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Abstract

We consider the homogenization problem for the stationary compressible Navier-Stokes
equations describing a steady flow of a compressible Newtonian fluid in a bounded three
dimensional domain. We focus on the case where the domain is perforated with very tiny
holes for which the diameters are much smaller than their mutual distances. We show that the
homogenization process does not change the motion of the fluids: In the asymptotic limit, we
obtain again the same system of equations. This coincides with similar results for the stationary
Stokes and stationary incompressible Navier-Stokes system.
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1 Introduction

Homogenization problems in the framework of fluid mechanics have gain a lot of interest. For
Stokes and stationary incompressible Navier-Stokes equations, Allaire in [1, 2] gave a system study
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for physical domains perforated by a family of holes of different size. More specifically, consider a
system of holes of diameter O(εα), where ε is their mutual distance. In three spatial dimensions,
Allaire showed that when α < 3, the limit fluid behavior is governed by the classical Darcy’s law;
when α = 3, in the limit yields Brinkman law; when α > 3, the the equations do not change in
the homogenization process and the limit problem is determined by the same system of Stokes or
Navier-Stokes equations. In the case α = 1, meaning that the size of holes is proportional to their
mutual distance, the results have been extended to the incompressible evolutionary Navier-Stokes
equations by Mikelic̆ [14], and to the compressible Navier-Stokes system by Masmoudi [13], and to
the complete Navier-Stokes-Fourier system in [9]. In all the aforementioned cases, the asymptotic
limit gives rise to Darcy’s law.

In this paper, we focus on the homogenization process for the stationary compressible Navier-
Stokes equations in a domain perforated by very tiny holes, where the diameter of the holes is taken
to be of size O(εα), with α > 3, where ε denotes the mutual distance between the holes. We start
by a precise description of the physical domain. We consider a bounded domain Ω in R3 of class C2,
and a family of holes (solid obstacles) {T sε,k}, which are simply connected smooth domains satisfying

T sε,k ⊂ T
s

ε,k ⊂ Bε,k ⊂ Bε,k ⊂ εCk (1.1)

with
Ck := (0, 1)3 + k, k ∈ Z3, Bε,k := B(xk, b0ε

α) for some xk ∈ T sε,k, b0 > 0. (1.2)

For the sake of simplicity, we suppose that all holes T sε,k = εαT s are similar to the same set T s - a
simply connected domain of class C2.

The corresponding family of ε-dependent perforated domains is defined as

Ωε := Ω \
⋃
k∈Kε

T
s

ε,k, Kε := {k | εCk ⊂ Ω}. (1.3)

It is easy to check that the number of holes contained in Ω satisfies

|Kε| =
|Ω|
ε3

(1 + o(1)), as ε→ 0. (1.4)

We consider the following stationary Navier-Stokes system equations in Ωε:

divx(%u) = 0, (1.5)

divx(%u⊗ u) +∇xp(%) = divxS(∇xu) + %f + g, (1.6)

S(∇xu) = µ
(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0. (1.7)
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Here, % is the fluid mass density, u is the velocity field, p = p(%) denotes the pressure, S = S(∇xu)
stands for the Newtonian viscous stress tensor, and µ, λ are the viscosity coefficients.

The density is nonnegative and the total mass of the fluid is fixed to be∫
Ωε
% dx = M > 0. (1.8)

In addition, we impose the no-slip boundary condition

u = 0 on ∂Ωε. (1.9)

The fluid is driven by external forces here represented by the functions f and g satisfying

‖f‖L∞(R3;R3) + ‖g‖L∞(R3;R3) ≤ c. (1.10)

We consider the pressure law of a typical form

p(%) = a%γ, a > 0, (1.11)

with the adiabatic exponent γ ≥ 1. The range of γ we can handle by the homogenization technique
will be specified below.

For a function f defined in Ωε, we use the symbol f̃ to denote the zero-extension of f in R3, that
is

f̃ = f in Ωε, f̃ = 0 in R3 \ Ωε. (1.12)

We also use c to a generic positive constant independent of the parameter ε. However, the specific
value of c could change from line to line.

1.1 Weak solutions

We start by introducing the standard concept of weak solution to the compressible Navier-Stokes
system.

