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UNILATERAL REGULATION BREAKS REGULARITY OF
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TOMÁŠ VEJCHODSKÝ, FILIP JAROŠ, MILAN KUČERA, VOJTĚCH RYBÁŘ

Abstract. We consider a classical reaction-diffusion system undergoing Tur-
ing instability and augment it by an additional unilateral source term. We
investigate its influence on the Turing instability and on the character of re-
sulting patterns. The nonsmooth positively homogeneous unilateral term τv−

has favourable properties in spite of the fact that the standard linear stability
analysis cannot be performed. We illustrate the importance of the nonsmooth-
ness by a numerical case study, which shows that the Turing instability can
considerably change if we replace this term by its arbitrarily precise smooth
approximation. However, the nonsmooth unilateral term and all its approxi-
mations yield qualitatively same patterns although not necessarily developing
from arbitrarily small disturbances of the spatially homogeneous steady state.
Further, we show that inserting the unilateral source into a classical system
breaks the approximate symmetry and regularity of the classical patterns and
yields asymmetric and irregular patterns. Moreover, a given system with a
unilateral source produces spatial patterns even for diffusion parameters with
ratios closer to 1 than the same system without any unilateral term. Biologi-
cally, these findings can contribute to the understanding of symmetry breaking
during morphogenesis.

1. Introduction

Reaction-diffusion systems are frequently used to model the initiation of ani-
mal forms and patterns. After publication of Turing’s purely theoretical paper
[26], growing number of biologists succeeded in matching empirical data with
mathematical simulations. Morphogens with Turing-like behaviour were found
in the process of hair follicles formation [20], the generation of transverse ridges
of the palate [6] or patterning the germ layers [2, 24]. The concept of reactions
and diffusion of morphogens was widened to the interactions of pigment cells. In
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the case of zebrafish, the validity of this model was tested on individuals with
ablated skin [15, 16]. Turing’s mechanism is also used to model the formation of
coat patterns in mammals, see for example [19, 21].

We will consider reaction-diffusion systems of the type

∂u

∂t
= d1∆u+ f(u, v) in Ω, (1)

∂v

∂t
= d2∆v + g(u, v) + ĝ(v) in Ω

with the usual homogeneous Neumann boundary conditions

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω. (2)

The domain Ω ⊂ R2 represents the tissue, t denotes the time variable, u =
u(x, y, t) and v = v(x, y, t) stand for concentrations of two morphogens, d1 and
d2 are their diffusion coefficients and smooth functions f(u, v) and g(u, v) describe
kinetics of the system given by interactions between the morphogens, n stands
for the unit outward facing normal vector to the boundary ∂Ω. A novelty is an
additional term ĝ(v) which is unilateral in the sense that there exists a threshold
value θ such that ĝ(v) > 0 for v < θ and ĝ(v) = 0 otherwise. This term describes
an additional source active only if the concentration of the second morphogen
decreases below the threshold θ. The key point is that the function ĝ(v) can
be nonsmooth, a typical example being ĝ(v) = τ(v − θ)−, where (v − θ)− =
(|v − θ| − v + θ)/2 stands for the negative part of v − θ and τ > 0 controls the
strength of this unilateral source. Our goal will be to investigate the influence
of the unilateral term ĝ(v) to the Turing instability and to the formation of
spatial patterns (spatially nonconstant stationary solutions). From these points
of view we will compare the unilateral and classical systems, i.e. system (1) with
a unilateral term ĝ(v) and the corresponding classical system with ĝ ≡ 0.

Let ū and v̄ be such constants that f(ū, v̄) = g(ū, v̄) + ĝ(v̄) = 0. Consequently,
u = ū, v = v̄ is a spatially constant stationary solution to (1) with (2). We
refer to this constant steady state as a ground state. The Turing diffusion driven
instability is characterized by the stability of the ground state with respect to
small spatially homogeneous perturbations and its instability with respect to
small spatially nonhomogeneous perturbations.

In the classical (smooth) case, we can perform the well known linear analysis,
to find necessary conditions for the Turing instability to occur, see e.g. [7, 12, 21].
If these conditions are satisfied then starting from small nonhomogeneous distur-
bances of the ground state, the solution of (1) can converge to another, spatially
nonhomogeneous steady state, provided it exists. In biology, this process of form-
ing nonhomogeneous steady states can serve as a model of pattern (prepatern)
formation mechanisms. Therefore, we often refer to these spatially nonhomoge-
neous stationary solutions as patterns. We will have ∂f/∂u(ū, v̄) > 0 in systems
under consideration and we will call u the activator and v the inhibitor. In this
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case, one of the necessary conditions for the Turing instability is that the diffusion
coefficient of the activator is sufficiently smaller than the diffusion coefficient of
the inhibitor, i.e. the ratio d1/d2 is sufficiently small.

Our paper is motivated mainly by two surprising results [17] and [14] about
systems, where the unilateral term is not given by ĝ as in (1), but by certain
unilateral conditions for v formulated by variational inequalities. The former
result guarantees existence of stationary spatially nonhomogeneous solutions even
for d1/d2 arbitrarily large. The later result concerns certain instability of the
ground state for a wide range of values d1 and d2 including arbitrary size of the
ratio d1/d2. There are also theoretical studies, e.g. [5, 8, 9, 10, 18] and references
therein, predicting new and interesting features of systems with various unilateral
terms or conditions.

