well as the first limit in (107). Consequently, setting w := v, we obtain the following identity:

1

2
‖v(T )‖22 +

∫ T

0

∫
Ω

ε|v|2p
′
+ SSS ·DDDxv dx dτ + α∗

∫ T

0

∫
∂Ω

|v|2 dS dτ =

∫ T

0

〈f ,v〉dτ +
1

2
‖v0‖22.

(137)

Then, using the weak lower semicontinuity of the norm function, the energy identity (85) with
t = T and the weak convergence result (111), we deduce that

lim sup
n→∞

∫
Q

SSS(ψ̃n,DDDxv
n) ·DDDxvn dxdt ≤

∫
Q

SSS ·DDDxv dxdt.(138)

Moreover, using (135), Lebesgue’s dominated convergence theorem and the assumption (25), we
also see that

SSS(ψ̃n,DDDxv)→ SSS(ψ̃,DDDxv) strongly in Lp
′
(Q)d×d,(139)



ANALYSIS OF A VISCOSITY MODEL FOR CONCENTRATED POLYMERS 23

which, when combined with (138) and (111), (112), leads to

lim sup
n→∞

∫
Q

(SSS(ψ̃n,DDDxv
n)− SSS(ψ̃n,DDDxv)) · (DDDxvn −DDDxv) dxdt = 0.(140)

The strict monotonicity assumption (25) then implies that there is a subsequence such that

DDDxv
n → DDDxv a.e. in Q,(141)

and consequently we have that SSS = SSS(ψ̃,DDDxv). Finally, in view of the convergence results and
a priori estimates obtained, one can let n → ∞ in (81), (82) to deduce (105), (106). We note
in this respect that, thanks to the nonnegativity of both ψ (and φ) the + symbol, indicating the
nonnegative part of a function, can be omitted from (81). Furthermore (81) is strongly nonlinear
because of the presence of the term δ|ψ|2p−2ψ, but we are considering the limit δ → 0+, so this
term vanishes in the limit of δ → 0+ thanks to the a priori estimate (90).

Finally, by using a standard parabolic regularity result, one can show (107) for φ, and also that
ψ ∈ Cw(0, T ;L2(Ω∞)) fulfils, for t→ 0+,

(142) ψ(t) ⇀ ψ0 weakly in L2(Ω∞).

To strengthen this convergence result, we recall (93), which, thanks to Gronwall’s lemma, leads to∫
Ωrn∞

α(r)(ψn(s))2 dr dx ≤ eC(q,φ0,K)t

∫
Ωrn∞

α(r)ψ2
0 dr dx.(143)

Hence, letting n→∞ and using the weak lower semicontinuity of the norm function, we get∫
Ω∞

α(r)(ψ(s))2 dr dx ≤ eC(q,φ0,K)t

∫
Ω∞

α(r)ψ2
0 dr dx.

This directly leads to

lim sup
t→0+

∫
Ω∞

α(r)(ψ(s))2 dr dx ≤
∫

Ω∞

α(r)ψ2
0 dr dx,

which, when combined with (142), yields (107) for ψ. �

4.4. The limit ε → 0+. In this final subsection, we complete the proof of the main theorem
in the paper. For this purpose, we use the existence result from Lemma 4.3. Hence, for ψ0 ∈
L1(Ω;L1

θ∗1
(r0,∞))∩L2(Ω;L2

θ∗2
(r0,∞)) with θ∗1 > θ ≥ 1 and θ∗2 ≥ 3 we find a sequence ψε0 ∈ D(Ω∞)

that converges strongly to ψ0 in the corresponding spaces. We then denote by (vε, φε, ψε) the
solution constructed in Lemma 4.3 with the initial data φ0 and ψε0. Our goal is now to let ε→ 0+

and obtain a solution whose existence is claimed in Theorem 1.1. Henceforth, we denote by C
a generic constant that may depend only on the data but not on ε. Recalling the estimates
established in the previous section, we have that (87) is valid and

ess.supt∈(0,T )‖v
ε(t)‖2 +

∫ T

0

‖vε‖p1,p + ‖SSS
ε‖p
′

p′ + ‖v
ε‖2L2(∂Ω) + ε‖vε‖p

′

p′ dt ≤ C,(144)

‖φε‖L∞(Q) ≤ C,(145)

ess.supt∈(0,T )

∫
Ω∞

rθ
∗
2 (ψε)2(t) dr dx+

∫ T

0

∫
Ω∞

A(r)rθ
∗
2 |∇xψε|2 dr dx dt ≤ C,(146)

ess.supt∈(0,T )