Definition 1.1 We say that [%,u] is a finite energy weak solution of the Navier-Stokes equations
(1.5 - 1.7) supplemented with the conditions (1.8 - 1.9) in the domain Ωε if:

% ≥ 0 a.e. in Ωε,
∫

Ωε
% dx = M, % ∈ Lβ(γ)(Ωε), for some γ ≤ β(γ), u ∈ W 1,2

0 (Ωε;R
3); (1.13)

∫
Ωε
%u · ∇xψ dx = 0, (1.14)∫

Ωε
%u⊗ u : ∇xϕ+ p(%)divxϕ− S(∇xu) : ∇xϕ+ (%f + g) · ϕ dx = 0, (1.15)
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for any test function ψ ∈ C∞c (Ωε) and any test function ϕ ∈ C∞c (Ωε;R
3). Moreover, there holds the

energy inequality: ∫
Ωε

S(∇xu) : ∇xu dx ≤
∫

Ωε
(%f + g) · u dx. (1.16)

Furthermore, we introduce renormalized weak solutions.

Definition 1.2 We say a finite energy weak solution [%,u] is a renormalized weak solution if its zero
extension [%̃, ũ] (see the notation (1.12)) satisfies

divx(%̃ũ) = 0, divx(b(%̃)ũ) + (%̃b′(%̃)− b(%̃))divxũ = 0, in D′(R3), (1.17)

for any b ∈ C0([0,∞)) ∩ C1((0,∞)) such that

b′(s) ≤ c s−λ0 for s ∈ (0, 1], b′(s) ≤ c sλ1 for s ∈ [1,∞), (1.18)

with

c > 0, λ0 < 1, −1 < λ1 ≤
β(γ)

2
− 1. (1.19)

Remark 1.1 The existence of finite energy renormalized weak solutions to the Navier-Stokes
equations (1.5–1.7) for fixed ε > 0 is known for certain range of the adiabatic exponent γ. The
first global result has been obtained by Lions [12] for the case γ > 5/3. Extensions to lower values
of γ were obtained by Březina, Novotný [4], Frehse et al. [10], and Plotnikov, Sokolowski [16].
Moreover, as shown in Theorem 4.3 in the monograph of Novotný, Straškraba [15], any finite energy
weak solution [%,u] satisfies

% ∈ Lβ(γ), β(γ) = 3(γ − 1) if 3/2 < γ < 3, β(γ) = 2γ if γ ≥ 3. (1.20)

Remark 1.2 In view of DiPerna-Lions’s transport theory (see Section II.3 in [5] and the improve-
ment in Lemma 3.3 in [15]), for any r ∈ Lβ(Ω), β ≥ 2, and any v ∈ W 1,2

0 (Ω), where Ω ⊂ R3 is a
bounded C2 domain, a couple of functions [r,v] satisfying

divx(rv) = 0 in D′(Ω),

satisfies also the renormalized equations

divx(rv) = 0, divx(b(r)v) + (rb′(r)− b(r))divxv = 0, in D′(R3),

for any b satisfying (1.18 - 1.19) provided r and v have been extended to be zero outside Ω.

Hence, if γ ≥ 5/3, any finite energy weak solution in the sense of Definition 1.1 is also a
renormalized weak solution in the sense of Definition 1.2. The condition γ ≥ 5/3 ensures that
% ∈ L2(Ωε) by (1.20).
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1.2 Main result

In this paper, we consider the case, where the adiabatic exponent γ in the pressure law (1.11) satisfies

γ ≥ 3. (1.21)

Note that the same restriction has been imposed by Masmoudi [13] to avoid certain sofar
unsurmountable difficulties connected with the compressible Navier-Stokes system.

Our main result is the following:

Theorem 1.1 Let
M > 0, γ ≥ 3

be given. Let [%ε,uε]0<ε<1 be a family of finite energy renormalized weak solutions to the
compressible Navier-Stokes system (1.5–1.9) in Ωε, where f , g obey (1.10). Suppose that the
size parameter α of the holes in (1.2) satisfies α > 3.

Then
sup

0<ε<1

{
‖%ε‖L2γ(Ωε) + ‖u‖W 1,2

0 (Ωε)

}
< c, (1.22)

and, up to a substraction of subsequence, the extensions [%̃ε, ũε] satisfy

%̃ε → % weakly in Lβ(γ)(Ω), ũε → u weakly in W 1,2
0 (Ω). (1.23)

where the limit [%,u] is a finite energy renormalized weak solution to the same problem (1.5–1.9)
in the limit domain Ω.