The unilateral conditions described by variational inequalities considered in
[14, 17] correspond to sources which do not allow the concentration of the mor-
phogen v to decrease below a threshold θ on a given subset of the boundary
or of the interior of the domain. These hard inequalities, however, seem to be
unrealistic from the viewpoint of biological applications, because it is difficult to
imagine a natural mechanism which would strictly prevent the concentration of
a morphogen to decrease below the threshold.

Therefore, we consider a unilateral term ĝ(v) in (1). This term corresponds to
a source, which is active only in those places, where the concentration v is below
the value θ. It does not prevent the concentration of v to decrease below θ, but it
works against this decrease. Our goal is to investigate this case and find for what
values of the ratio d1/d2 the Turing instability occurs, what is the kind of the
resulting patterns and what biological implications it can have. These questions
have not been addressed before and we aim to answer them in this paper.

We will consider simple choices of the nonsmooth unilateral term, mainly
ĝ(v) = τ(v − θ)− and its approximations. Unilateral terms of this type have
been introduced in the context of reaction-diffusion systems exhibiting the Tur-
ing instability already in [9]. However, the stability of the ground state with
respect to small spatially homogeneous perturbations as well as its instability
with respect to small spatially nonhomogeneous perturbations has not been anal-
ysed for this type of systems. This analysis is nontrivial, because the possible
nonsmoothness of the unilateral term precludes the use of the standard linear
analysis. Moreover, we show in Section 3 below that the ground state in systems
with the nonsmooth unilateral term is stable under different conditions than in
systems with smooth approximations of this nonsmooth unilateral term. On the
other hand, we also show that perturbations of not necessarily arbitrary small
size do evolve to qualitatively same patterns under the same conditions for both
the nonsmooth unilateral term and its smooth approximations. Thus, the fact
whether an arbitrarily small perturbation of the ground state will evolve to a
pattern or not is extremely sensitive to small changes of the nonlinear dynamics
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near the ground state. A small change of the nonlinear dynamics in the neigh-
bourhood of the ground state can turn a stable system to the unstable and vice
versa. However, the numerical case study we performed indicates that if the ini-
tial perturbations of the ground state are larger than a certain minimal size then
they robustly evolve to qualitatively same patterns regardless small changes of
the nonlinear dynamics near the ground state.

Theoretically, it is not clear how to analyse the evolution of perturbations
of the ground state that are larger than a certain minimal size. Such theory
does not exist. However, the nonsmoothness of the unilateral term could help.
We observe, at least in the particular examples presented below, that in cases
when smooth approximations yield patterns for larger perturbations only, the
nonsmooth term yields qualitatively same patterns even from arbitrarily small
perturbations. Thus, the question whether the larger perturbations of the ground
state will evolve to patterns in systems with (both smooth and nonsmooth) uni-
lateral term or not seems to correspond to the question of stability with respect
to arbitrarily small perturbations of the system with the nonsmooth unilateral
term. Theoretical study of the question what are the parameters for which spa-
tially nonhomogeneous stationary solutions exist is done in [9] for the case of
nonsmooth terms of the type τv−, not for their smooth approximations. Fur-
ther theoretical results about various other (nonsmooth) unilateral conditions
can be found in above mentioned papers. These possibilities of new theoretical
approaches further motivate our interest in nonsmooth unilateral terms even if
their smooth approximation can perhaps seem to be more natural from the point
of view of applications.

Here, we do not attempt to analyse system (1) in its full generality due to the
complexity of this task. Instead, we present a case study of a reaction-diffusion
system from [1, 19] appended by a unilateral term.

The rest of this paper is organized as follows. Section 2 explains possible bi-
ological mechanisms that can be modelled by the unilateral source terms and
motivates the choice θ = v̄. Section 3 shows the significance of the nonsmooth
unilateral term ĝ(v) = τ(v − v̄)− and compares its influence on the initiation
and final formation of spatial patterns with the influence of its approximations.
Section 4 presents numerical experiments showing spatial patterns produced by
a unilateral system (1), compares them with patterns obtained by the classical
system without any unilateral term, and shows how these patterns depend on
the strength of the unilateral source and on the ratio of diffusion constants. In
general, we observe that unilateral terms yield asymmetric patterns with irregu-
lar spots. In addition, for the studied choice of f and g, the system (1) with a
unilateral term ĝ(v) generates patterns even for greater ratio of diffusions in com-
parison with the classical system. Finally, we show that the difference between
the patterns corresponding to the almost zero and high strength of the unilateral
source resembles the difference between the roughly regular pattern of the wild
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type cheetah and the irregular pattern of the king cheetah. Section 5 discusses
the results and draws the conclusions.