∫
Ω∞

rθ
∗
1ψε(t) dr dx ≤ C.(147)
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Therefore, using the same arguments as before, one can deduce that there exists a quadruple
(v,SSS, ψ, φ) such that, for sufficiently large q > 1, one has

vε ⇀∗ v weakly∗ in Lp(0, T ;W 1,p
n,div) ∩ L∞(0, T ;L2(Ω)d),(148)

SSSε ⇀ SSS weakly in Lp
′
(Q)d×d,(149)

φε ⇀∗ φ weakly∗ in L∞(Q),(150)

φε ⇀ φ weakly in L2(0, T ;W 1,2(Ω)),(151)

ψε ⇀ ψ weakly in L2(Q∞) ∩ L2(0, T ;L2
loc(r0,∞;W 1,2(Ω))),(152)

ψε ⇀∗ ψ weakly∗ in L∞(0, T ;L1(Ω;L1
θ∗1

(r0,∞))) ∩ L∞(0, T ;L2(Ω;L2
θ∗2

(r0,∞))),(153)

vε ⇀ v weakly in L2(0, T ;L2(∂Ω)d),(154)

∂tv
ε ⇀ ∂tv weakly in Lq(0, T ;W−1,q′

n,div ),(155)

∂tφ
ε ⇀ ∂tφ weakly in (L2(0, T ;W 1,2(Ω)))∗,(156)

∂tψ
ε ⇀ ∂tψ weakly in (Lq(0, T ;W 1,2(Ω∞) ∩W 1,q(Ω∞)))∗,(157)

vn → v a.e. in Q,(158)

φn → φ a.e. in Q.(159)

Based on these convergence results, we can deduce similarly as before that, for a sequence of
γδ ∈ D(r0,∞) such that γδ ↗ γ, almost everywhere and also locally in C(r0,∞), we have∫ ∞

r0

γδ(r)ψ
ε(t, x, r) dr →

∫ ∞
r0

γδ(r)ψ(t, x, r) dr strongly in L2(Q).(160)

Next, we slightly change the convergence result for the original sequence since the initial data are
assumed to be only in L1

θ∗1
. Thus, we focus only on L1 convergence; in particular, we observe that∫

Q

|ψ̃ε − ψ̃|dxdt :=

∫
Q

∣∣∣∣∫ ∞
r0

γ(r)(ψε(r, t, x)− ψ(r, t, x)) dr

∣∣∣∣ dxdt

≤
∫
Q

∣∣∣∣∫ ∞
r0

(γ(r)− γδ(r))(ψε(r, t, x)− ψ(r, t, x)) dr

∣∣∣∣ dxdt

+

∫
Q

∣∣∣∣∫ ∞
r0

γδ(r)(ψ
ε(r, t, x)− ψ(r, t, x)) dr

∣∣∣∣ dxdt.

(161)

Consequently, using (160), we see that

lim
ε→0+

∫
Q

|ψ̃ε − ψ̃|dx dt ≤ lim
ε→0+

∫
Q

∣∣∣∣∣
∫ r∗

r0

(γ(r)− γδ(r))(ψε(r, t, x)− ψ(r, t, x)) dr

∣∣∣∣∣ dxdt

+ lim
ε→0+

∫
Q

∣∣∣∣∫ ∞
r∗
|γ(r)||ψε(r, t, x)− ψ(r, t, x)|dr

∣∣∣∣ dx dt,

(162)

and thanks to the uniform convergence of γδ on compact sets, we can also easily let δ → 0+ (with
the help of the uniform bound (147)) to deduce using (24) that

lim
ε→0+

∫
Q

|ψ̃ε − ψ̃|dx dt ≤ lim
ε→0+

∫
Q

∣∣∣∣∫ ∞
r∗
|γ(r)||ψε(r, t, x)− ψ(r, t, x)|dr

∣∣∣∣ dxdt

≤ C lim
ε→0+

∫
Q

∣∣∣∣∫ ∞
r∗

rθ|ψε(r, t, x)− ψ(r, t, x)|dr
∣∣∣∣ dxdt

≤ C(r∗)θ−θ
∗
1 (‖ψε‖L1

θ∗1
+ ‖ψε‖L1

θ∗1
) ≤ C(r∗)θ−θ

∗
1
r∗→∞→ 0,

(163)

and consequently

ψ̃ε → ψ̃ strongly in L1(Q).(164)
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Based on these convergence results, it is now an easy task to let ε → 0+ in (104)–(106) to get
(32)–(34) provided that we can show that

DDDxv
ε → DDDxv strongly in L1(Q)d×d.(165)