We find that the limit equations are the same as the original ones. This means that the
homogenization process does not change the motion of the fluid when the holes (obstacles) are very
small. The rest of the paper is devoted to the proof of Theorem 1.1. Although the result is formally
the same as for the incompressible case studied by Allaire [1], [2], the technique for the compressible
system is rather different. Moreover, in contrast with the critical case studied by Masmoudi [13],
we do not perform any extra solution scaling and must establish the necessary bounds by means of
the so-called Bogovskii’s operator, the norm of which must be independent of the parameter ε. The
construction of such an operator carried over in Section 2 represents the main step of the proof. The
paper is finished by a short discussion in Section 3.

5



2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.

2.1 Bogovskii’s operator

We introduce a suitable inverse of the divergence, commonly known as Bogovskii’s operator, see
Bogovskii [3], Galdi [11].

Lemma 2.1 Let Ωε be defined through (1.1)–(1.3) with α ≥ 3.
Then there exists a linear operator Bε : L2(Ωε)/R → W 1,2

0 (Ωε;R
3) such that for any f ∈ L2(Ωε)

and
∫

Ωε
f dx = 0, there holds

divx(Bε(f)) = f in Ωε, ‖Bε(f)‖W 1,2
0 (Ωε;R3) ≤ c ‖f‖L2(Ωε) (2.1)

for some c independent of ε.

The existence of such a linear operator is nowadays standard, see e.g. Novotný, Straškraba [15,
Chapter 3]. The key point here is to show the uniform estimate (2.1) with the constant c independent
of ε. To this end, we adapt the construction of the restriction operator Rε by Allaire [1]. We start
with the following result [1, Section 2.2]:

Lemma 2.2 For Ωε as in (1.1)-(1.3) with α ≥ 3, there exits a linear bounded operator Rε mapping
W 1,2

0 (Ω;R3) to W 1,2
0 (Ωε;R

3) such that

u ∈ W 1,2
0 (Ωε;R

3) =⇒ Rε(ũ) = u in Ωε, (2.2)

divxu = 0 in Ω =⇒ divxRε(u) = 0 in Ωε, (2.3)

‖Rε(u)‖W 1,2
0 (Ωε;R3) ≤ c ‖u‖W 1,2

0 (Ω;R3), c independent of ε. (2.4)

Inspecting the proof of Lemma 2.2 in Section 2.2 of [1], we observe that the restriction operator
may be constructed in the following way:

Let b1 > 0 be chosen such that

B(xk, b1ε) ⊂ εCk, Bε,k = B(xk, b0εα) ⊂ B(xk, b1ε).

Consider the following decomposition of each cube εCk with k ∈ Kε:

εCk = T sε,k ∪ Eε,k ∪ F ε,k with Eε,k := B(xk, b1ε) \ T sε,k, Fε,k := (εCk) \B(xk, b1ε).
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For any u ∈ W 1,2
0 (Ω;R3), we define Rε through

Rε(u) = u on εCk ∩ Ω, for k 6∈ Kε, (2.5)

and for k ∈ Kε:

Rε(u) = u on Fε,k, Rε(u) = 0 on T sε,k, Rε(u) = vε,k in Eε,k, (2.6)

where vε,k ∈ W 1,2(εCk;R
3) solves the following Stokes problem

∇pε,k −∆vε,k = −∆u in Eε,k, (2.7)

divxvε,k = divxu +
1

|Eε,k|

∫
T s
ε,k

divxu dx in Eε,k, (2.8)

vε,u = u on ∂Eε,k − ∂T sε,k, vε,k = 0 on ∂T sε,k. (2.9)

The operator Rε defined by (2.5–2.9) is a restriction operator satisfying (2.2–2.4).
Now we use Lemma 2.2, along with the properties of the restriction operator stated above, to

prove Lemma 2.1.
Proof of Lemma 2.1. For f ∈ L2(Ωε) with

∫
Ωε
f dx = 0, we consider the extension

f̃ = f in Ωε, f̃ = 0 on Ω \ Ωε =
⋃
k∈Kε

T sε,k. (2.10)

Then, by employing the classical Bogovskii’s operator defined on the domain Ω, we obtain u :=
B(f) ∈ W 1,2

0 (Ω;R3) such that

divxu = f̃ in Ω and ‖u‖W 1,2
0 (Ω;R3) ≤ c ‖f̃‖L2(Ω) = c‖f‖L2(Ωε) (2.11)

for some c that only depends on Ω. Moreover, by virtue of (2.10), we have

divxu = f̃ = 0 on T sε,k.