2. Biological motivation of unilateral sources

System (1) models diffusion and interactions of two morphogens within a tissue.
These interactions can include direct chemical reactions between the two mor-
phogens and also highly nontrivial interactions mediated by the presented cells.
These nontrivial interactions can be modelled by the classical nonlinear terms f
and g in system (1), but they can also account for the action of the unilateral
source ĝ. For example, we may consider the unilateral term ĝ(v) = τ(v − θ)− or
similar (for example its smooth approximation). Receptors in the cell membrane
can detect the local concentration of the morphogen v. If this concentration de-
creases below the threshold value θ, the receptors initiate a signalling pathway
that results to the production of the morphogen v by the cell. The lower the con-
centration of v decreases below the threshold the higher is the production of the
morphogen. Once the concentration of the morphogen increases above the thresh-
old value θ, the receptors stop the signalling and the production of the morphogen
terminates. This process is well described by the term ĝ(v) = τ(v− θ)−. Indeed,
in points (x, y) ∈ Ω and times t, where v(x, y, t) < θ, the term τ(v(x, y, t)− θ)−
is positive and works as a source term in (1). On the other hand, in points
(x, y) ∈ Ω and times t, where v(x, y, t) ≥ θ, the term τ(v(x, y, t) − θ)− vanishes
and has no effect.

When ontogeny of an organism is considered, the natural value for the threshold
seems to be around the ground state, i.e. θ ≈ v̄. Indeed, we may provide the
following simplistic, but biologically plausible explanation. In the early stages
of the ontogeny, the organism is small. Hence, the size of the domain Ω is not
sufficient for spatially nonhomogeneous solutions to form and the only stable
solution to (1) is the ground state ū, v̄. Thus, it is natural to assume that the
concentrations settle close to this steady state and stay there for a considerable
amount of time. For this reason the tissue may consider this value as a normal and
satisfactory state. However, as the tissue grows, the diffusion driven instability
occurs and the concentrations start to diverge from the levels ū, v̄. According to
the principle of homeostasis [11], the tissue may try to balance the concentrations
back by reacting as described above. Therefore, it is natural to consider the
threshold θ ≈ v̄.

In this paper, we will consider the threshold mostly at the ground state, i.e.
θ = v̄. However, it is demonstrated in Section 3 that threshold values chosen
slightly above or below v̄ yield qualitatively the same patterns. The difference
is that these patterns need not arise from arbitrarily small disturbances, but
only from those having a certain minimal size corresponding to the distance
v̄− θ. However, if this distance is very small then it makes no difference from the
biological point of view.
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Let us note that the above simplified explanation ignores the grows of the
organism during ontogeny. Although it is well known that the grows of the domain
Ω has fundamental consequences for the pattern formation, see e.g. [4, 3, 27],
the basic idea described above is valid, because even the models with growing
domains exhibit no spatial patterns if the domain is small.

Concerning the shape of function ĝ, we will mainly use a simple choice ĝ(v) =
τ(v−θ)− and its various approximations in this paper. However, in order to model
the biologically relevant features accurately, we can modulate the function ĝ to
control the performance and the strength of the unilateral source. For example,
we could set ĝ(v) = τ(1 − exp[−(v − θ)−]) to models the limited ability of cells
to produce the morphogen. The lower is the concentration v below θ, the higher
is the production of v, but the rate of production quickly saturates at the value
τ , because, clearly, τ(1− exp[−(v − θ)−])→ τ as v → −∞.

3. Significance of the nonsmooth unilateral term

As we have already mentioned, the unilateral term need not be smooth at the
point of the ground state and, therefore, the standard linear analysis cannot be
performed, in general. If the unilateral term is non-smooth at the ground state,
a natural idea is to approximate it by a smooth one. Such approximation can
be arbitrarily precise and therefore we would expect that the behaviour of the
approximate system will not considerably differ from the behaviour of that with
the nonsmooth unilateral term. This vague statement is roughly correct from the
perspective of the formation of the final pattern, but it is not true from the point
of view of the Turing instability. The reason is that the Turing instability is a
local effect determined by small perturbations of the ground state, but the shape
of the final pattern is formed by nonlinear terms f , g, and ĝ evaluated at points u
and v distant from the ground state. To illustrate this phenomenon, we provide
a short case study to show how various approximations of the unilateral term
may influence the Turing instability and what are their effects on the resulting
patterns. Basically, we show that the occurrence of the Turing instability is
extremely sensitive on small changes of the nonlinear dynamics near the ground
state.

We will discuss the particular system used in [1, 19] for the study of skin and
coat patterns in fish and mammals, and supplement it by a unilateral source term
ĝ(v). Namely, we will consider the system

du

dt
= Dδ∆u+ αu+ v − r2uv − αr3uv2 in Ω, (3)

dv

dt
= δ∆v − αu+ βv + r2uv + αr3uv

2 + ĝ(v) in Ω.