In addition, the proof of the attainment of the initial data for v and φ is rather standard, and
for ψ we can use the same scheme as in the previous section. Also to prove the conservation of
mass identity for the polymer chains, we follow the proof of Lemma 3.3, but with a proper cut-off
function. Specifically, we can set

z := χ[0,s] in (34) and ϕ := χ[0,s]rηk(r) in (33),

with arbitrary ηk ∈ D(R), and after summing the resulting identities we observe that, for almost
all t ∈ (0, T ), we have

∫
Ω

φ(s, x)− φ0(x) +

(∫ ∞
r0

rηk(ψ(s, x, r)− ψ0(x, r)) dr

)
dx

= −
∫ s

0

∫
Q∞

rηkβ(r, ·)ψ(t, x, r) dx dr dt+ 2

∫ s

0

∫
Ω∞

rηk

∫ ∞
r

κ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dxdr dt

+

∫ s

0

∫
Ω∞

(∂r(rτηk)− ∂r(rτ))φ(t, x)ψ(t, x, r) dxdr dt

+ 2

∫ s

0

∫
Ω

∫ r0

0

r

∫ ∞
r0

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr dx dt.

(166)

Next, we assume that ηk ≡ 1 on (0, r0) and we follow the proof of Lemma 3.3 to get, with the
help of (22), the following chain of equalities:

2

∫ s

0

∫
Ω∞

rηk

∫ ∞
r

κ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dxdr dt

+ 2

∫ s

0

∫
Ω

∫ r0

0

r

∫ ∞
r0

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr dxdt

= 2

∫ s

0

∫
Ω∞

rηk

∫ ∞
r

κ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dxdr dt

+ 2

∫ s

0

∫
Ω

∫ r0

0

rηk

∫ ∞
r

β(r̃, ·)κ(r, r̃)ψ(t, x, r̃) dr̃ dr dx dt

= 2

∫ s

0

∫
Ω

∫ ∞
0

rηk(r)

∫ ∞
r

κ(r, r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dx dr dt

= 2

∫ s

0

∫
Ω

∫ ∞
0

(∫ r̃

0

rηk(r)κ(r, r̃) dr

)
β(r̃, ·)ψ(t, x, r̃) dr̃ dx dt

= 2

∫ s

0

∫
Ω

∫ ∞
r0

(∫ ∞
0

rηk(r)κ(r, r̃) dr

)
β(r̃, ·)ψ(t, x, r̃) dr̃ dxdt

=

∫ s

0

∫
Ω

∫ ∞
r0

r̃ηk(r̃)β(r̃, ·)ψ(t, x, r̃) dr̃ dx dt

−
∫ s

0

∫
Ω

∫ ∞
r0

r̃−1

(∫ r̃

0

r2η′k(r) dr

)
β(r̃, ·)ψ(t, x, r̃) dr̃ dx dt.
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By substituting this identity into (166), we obtain∫
Ω

φ(s, x)− φ0(x) +

(∫ ∞
r0

rηk(ψ(s, x, r)− ψ0(x, r)) dr

)
dx

=

∫ s

0

∫
Ω∞

(rτη′k(r) + (ηk(r)− 1)∂r(rτ))φ(t, x)ψ(t, x, r) dxdr dt

−
∫ s

0

∫
Ω

∫ ∞
r0

r̃−1

(∫ r̃

0

r2η′k(r) dr

)
β(r̃, ·)ψ(t, x, r̃) dr̃ dxdt.

(167)

Next, we let ηk ↗ 1. Thus, we set ηk(r) ≡ 1 for r ≤ k and ηk(r) ≡ 0 for r ≥ 2k such that
|η′k| ≤ Ck−1. Using this definition it is not difficult to let k → ∞ in the terms on the left-hand
side of (167) by using the monotone convergence theorem. For the term on the right-hand side,
we can use (18) to deduce that∣∣∣∣∫ s

0

∫
Ω∞

(rτη′k(r) + (ηk(r)− 1)∂r(rτ))φ(t, x)ψ(t, x, r) dxdr dt

−
∫ s

0

∫
Ω

∫ ∞
r0

r̃−1

(∫ r̃

0

r2η′k(r) dr

)
β(r̃, ·)ψ(t, x, r̃) dr̃ dxdt

∣∣∣∣∣
≤ C

∫ s

0

∫
Ω

∫ ∞
k

φ(t, x)ψ(t, x, r) dxdr dt+ C

∫ s

0

∫
Ω

∫ ∞
k

r̃ψ(t, x, r̃) dr̃ dxdt

≤ C(‖ψ‖∞)

∫ s

0

∫
Ω

∫ ∞
k

r̃ψ(t, x, r̃) dr̃ dxdt
k→∞→ 0,

where the last convergence follows from the fact that ψ ∈ L1
1(Q∞).