Let Rε be the restriction operator constructed through (2.5 – 2.9).
In particular, it is easy to check that equation (2.8) gives rise to

divxvε,k = divxu = f in Eε,k, (2.12)

whenever u satifies (2.11). In addition, one has Rε(u) = u in Ωε \ (
⋃
k∈Kε Eε,k). Together with (2.6)

and (2.12), we therefore conclude that

divxRε(u) = f in Ωε.

Thus to prove Lemma 2.1, it is enough to define

Bε(f) := Rε(u) = Rε(B(f̃)),

where B is the classical Bogovskii’s operator on Ω. The operator norm estimate (2.1) follows from
the estimate for the restriction operator in (2.4).

7



2.2 Uniform bounds

Our goal in this section is to show the uniform estimate (1.22) under the assumption γ ≥ 3. Note
that, in accordance with what we said in Remark 1.1, we already know that

%ε ∈ L2γ(Ωε), uε ∈ W 1,2
0 (Ωε) (2.13)

for any fixed ε. However, we have to establish uniform bounds on the norms ‖%ε‖L2γ(Ωε) and
‖uε‖W 1,2

0 (Ωε)
independent of ε ∈ (0, 1).

By the energy inequality (1.16), together with Korn’s inequality and Hölder’s inequality, we have

µ‖∇xuε‖2
L2(Ωε) ≤ ‖f‖L∞(Ωε)‖%ε‖L 6

5 (Ωε)
‖uε‖L6(Ωε) + ‖g‖L∞(Ωε)‖uε‖L1(Ωε). (2.14)

Since uε ∈ W 1,2
0 (Ωε) has zero trace on the boundary, we may use Poincaré’s inequality and the

Sobolev embedding to obtain
‖uε‖L6(Ωε) ≤ c ‖∇xuε‖L2(Ωε) (2.15)

for some constant c independent of the domain Ωε. Thus we obtain

‖∇xuε‖L2(Ωε) + ‖uε‖L6(Ωε) ≤ c
(
‖f‖L∞(Ωε)‖%ε‖L 6

5 (Ωε)
+ ‖g‖L∞(Ωε)

)
≤ c

(
‖%ε‖

L
6
5 (Ωε)

+ 1
)
. (2.16)

Next, we introduce a test function

ϕ(x) := Bε
(
%γε (x)− 1

|Ωε|

∫
Ωε
%γε dx

)
, (2.17)

where Bε is the Bogovskii’s operator introduced in Lemma 2.1. We remark that such ϕ is well defined
since %γε ∈ L2(Ωε) due to (2.13). Then by Lemma 2.1, we have

divxϕ(x) = %γε (x)− 1

|Ωε|

∫
Ωε
%γε dx in Ωε, (2.18)

‖ϕ‖W 1,2
0 (Ωε)

≤ c
(
‖%γε‖L2(Ωε) + ‖%γε‖L1(Ωε)

)
≤ c ‖%ε‖γL2γ(Ωε)

. (2.19)

We plug this test function ϕ into (1.15) to obtain∫
Ωε
p(%ε)%

γ
ε dx =

4∑
j=1

Ij (2.20)

with

I1 :=
∫

Ωε
p(%ε) dx

1

|Ωε|

∫
Ωε
%γε dx, I2 :=

∫
Ωε
µ∇xuε : ∇xϕ dx+

∫
Ωε

(
µ

3
+ η

)
divxuε : divxϕ dx,

(2.21)
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I3 := −
∫

Ωε
%εuε ⊗ uε : ∇xϕ dx, I4 := −

∫
Ωε

(%εf + g)ϕ dx.

Now we estimate Ij one by one. By the interpolation between Lq spaces,

I1 =
a

|Ωε|
‖%ε‖2γ

Lγ(Ωε)
≤ a

|Ωε|
(
‖%ε‖θ1L1(Ωε)

‖%ε‖1−θ1
L2γ(Ωε)

)2γ
=
aM2γθ1

|Ωε|
‖%ε‖2γ−2γθ1

L2γ(Ωε)
,

where M is the total mass and θ1 ∈ (0, 1) is determined by

1

γ
= θ1 +

1− θ1

2γ
.