Note that this system is a special case of (1) with d1 = Dδ, d2 = δ, f(u, v) =
αu+ v − r2uv − αr3uv2, and g(u, v) = −αu+ βv + r2uv + αr3uv

2. Further note
that the original system in [1, 19] is formulated in such a way that the original
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real positive ground state is shifted to zero. This means that u and v in (3) do
not denote concentrations as in Section 1, but their deviations from their original
ground state, see [1]. Nevertheless, this difference is unimportant. As in [19], we
will assume the homogeneous Neumann boundary conditions (2) and parameter
values

δ = 6, α = 0.899, β = −0.91, r2 = 2, r3 = 3.5. (4)

For D we will consider several different values.
The ground state of system (3) is defined in the same way as in Section 1,

i.e. it consists of constants ū, v̄ such that f(ū, v̄) = g(ū, v̄) + ĝ(v̄) = 0. Clearly,
ū = v̄ = 0 for those ĝ satisfying ĝ(0) = 0. This is the case for choices of ĝ we
are mainly interested in. However, certain choices of ĝ introduced below do not
vanish at zero and hence the corresponding ground state is nonzero.

In the case when the additional unilateral term ĝ(v) in (3) is smooth at v̄,
we can perform the standard linear analysis to obtain necessary conditions for
the Turing instability, see e.g. [7, 12, 21]. Namely, we can introduce the Jacobi
matrix of the map f , g + ĝ at ū, v̄ as

B =

[
b11, b12
b21, b22

]
=

[
∂f/∂u, ∂f/∂v
∂g/∂u, ∂g/∂v + ∂ĝ/∂v

]
(ū, v̄). (5)

If

trB < 0 and detB > 0, (6)

then the ground state (ū, v̄) is stable with respect to small spatially homogeneous
perturbations. If simultaneously

b11b22 < 0 and b12b21 < 0 (7)

then this ground state is stable (with respect to small spatially nonhomogeneous
perturbations) only for some values of D and unstable for others, see e.g. [21,
sec. 2.3].

Parameter values (4) are chosen in such a way that for ĝ ≡ 0 conditions (6)
and (7) are fulfilled. In any case, if ĝ(v) is smooth at v̄ and if conditions (6)
and (7) hold then a necessary condition for the ground state of system (3) to
be unstable with respect to spatially nonhomogeneous perturbations is that the
ratio of diffusion coefficients D is sufficiently small. Precisely, the condition is

D < Dcrit with Dcrit =
1

b222

(
detB − b12b21 − 2

√
−b12b21 detB

)
. (8)

Note that the definition of Dcrit in (8) is just a reciprocal value of the formula
from [22, p. 562]. It can also be easily derived from the analysis of [21, p. 109]. In
any case, if condition (8) is not satisfied then the Turing instability cannot occur.
It is essential that if ĝ is not smooth at the ground state value v̄ then this linear
analysis cannot be performed. Jacobian B is simply not defined and consequently
formula (8) has no sense. Regions of D for which the trivial solution is stable
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or unstable, i.e. the critical border Dcrit between stability and instability, can be
only estimated numerically.

The following Subsection 3.1 defines six different choices of ĝ(v) and compares
them with respect to the Turing instability. We emphasize that the Turing insta-
bility is a local phenomenon determined by arbitrarily small perturbations and
hence only the values of ĝ(v) in a small neighbourhood of the ground state v̄ are
relevant. We will see that although the six choices of ĝ(v) differ only slightly
in the neighbourhood of the ground state, some of them yield patterns evolving
from arbitrarily small perturbations and some of them do not. However, fur-
ther in Subsection 3.2 we will see that if the perturbations of the ground state
are larger than a certain minimal size, then they evolve to qualitatively same
patterns in all cases.

We note that all systems in this paper are solved numerically by our own
finite element solver. For the initial condition we always choose small random
fluctuations around the ground state, except of Figure 3, where the fluctuations
are larger. Clearly, different initial conditions may and often do evolve to different
stationary solutions, but qualitative features of these solutions are the same. We
choose the domain to be Ω = (−100, 100)2 and in the subsequent figures, we
plot the patterns as graphs of the solution component u, where values of u are
indicated by shades of grey. We do not plot the component v, because it is
complementary to u, see [21, p. 88], and patterns based on v are almost identical
to patterns based on u.

3.1. Turing instability for various choices of ĝ(v). Now, we will consider
different choices of ĝ(v) and compare their influence on the Turing instability, i.e.
on the evolution of arbitrarily small spatially nonhomogeneous perturbations of
the ground state. The idea is to consider the unilateral source term ĝ(v) = τv−

as the reference choice and the other cases are seen as its approximations. As a
criterion for the comparison we choose the critical ratio Dcrit. We will see that
Dcrit varies considerably for different choices of ĝ(v) and that this variation is
essential even in the case of very accurate approximations. Note that the strength
of the unilateral source is τ = 0.075 for all cases throughout this section. Now,
we list the choices of ĝ(v) we make, see also graphs in Figure 1.

(a) Nonsmooth unilateral source, ĝ(v) = τv−: This is the reference case.
The ground state of system (3) with this choice of ĝ is zero and ĝ is not dif-
ferentiable there. Therefore, the linear analysis cannot be performed, but
numerical experiments indicate that spatially nonhomogeneous perturba-
tions as small as we can afford numerically, evolve to nonhomogeneous
stationary solutions for the ratio of diffusions below 0.71. Note that this
value is greater than the critical ratio of diffusion for the classical case
(ĝ ≡ 0), which is 0.53. See Section 4 for more details.
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(b) Smooth quadratic approximation: The nonsmooth function from
the previous case can be smoothed for example as

ĝ(v) =

{
τ(v − ε)2/(4ε) for |v| < ε,

τv− for |v| ≥ ε,
(9)

where ε > 0 is a small parameter. System (3) with (2) and this choice
of ĝ(v) has a nonzero ground state depending on ε. Nevertheless, the
corresponding critical ratio of diffusions can be expressed from (8). It

depends on ε as well and its value in the limit ε→ 0 is D
(b)
crit ≈ 0.63.