Hence, it remains to show (165). First, following (3.56), (3.57) and (3.60) in [8], using the fact
that Ω ∈ C1,1 we can find pε1, pε2 and some q∗ > 1 such that

pε1 ⇀ p1 weakly in Lp
′
(Q),(168)

pε2 ⇀ p2 weakly in Lq
∗
(Q),(169)

pε2 → p2 strongly in Lh(Q) for all h ∈ [1, q∗),(170)

fulfilling, for all w ∈ L∞(0, T ;W 1,∞(Ω)d ∩W 1,1
n ),∫ T

0

〈∂tvε,w〉 −
∫
Q

vε ⊗ vε · ∇xw + SSS(ψ̃ε,DDDxv
ε) · ∇xw + ε|vε|2p

′−2vε ·w dxdt

= −α∗
∫ T

0

∫
∂Ω

vε ·w dS +

∫ T

0

〈f ,w〉dt+

∫
Q

(pε1 + pε2) divxw dx dt,

(171)

and using the convergence results (148)–(159), we also get∫ T

0

〈∂tv,w〉 −
∫
Q

v ⊗ v · ∇xw + SSS · ∇xw dxdt

= −α∗
∫ T

0

∫
∂Ω

v ·w dS +

∫ T

0

〈f ,w〉dt+

∫
Q

(p1 + p2) divxw dxdt,

(172)

which is nothing else but (32) with p given as p := p1 + p2 provided we show (165) to identify SSS.
We now set n := [ε−1], reinstate the index n for all functions concerned, and define

un := vn − v,

fn := − 1

n
|vn|2p

′−2vn,

GGGn := vn ⊗ vn − v ⊗ v + (pn2 − p2)III,

HHHn := −SSS(ψ̃n,DDDxv
n) + pn1 III,

HHH := −SSS + p1III.
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Hence, we may apply Lemma 2.1. Thus, we set λ∗ := k and we see that we can find a sequence

λnk ∈ [k,Ckp
k

] and the corresponding sequence un,k fulfilling (40), (41). Next, for any nonnegative
g ∈ D(Q) we set w := un,k in (171), (172); by subtracting the resulting equations, using (36),
(37) and (45), we obtain

(173) lim sup
n→∞

∫
Q

(SSS(ψ̃n,DDDxv
n)−SSS) ·DDDx(un,k)g− g(pn1 − p1) divx u

n,k dx dt ≤ C(g)(k1−p + k−1)β .

Moreover, by using (40), (41), and also the fact that

SSS(ψ̃n,DDDxv)→ SSS(ψ̃,DDDxv) strongly in Lp
′
(Q)d×d,

which is the consequence of (164), Lebesgue’s dominated convergence theorem and the assumption
(25), we see that (173) reduces to
(174)

lim sup
n→∞

∫
Q

(SSS(ψ̃n,DDDxv
n)− SSS(ψ̃n,DDDxv)) ·DDDx(un,k)g − gpn1 divx u

n,k dxdt ≤ C(g)(k1−p + k−1)β ,

and consequently, after denoting by Qg the support of g and using the definition of Enk , we have
that

lim sup
n→∞

∫
Qg\Enk

(SSS(ψ̃n,DDDxv
n)− SSS(ψ̃n,DDDxv)) ·DDDx(vn − v)g dxdt

≤ C(g) lim sup
n→∞

∫
Qg∩Enk

(|HHHn|+ |HHH|)|DDDx(un,k)|dx dt+ C(g)(k1−p + k−1)β

≤ C(g)(k1−p + k−β) + C(g)(k1−p + k−1)β .

(175)

Finally, using the monotonicity of SSS, Hölder’s inequality and (43), we have that

lim sup
n→∞

∫
Q

√
(SSS(ψ̃n,DDDxvn)− SSS(ψ̃n,DDDxv)) ·DDDx(vn − v)g dx dt

≤ lim sup
n→∞

∫
Qg\Enk

√
(SSS(ψ̃n,DDDxvn)− SSS(ψ̃n,DDDxv)) ·DDDx(vn − v)g dxdt

+ lim sup
n→∞

∫
Qg∩Enk

√
(SSS(ψ̃n,DDDxvn)− SSS(ψ̃n,DDDxv)) ·DDDx(vn − v)g dx dt

≤ C lim sup
n→∞

(∫
Qg\Enk

(SSS(ψ̃n,DDDxv
n)− SSS(ψ̃n,DDDxv)) ·DDDx(vn − v)g dx dt

) 1
2

+ C|Qg ∩ Enk |
1
2

≤ C(g)(k1−p + k−β)
1
2 + C(g)(k1−p + k−1)

β
2 + Ck−

p
2
k→∞→ 0.

(176)

Thus, using the strict monotonicity of SSS, see (25), we deduce (for a subsequence) (165), which
completes the proof of the main theorem. �
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