By (2.16) and (2.19), we have for I2:

I2 ≤ c‖∇xuε‖L2(Ωε)‖∇xϕ‖L2(Ωε) ≤ c
(
‖%ε‖

L
6
5 (Ωε)

+ 1
)
‖%ε‖γL2γ(Ωε)

≤ c ‖%ε‖γL2γ(Ωε)

(
‖%ε‖L2γ(Ωε) + 1

)
.

Again by (2.16) and (2.19), we have for I3:

I3 ≤ ‖%ε‖L6(Ωε)‖uε‖2
L6(Ωε)‖∇xϕ‖L2(Ωε) ≤ c ‖%ε‖L6(Ωε)

(
‖%ε‖2

L
6
5 (Ωε)

+ 1
)
‖%ε‖γL2γ(Ωε)

≤ c ‖%ε‖γ+1
L2γ(Ωε)

(
‖%ε‖2θ2

L1(Ωε)
‖%ε‖2(1−θ2)

L2γ(Ωε)
+ 1

)
= c M2θ2 ‖%ε‖γ+3−2θ2

L2γ(Ωε)
+ c ‖%ε‖γ+1

L2γ(Ωε)
,

where θ2 ∈ (0, 1) is determined by
5

6
= θ2 +

1− θ2

2γ
.

For I4, we have

I4 ≤ c (‖%ε‖L2 + 1) ‖%ε‖γL2γ(Ωε)
≤ c ‖%ε‖γL2γ(Ωε)

+ c ‖%ε‖γ+1
L2γ(Ωε)

.

We sum up the estimates for Ij and obtain

a‖%ε‖2γ
L2γ(Ωε)

=
∫

Ωε
p(%ε)%

γ
ε dx =

4∑
j=1

Ij ≤ c
(
‖%ε‖2γ−β1

L2γ(Ωε)
+ 1

)
(2.22)

for some β1 > 0. Precisely, we can choose β1 as

β1 = min{2γθ1, γ − 1, γ − 3 + 2θ2}.
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From (2.22), we finally obtain

‖%ε‖L2γ(Ωε) ≤ c, for some c independent of ε. (2.23)

We then go back (2.16) to derive

‖uε‖W 1,2
0 (Ωε)

≤ c, for some c independent of ε. (2.24)

This completes the proof of the uniform estimate claimed in (1.22).

2.3 Equations in a fixed domain

In this section, we derive the equations for the extended functions [%̃ε, ũε] in Ω, where [%ε,uε] is the
finite energy renormalized weak solution in Theorem 1.1. In accordance with the uniform estimates
(2.23 – 2.24), we have

‖%̃ε‖L2γ(Ω) + ‖ũε‖W 1,2
0 (Ω) ≤ c, for some c independent of ε. (2.25)

2.3.1 Continuity equation

First we claim:

Proposition 2.1 Under the assumptions in Theorem 1.1, the extended functions %̃ε, ũε satisfy

divx(%̃εũε) = 0, divx(b(%̃ε)ũε) + (%̃εb
′(%̃ε)− b(%̃ε))divxũε = 0 in D′(R3) (2.26)

for any b ∈ C0([0,∞)) ∩ C1((0,∞)) satisfying (1.18 - 1.19).

This is a direct conclusion from the fact that [%ε,uε] is a renomalized weak solution.

2.3.2 Momentum equation

The following proposition is crucial in the proof of convergence.

Proposition 2.2 Under the assumptions in Theorem 1.1, we have

divx(%̃εũε ⊗ ũε) +∇xp(%̃ε) = divxS(∇xũε) + %̃εf̃ + g̃ + Fε, in D′(Ω;R3), (2.27)

where Fε is a distribution satisfying

| < Fε, ϕ >D′×D | ≤ c εσ‖ϕ‖Lr(Ω;R3) + c ε
3(α−1)σ0
2(2+σ0) ‖∇xϕ‖L2+σ0 (Ω;R3×3)), (2.28)
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for any ϕ ∈ C∞c ((0, T )×Ω;R3) and some constants c > 0, σ > 0, σ0 > 0 and 1 < r <∞ independent
of ε. In particular, we can choose