(c) Smooth cubic approximation: Another option how to smooth the
function from the case (a) is

ĝ(v) =

{
τv2(v + 2ε)/ε2 for |v| < ε,

τv− for |v| ≥ ε,
(10)

where ε > 0 is again a small parameter. The ground state in this case
is zero and since the derivative of ĝ at zero vanishes, the critical ratio of
diffusions is the same as in the classical system, where ĝ ≡ 0. Using (8)

we obtain D
(c)
crit ≈ 0.53.

(d) Linear cut: The choice (a) can be approximated by a continuous piece-
wise linear function such that it is smooth at the ground state. A straight-
forward choice is

ĝ(v) =

{
τ(ε− v)/2 for |v| < ε,

τv− for |v| ≥ ε.
(11)

The ground state is again shifted away from zero and its value depends
on ε > 0. Consequently, the critical ratio of diffusions depends on ε as
well. As ε decreases towards zero, it slowly decreases towards the limit

value D
(d)
crit ≈ 0.60.

(e) Shift of the threshold to the left, ĝ(v) = τ(v + ε)−: The correspond-
ing ground state is zero for all ε > 0 and this ĝ is smooth at zero.
Thus, formula (8) can be easily used to obtain the same critical ratio
of diffusions as in the case (c) and as in the classical case ĝ ≡ 0, i.e.

D
(e)
crit = D

(a)
crit ≈ 0.53.

(f) Shift of the threshold to the right, ĝ(v) = τ(v − ε)−: This choice yields
a nonzero ground state depending on ε. The critical ratio of diffusions

can be obtained from (8) and its limit for ε→ 0 is D
(f)
crit ≈ 0.71.

To compare choices (a)–(f), we summarize the dependence of the critical ratio
of diffusions on ε in Figure 2. Note that the accuracy of approximations (b)–(f) of
the reference choice (a) is controlled by ε. Smaller ε corresponds to more accurate
approximations. We clearly observe that different choices of ĝ(v) yield consid-
erably different critical ratios of diffusions and, hence, various approximations
of the nonsmooth unilateral term τv− exhibit the Turing instability for different
values of the ratio D. For example, if ε = 0.005 and D = 0.65 (see the grey
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(a) ĝ(v) = τv−

−ε 0 ε

0

τε

v

ĝ(v)

(b) ĝ(v) given by (9)

−ε 0 ε

0

τε

v

ĝ(v)

(c) ĝ(v) given by (10)

−ε 0 ε

0

τε

v

ĝ(v)

(d) ĝ(v) given by (11)

−ε 0 ε

0

τε

v

ĝ(v)

(e) ĝ(v) = τ(v + ε)−

−ε 0 ε

0

τε

v

ĝ(v)

(f) ĝ(v) = τ(v − ε)−

−ε 0 ε

0

τε

v

ĝ(v)

Figure 1. Graphs of different choices of the unilateral term ĝ(v)
in (3).

diamond in Figure 2), then choice (a) is the only case which exhibits the Turing
instability. Indeed, in cases (b)–(e) the ground state is stable with respect to all
small perturbations, because the ratio of diffusion D = 0.65 is above the critical
value and, hence, the Turing instability cannot occur. In the case (f) the Turing
instability cannot occur, because trB is positive for ε > 0.0044 and therefore the
ground state is not stable with respect to spatially homogeneous perturbations.
Similarly, if we decrease ε to 0.001 and keep D = 0.65, then the choices (a) and
(f) exhibit the Turing instability, but choices (b)–(e) do not.

Note that our statement that the choice (a) exhibits the Turing instability is
based on numerical experiments, where we observe that small perturbations of
the ground state evolve to patterns. For more details and numerical results, see
Figure 5 below, the panels for τ = 0.075.

Figure 2 clearly shows the size of variations in Dcrit for different approximations
of the nonsmooth unilateral source term. Even if we arbitrarily increase the
accuracy of these approximations, i.e. in the limit ε → 0, the corresponding
values of Dcrit differ considerably. Hence, various approximations yield the Turing
instability for various values of the ratio of diffusions D. Consequently, the idea
to approximate the nonsmooth term by a smooth one and analyse it by standard
means fails. Simple smooth approximations of the nonsmooth unilateral term
with accuracy controlled by ε can yield misleading results in the limit ε→ 0.

From the biological perspective, all choices (a)–(f) seem to be plausible. Al-
though some of these choices have the threshold value shifted from the ground
state, the difference is not large, and, thus, they correspond to the biological
motivation discussed in Section 2. However, the idea that the concentrations of
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(a) nonsmooth unilateral

(b) quadratic

(c) cubic

(d) linear cut

(e) shift left

(f) shift right

Figure 2. Dependence of the critical ratio of diffusions Dcrit on ε
for choices (a)–(f). The value for choice (a) is estimated numerically
and the other values are computed by (8). The grey diamond
indicates parameter values (ε = 0.005 and D = 0.65) for which
Turing patterns appear in the case (a) only.

morphogens grow from zero during the ontogeny favour the choice (e), where the
threshold value is shifted below the ground state.

Of course, we could also discuss many other approximations of the nonsmooth
unilateral term. However, results of the next subsection indicate that all these
approximations result to the same (or very similar) patterns as the unilateral
term ĝ(v) = τv−, provided the other parameters of the problem are the same. At
the same time, it is important to mention that not all of these approximations
yield patterns developing from arbitrarily small perturbations. Sometimes, the
perturbations have to be sufficiently distant from the ground state, as we describe
below.

3.2. Shapes of patterns for various choices of ĝ(v). Above, we introduced
an example of parameter values for system (3) such that arbitrary small pertur-
bations of the ground state do not evolve to any patterns in cases (b)–(f), but
they do in the case (a), see the grey diamond in Figure 2. Now, we will see that
perturbations larger than a certain minimal size (depending on ε) do evolve to
patterns in all these cases. We also show that all these patterns are qualitatively
the same. Moreover, if they evolve form the same initial condition, they are all
also quantitatively very similar and some of them are even exactly identical, see
Figure 3.

Similarity of these patterns is not surprising, because the differences among all
choices of ĝ(v) in cases (a)–(f) are insignificant on scales considerably larger than
ε. Since the magnitude of the final pattern (i.e. the stationary solution to (3))
is of order one and the size of ε is of order one thousands, we can expect similar
patterns in all these cases.

As we have mentioned, arbitrarily small perturbations of the ground state
do not evolve to any patterns in cases (b)–(f) for the chosen values D = 0.65
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(a) ĝ(v) = τv− (b) ĝ(v) given by (9) (c) ĝ(v) given by (10)

(d) ĝ(v) given by (11) (e) ĝ(v) = τ(v + ε)− (f) ĝ(v) = τ(v − ε)−

Figure 3. Patterns produced from larger perturbations of the
ground state in cases (a)–(f) with D = 0.65, ε = 0.005, τ = 0.075,
and parameter values (4). The initial condition is the same in all
cases and consists of random disturbances of the ground state with
maximal amplitude 20ε = 0.1. The colour scale is identical in all
cases.

and ε = 0.005. This fact follows from the linear analysis and we observe it
numerically as well. However, Figure 3 shows that perturbations that are larger
than a certain minimal size, do evolve to patterns in all these cases. Moreover,
we observe identical patterns for choices (a)–(c) and a very similar pattern for
the choice (d). Choices (e) and (f) yield slightly more distinct patterns, but they
share the same qualitative features as the other cases.

We also computed the patterns starting from an initial condition twice as large
as was used in Figure 3 and we obtained identical patterns for all cases (a)–(d).
(These results are not presented.) Patterns (e) and (f) were different in a similar
manner as in Figure 3. This is understandable, because choices (a)–(d) of ĝ(v) are
identical for the |v| ≥ ε and thus if the size of the initial condition is sufficiently
large, the influence of ĝ(v) for |v| ≥ ε overweights the influence of ĝ(v) for |v| < ε
and identical patterns emerge. On the contrary, in cases (e) and (f) the values
ĝ(v) slightly differ even for |v| ≥ ε and therefore the resulting patterns differ as
well. These considerations lead us to a conjecture that if two nonlinear kinetics
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differ on a small neighbourhood of the ground state only, then sufficiently large
initial perturbation of the ground state will evolve to the same pattern for both
kinetics. If this conjecture is true then practically relevant is the evolution of
perturbations greater than a certain minimal size rather than the evolution of
arbitrarily small perturbations. The reason is the robustness of the evolution of
the larger perturbations to patterns and the fact that the stability with respect
to the arbitrarily small perturbations is highly sensitive to small changes of ĝ(v)
in the neighbourhood of the ground state.

Importantly, the nonsmooth unilateral term (a) yields patterns that evolve
from arbitrarily small spatial perturbations for a large range of values of D, as
far as we can conclude from numerous numerical experiments we performed. This
is the essential motivation to investigate the nonsmooth unilateral case (a). It
provides predictions about a whole class of approximations of the nonsmooth
term ĝ(v) = τv−. The tested choices (b)–(f) are just examples of members of
this class. All approximations from this class produce the desired patterns and all
these patterns are similar, however, for certain approximations the patterns do
not evolve from arbitrarily small perturbations. There is no known theory so far
that would explain the evolution of initial perturbations that are not arbitrarily
small. However, the approaches presented in [9, 14, 17] provide certain ideas
how to treat theoretically the positive homogeneous nonsmooth case ĝ(v) = τv−.
And, as we have already mentioned, the stability and instability of the ground
state in systems with this term seem to correspond to the question whether the
larger perturbations of the ground state do evolve to patterns or not for systems
where this term is approximated.