σ :=
α− 3

4
, r :=

12(α− 1)

α− 3
, σ0 ∈ (0,∞). (2.29)

Proof of Proposition 2.2. Let ϕ ∈ C∞c ((0, T ) × Ω;R3) be any test function. It is sufficient to
show

Iε :=
∫

Ω
%̃εũε ⊗ ũε : ∇xϕ+ p(%̃ε)divxϕ− S(∇xũε) : ∇xϕ+ %̃εf̃ϕ+ g̃ϕ dx (2.30)

≤ c εσ‖ϕ‖Lr(Ω;R3) + c ε
3(α−1)σ0
2(2+σ0) ‖∇xϕ‖L2+σ0 (Ω;R3×3)),

where c, σ, r and σ0 are the constants enjoying the properties claimed in Proposition 2.2.

Using (1.1 - 1.3) we can find cut-off functions gε ∈ C∞c (Ω) satisfying

0 ≤ gε ≤ 1, gε = 0 on
⋃
k∈Kε

T sε,k, gε = 1 in Ω \
⋃
k∈Kε

Bε,k, ‖∇xgε‖L∞(Ω) ≤ c ε−α. (2.31)

Together with (1.4), we have for any 1 ≤ q ≤ ∞:

‖1− gε‖Lq(Ω) ≤ c ε
3(α−1)

q , ‖∇xgε‖Lq(Ω) ≤ c ε
3(α−1)

q
−α. (2.32)

Then direct calculation gives

Iε =
∫

Ωε
%εuε⊗uε : ∇x(gεϕ)+p(%ε)divx(gεϕ)−S(∇xuε) : ∇x(gεϕ)+(%εf +g)(gεϕ) dx+

3∑
j=1

Iεj , (2.33)

where
Iε1 :=

∫
Ω
%̃εũε ⊗ ũε : (1− gε)∇xϕ− %̃εũε ⊗ ũε : (∇xgε ⊗ ϕ) dx,

Iε2 :=
∫

Ω
p(%̃ε)(1− gε)divxϕ− p(%̃ε)∇xgε · ϕ dx,

Iε3 :=
∫

Ω
S(∇xũε) : (1− gε)∇xϕ+ S(∇xũε) : (∇xgε ⊗ ϕ) dx.

Since gεϕ ∈ C∞c (Ωε) is a test function for the stationary Navier-Stokes equations in Ωε, we have

Iε =
3∑
j=1

Iεj .

For I1, using hypothesis γ ≥ 3 and Hölder’s inequality, we get

I1 ≤ c ‖%̃ε‖L2γ(Ω)‖ũε‖2
L6(Ω)(‖(1− gε)∇xϕ‖L2(Ω) + ‖∇xgε ⊗ ϕ‖L2(Ω)). (2.34)
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By the uniform estimates (2.23 - 2.24 - 2.25) and Hölder’s inequality, we have

I1 ≤ c

(
‖(1− gε)‖

L
2(2+σ0)
σ0 (Ω)

‖∇xϕ‖L2+σ0 (Ω) + ‖∇xgε‖Lr1 (Ω)‖ϕ‖Lr2 (Ω)

)
, (2.35)

where

σ0 ∈ (0,∞), rj ∈ (2,∞),
1

r1

+
1

r2

=
1

2
.

Then by (2.32), we deduce

I1 ≤ c ε
3(α−1)σ0
2(2+σ0) ‖∇xϕ‖L2+σ0 (Ω)) + c ε

3(α−1)
r1
−α‖ϕ‖Lr2 (Ω),

where the number

σ :=
3(α− 1)

r1

− α =
3(α− 1)

2
− α− 3(α− 1)

r2

=
α− 3

2
− 3(α− 1)

r2

is strictly positive as long as

r2 >
6(α− 1)

α− 3
.

In particular, we can choose

r2 =
12(α− 1)

α− 3
such that σ :=

3(α− 1)

r1

− α =
α− 3

4
,

which is exactly (2.29).

Seeing that Iε2 and Iε3 can be handled similarly to Iε1 , we have completed the proof of Proposition
2.2.

2.4 Passing to the limit

By the uniform estimates (2.25), up to a substraction of subsequence, we have

%̃ε → % weakly in L2γ(Ω), ũε → u weakly in W 1,2
0 (Ω;R3). (2.36)

It is left to show the limit [%,u] represents a finite energy renormalized weak solution to (1.5 – 1.9)
in Ω.