4. Existence and shape of patterns, dependence on parameters

In this section we further investigate system (3) with the nonsmooth unilateral
term ĝ(v) = τv− to show when the Turing instability occurs, what is the effect
of this term on the shape of the resulting patterns, and how they depend on the
strength τ and on the ratio of diffusions D. In addition, we numerically compare
behaviour of this nonsmooth unilateral term with the behaviour of its linear ap-
proximations from the right and left. Namely with choices ĝ ≡ 0 (i.e. the classcial
case) and ĝ(v) = −τv, respectively. Comparing to these linear approximations,
we show that the unilateral term produces irregular patterns. Further, we present
numerical results indicating that system (3) with the nonsmooth term ĝ(v) = τv−

yields patterns for considerably higher ratio of diffusion constants comparing to
the classical system with ĝ ≡ 0. In addition, the approximation from the left
seem to be informative about the Turing instability of the nonsmooth unilateral
term. For system (3), we present experiments supporting the hypothesis that the
Turing instability occurs in the nonsmooth unilateral case ĝ(v) = τv− for the
same ratio of diffusion coefficients as for the linear approximation from the left
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Figure 4. Typical patterns obtained by system (3) with the
nonsmooth unilateral term ĝ(v) = τv− (left panel), linear approx-
imation from the right – the classical case ĝ ≡ 0 (middle panel),
and linear approximation from the left ĝ(v) = −τv (right panel)
with τ = 0.08, D = 0.45, and parameter values (4). The initial
condition was specified as a small random noise around the ground
state. The grey scale shows the values of u.

ĝ(v) = −τv. Finally, in the last part of this section, we compare the patterns ob-
tained with the nonsmooth unilateral term with the coat pattern of king cheetah
and suggest a mechanism generating this pattern.

4.1. Unilateral term yields irregular patterns. First, we compare the pat-
terns produced by the nonsmooth unilateral term and its linear approximations
from the right and left. To this end we consider system (3) with boundary con-
ditions (2), and parameter values (4). Figure 4 compares patterns for choices
ĝ(v) = τv−, ĝ ≡ 0, and ĝ(v) = −τv, respectively, for τ = 0.08 and D = 0.45.
Comparing these patterns we immediately observe the qualitative difference. The
linear choices of ĝ(v) produce approximately circular spots which are, to some
extend, symmetrically placed. In contrast, the pattern produced by the unilat-
eral system shows irregular spots of larger size. Several of the largest spots seem
to be created by fusions of smaller spots. Moreover, the pattern does not exhibit
any symmetry even approximately.

4.2. Critical ratio of diffusions. Another interesting phenomenon resulting
from the addition of the nonlinear unilateral source terms to the classical system
(i.e. (3) with ĝ ≡ 0) is the growth of small nonhomogeneous perturbations of the
ground state to patterns even if the ratio of diffusions exceeds the critical value (8)
of the classical system (i.e. ĝ ≡ 0). Indeed, the critical ratio of diffusions (8) for
the classical system with parameter values (4) is Dcrit ≈ 0.53. However, using the
nonsmooth unilateral source ĝ(v) = τv−, we numerically obtain patterns forming
from very small spatial perturbations of the ground state even for considerably
higher ratios of diffusions.
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Figure 5. Dependence of patterns on the ratio of diffusions
D and the strength of the unilateral source τ for the nonsmooth
unilateral term ĝ(v) = τv−. Each box corresponds to the indicated
values of D and τ and to parameter values (4).

In order to illustrate the dependence of the arising patterns on the strength
of the unilateral source τ and on the ratio of diffusion constants D, we present
Figure 5. The top-left box in Figure 5 corresponds to the classical system (ĝ ≡ 0)
with standard parameter values (4) and D = 0.45. We observe the typical regular
spotted pattern. As τ increases, the spots are growing bigger and starting from
certain value they seem to merge and irregular patterns emerge. Similarly, we
can observe that higher values of τ enable to produce patterns for higher ratios
of diffusions D. In particular, columns 3–5 show that if D exceeds the critical
ratio of diffusions Dcrit ≈ 0.53 of the classical system, then the spatial patterns
arise only if τ is sufficiently large. The larger is D, the larger τ is necessary
for patterns to arise. For completeness, we mention that no patterns emerge for
τ ≥ 0.089.

4.3. Linear approximation from the left. It is interesting to compare these
results with the linear approximation of the unilateral term from the left, i.e.
with the choice ĝ = −τv. Note that this choice can actually be seen as the
classical system with ĝ ≡ 0 and coefficient β modified to β − τ . Figure 6 shows
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the resulting patterns for various values of D and τ . This system is smooth and
therefore we can analyse the Turing instability including the critical ratios of
diffusion coefficients (8). Table 1 presents these values for parameters (4) and
various τ . Figure 6 confirms that this system produces patterns only if the ratio of
diffusion coefficients is below the critical value. Interestingly, we observe patterns
for the same values of the ratio of diffusions as for the system with ĝ = τv−

presented in Figure 5. This leads us to a hypothesis that the Turing instability
in the unilateral system (3) with ĝ = τv− occurs under the same conditions as in
the case of the linear approximation (system (3) with ĝ = −τv). Although, we do
not present the results, we solved system (3) with the nonsmooth unilateral term
many times for values D close to the critical one and all these results confirmed
this hypothesis.

On the other hand, comparison of Figures 5 and 6 clearly reveals the difference
of the resulting patterns. The difference is even qualitative. While the patterns
produced by the unilateral term are irregular with large irregular spots, patterns
produced by the linear term are approximately symmetric with smaller circular
spots. This qualitative difference can be explained by the substantial difference
of the corresponding nonlinear dynamics especially for values of v distant from
the ground state.

4.4. King cheetah patterns. It has been shown that Taqpep gene is responsible
for the regularity of pre-pattern in the case of domestic cats and cheetahs [13],
see Figure 7 (left). King cheetahs have a mutation in this gene and their specific
coat pattern is characterized by irregular, large spots, see Figure 7 (right).

A possible explanation can be that this irregular pattern is caused by a uni-
lateral regulation in morphogens and that the Taqpep gene is responsible for the
strengths of the unilateral source, which we model by the coefficient τ . This leads
to the hypothesis that in the common morph of cheetah the unilateral regula-
tion is weak (τ close to zero), resulting in the usual spotted pattern, but in king
cheetahs, the mutation in Taqpep gene can yield stronger unilateral regulation (τ
around 0.08). For illustration, we may compare the model pattern in Figure 4
(middle) with the photograph of the common morph of cheetah in Figure 7 (left)
and the model pattern in Figure 4 (left) with the photograph of the king cheetah
in Figure 7 (right).

τ 0 0.025 0.05 0.075 0.08 0.085
Dcrit 0.53 0.57 0.62 0.71 0.74 0.78

Table 1. Critical ratios (8) of diffusion coefficients for the linear
source term (i.e. system (3) with ĝ(v) = −τv) and various values
of τ . Rounded to two significant digits.



UNILATERAL REGULATION BREAKS REGULARITY OF TURING PATTERNS 17

Figure 6. Dependence of patterns on D and τ for the linear
approximation of the unilateral term from the left, i.e. ĝ(v) = −τv.
Each box corresponds to the indicated values of D and τ and to
parameter values (4).

Figure 7. Typical coat patterns of cheetah (left) and king chee-
tah (right).
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5. Discussion and conclusions

In this contribution we investigated a reaction-diffusion system with a non-
smooth unilateral source term of type ĝ(v) = τv− and its approximations. We
provided a case study for a particular system and analysed numerically the in-
fluence of the nonsmooth unilateral source on the Turing instability and on the
resulting patterns. We explained a possible biological meaning of this term. The
standard linear analysis cannot be applied to nonsmooth systems and we demon-
strated that the linear analysis of systems with smooth approximations of the
term ĝ(v) = τv− is not informative about the Turing instability of the system
with the nonsmooth term. Arbitrarily small perturbations of the ground state
can evolve to patterns for one approximation of the nonsmooth term, but not for
the other even though they are arbitrarily accurate. This shows that the Turing
instability is sensitive to small changes of the nonlinear dynamics. However, we
also showed that initial perturbations of the ground state larger than a certain
minimal size do robustly evolve to patterns for both the nonsmooth term and its
approximations. In addition, these patterns are almost identical regardless the
particular form of the unilateral term in the small neighbourhood of the ground
state.

We have found that unilateral sources break the approximate regularity and
symmetry of the usual patterns. For example, system (3) with the unilateral term
ĝ(v) = τv− produces spots with irregular shapes and variable distances between
them. This contrasts to the classical smooth systems corresponding to choices
ĝ ≡ 0 and ĝ(v) = −τv in (3), where we observe close-to-regular disc-shaped spots
approximately symmetrically placed, see Figure 4.

Interestingly, system (3) with the unilateral term ĝ(v) = τv− produces patterns
even for those values of diffusion constants which prevent any pattern formation
in the original system (i.e. ĝ ≡ 0). Further, we observe that the critical ratio
of diffusions for the system with ĝ(v) = τv− seems to be identical to the critical
ratio of the linear approximation from the left, i.e. the choice ĝ(v) = −τv.
However, the resulting patterns differ considerably. A general conclusion of these
experiments is that the unilateral sources prescribed for the inhibitor v break
the regularity of patterns for all values of diffusion constants yielding patterns,
provided the strength of the unilateral source is not negligible. In addition, recent
experiments [23] with adding a unilateral term to the Thomas model [25] yield the
same conclusions and indicate that our findings about the effects of the unilateral
term are not limited to a single model.

Reaction-diffusion systems with nonsmooth unilateral terms are interesting
from both the theoretical and practical points of view. In contrasts to the clas-
sical smooth case, where the small perturbations initially evolve according to a
linear dynamics, the evolution of small perturbations of the ground state for the
nonsmooth unilateral term is inherently governed by a nonlinear dynamics. This
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nonlinear dynamics may yield completely new phenomena in the pattern forma-
tion mechanisms. In this contribution, we have made an attempt towards the
understanding of the unilateral terms in models of biological patterns formation.
However, further research is necessary for the investigation of feasible biological
applications.
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