12



2.4.1 Strong convergence of velocity

By compact Sobolev embedding, we have the strong convergence

ũε → u strongly in Lq(Ω;R3) for any 1 ≤ q < 6. (2.37)

Together with the weak convergence of the density, we have the weak convergence of nonlinear terms:

%̃εũε → %u weakly in Lq(Ω;R3) for any 1 < q < 6γ
3+γ

, (2.38)

and
%̃εũε ⊗ ũ→ %u⊗ u weakly in Lq(Ω;R3×3) for any 1 < q < 6γ

3+2γ
. (2.39)

Then we let ε→ 0 in the first equation of (2.26) and in equation (2.27) to deduce the following two
equations in D′(Ω):

divx(%u) = 0, (2.40)

divx(%u⊗ u) +∇xp(%) = divxS(∇xu) + %f + g. (2.41)

Here p(%) is the weak limit of p(%̃ε) in L2(Ω). Moreover, in accordance with Remark 1.2, the pair
of functions [%,u] satisfies the renormalized equation

divx(%u) = 0, divx(b(%)u) + (%b′(%)− b(%))divxu = 0, in D′(R3), (2.42)

for any b satisfying (1.18 - 1.19).

Consequently, to finish the proof of Theorem 1.1, we have to show p(%) = p(%). This is done in
the next section.

2.4.2 Convergence of the pressure

First of all, we introduce the so-called effective viscous flux which is the quantity p(%)−(4µ
3

+η)divxu.
We shall show that this quantity enjoys some weak compactness property specified in the following
lemma. This property, identified first by Lions [12], plays a crucial role in the existence theory in
the framework of weak solutions for the compressible Navier-Stokes system.

Lemma 2.3 For any ψ ∈ C∞c (Ω), there holds up to a substraction of subsequence:

lim
ε→0

∫
Ω
ψ
(
p(%̃ε)− (

4µ

3
+ η)divxũε

)
%̃ε dx =

∫
Ω
ψ
(
p(%)− (

4µ

3
+ η)divxu

)
% dx. (2.43)
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Proof of Lemma 2.3. The proof of Lemma 2.3 is quite technical but nowadays well understood.
The idea is to take test functions of the form

ψ∇∆−1(1Ω%̃ε), ψ∇∆−1(1Ω%),

where ψ ∈ C∞c (Ω) and ∆−1 is the Fourier multiplier on R3 with the symbol 1/|ξ|2. It is
straightforward to check that

∇∇∆−1 = (Ri,j)1≤i,j≤3

are the Riesz operators. In particular, using the well known properties of the singular integral
operators of Carderón-Zygmund type, we have

‖∇∇∆−1(r)‖Lq(R3) ≤ c ‖r‖Lq(R3).

for any r ∈ Lq(R3), 1 < q <∞.
We take ψ∇∆−1(1Ω%̃ε) as a test functions in the weak formulation of (2.27) and let ε→ 0. Then

we take ψ∇∆−1(1Ω%) as a test functions in the weak formulation of (2.41), and compare the results
of these operations. By using the convergence results (2.36 - 2.39), compact Sobolev embedding, the
fact γ ≥ 3, and the property Ri,j = Rj,i, we obtain, through long but straightforward calculations,
that

I := lim
ε→0

∫
Ω
ψ
(
p(%̃ε)− (

4µ

3
+ η)divxũε

)
%̃ε dx−

∫
Ω
ψ
(
p(%)− (

4µ

3
+ η)divxu

)
% dx (2.44)

= lim
ε→0

∫
Ω
%̃εũ

i
εũ

j
εψRi,j(1Ω%̃ε) dx−

∫
Ω
%uiujψRi,j(1Ω%) dx.

On the other hand, by taking 1Ω∇∆−1(ψ%̃εũε) as a test function for the first equation of (2.26) and
taking 1Ω∇∆−1(ψ%u) as a test function for (2.40), we obtain∫

Ω
1Ω%̃εũ

i
εRi,j(ψ%̃εũε) dx = 0,

∫
Ω

1Ω%u
iRi,j(ψ%u) dx = 0. (2.45)

Plugging (2.45) into (2.44) yields

I = lim
ε→0

∫
Ω

ũiε
(
%̃εũ

j
εψRi,j(1Ω%̃ε)− 1Ω%̃εRi,j(ψ%̃εũε)

)
dx−

∫
Ω

ui
(
%ujψRi,j(1Ω%)− 1Ω%Ri,j(ψ%u)

)
dx.

(2.46)
The proof of the strong convergence of the densities is finished by means of the strong convergence

of the velocity in (2.37) and the following property of commutators of the type appearing in (2.46):

Lemma 2.4 Suppose

uε → u weakly in Lp(R3), vε → v weakly in Lq(R3),
1

p
+

1

q
=

1

r
< 1.
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Then for any 1 ≤ i, j ≤ 3,

uεRi,j(vε)− vεRi,j(uε)→ uRi,j(v)− vRi,j(u) weakly in Lr(R3).

See [8, Lemma 3.4] for the proof.

Now, we are ready to prove the following result:

Proposition 2.3 Let p(%)% be a weak limit of p(%̃ε)%̃ε in L
2γ
γ+1 (Ω), we then have

p(%)% = p(%)% in L
2γ
γ+1 (Ω).

Proof of Proposition 2.3. Using the uniform bound for %̃ε in (2.25) and the specific form of p(%)
in (1.11), we have

p(%̃ε)%̃ε → p(%)% weakly in L
2γ
γ+1 (Ω).

Taking b(s) = s log s in the renormalized equations (2.26) and (2.42) we obtain

divx(%̃ε log %̃εũε) + %̃εdivxũε = 0, divx(% log %u) + %divxu = 0. (2.47)

Letting ε→ 0 in (2.47) yields
divx(% log %u) + %εdivxu = 0.

Then for any ψ ∈ C∞c (Ω), we have∫
Ω
ψ%divxu dx =

∫
Ω
∇xψ · (% log %u) dx,

∫
Ω
ψ%divxu dx =

∫
Ω
∇xψ · (% log %)u dx. (2.48)

Passing to the limit for ε→ 0 in (2.43) and using (2.48) we get∫
Ω
ψp(%)%− (

4µ

3
+ η)∇xψ · (% log %)u dx =

∫
Ω
ψp(%)%− (

4µ

3
+ η)∇xψ · (% log %)u dx. (2.49)

Now we choose test functions ψn ∈ C∞c (Ω) such that

0 ≤ ψn ≤ 1, ψn(x) = 1 if d(x, ∂Ω) >
2

n
, ψn(x) = 0 if d(x, ∂Ω) <

1

n
, ‖∇xψn‖L∞(Ω) ≤ 2n

and
‖1− ψn‖Lq ≤ c n−

3
q , ‖∇x‖Lq ≤ c n1− 3

q .

Then, letting ψ = ψn in (2.49) and passing to the limit n→∞ we may infer that∫
Ω
p(%)%− p(%)% dx = 0. (2.50)
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Since the mapping % 7→ p(%) is strictly increasing, there holds

p(%)% ≥ p(%)%, a.e. in Ω,

which, together with (2.50), gives rise to the desired conclusion

p(%)% = p(%)%, a.e. in Ω.

We have completed the proof of Proposition 2.3.

Our desired result p(%) = p(%) is a direct corollary of Proposition 2.3, due to the monotonicity
and convexity of p(·). Accordingly, we have finished the proof of Theorem 1.1.

3 Concluding remarks

The hypothesis concerning the shape of the holes as well as their spatial distribution may be
considerably relaxed. As a matter of fact, it is enough to impose the following restriction on the
model hole:

There exists a constant ω > 0 such that at each point x ∈ ∂T s there exists a closed cone Cx with
vertex at x and of aperture ω such that

Cx ∩ T s = {x}.

Moreover, the holes need not be periodically distributed, it is enough that their mutual distance
is proportional to ε, see [7] for the relevant homogenization problem in the context of incompressible
fluids.

References

[1] G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny
holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal., 113
(3) (1990) 209-259.

[2] G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny
holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of
holes. Arch. Ration. Mech. Anal., 113 (3) (1990) 261-298.

16



[3] M. E. Bogovskii. Solution of some vector analysis problems connected with operators div and
grad (in Russian). Trudy Sem. S.L. Sobolev, 80(1):5–40, 1980.
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