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Governing equations

» balance equations

Q% +o[VV]v=divT + of
divv=20
» constitutive equations
G(T,D)=0
» boundary conditions
—V;
Tn=g

v-n=0, av-t=Tn-t
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Constitutive relation

» incompressible Newtonian fluid

T=—pl+2uD D=_(Vv+W)

N —

\4

generalized Newtonian fluid
T=—pI+2u(D|,..)D
» general non-Newtonian simple viscous fluid, implicit constitutive law

G(T,D,..)=0

v

rate type models, visco-elastic models, ...
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Questions: Existence and qualitative properties of the solution...

g(T 0

@ K. R. Rajagopal, On implicit constitutive theories for fluids, 2006.

@ Malek: Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive
relations, 2008.
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Development of numerical methods

discretization
» in time fractional @ scheme (Rothe method)
> in space mixed FEM stable pair (QZ/P1d’5‘) or equal order stabilized
formulation (local projection, GLS, internal penalty)
solving the discrete nonlinear system
» Large scale Newton or quasi-Newton method
» Linearization, Jacobian computation: analytical, automatic differentiation,
finite differences approximation
solving large linear system
» direct sparse methods
> iterative Krylov space based methods, multigrid methods, problem
dependent smoothing operators, preconditioners
» effective parallel implementation to use full current hardware potential

error evaluation, adaptivity...
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Time discretization

» time discretization by one step 6 scheme: i.e. Crank-Nicholson scheme,
implicit Euler scheme

n+1 _ £n
g:A(f) = %z&A(f””)jLUfG)A(f")
» time discretization in constitutive law
ﬂ dj ~ n+1 n+1 n+1 g n+1
g(T7 dtaD7 dt)Ng(T 7D ,V aL ’)

I Stokes system - steady, slow flow, no inertial effects

BIRS 2012



Various formulations - velocity

Consider Stokes system with explicit constitutive law:

—divT =f inQ

divv =0 inQ

T=-pI+o=—-pI+ A(D) in Q
v=_0 on 0Q2

» o = A(D), explicit constitutive law formulation: find
V € Vaiy = {H'(Q); v|l = 0,divv = 0} such that

/Q A(D(v)) : D(¢) = / fo Ve Vay
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Standard mixed formulation - velocity, pressure

Stokes like system:

—divT=f  divv=0, T=-pl+o=—pl+AD(V))

» o = A(D), mixed formulation: find (v, p) € V x P such that

/A(D(v)):D(@)—pdivw+§divv:/f~<p, V(p,€) €V x P
Q Q

av 9"l
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Standard mixed formulation - velocity, pressure

finite element formulation: find (v, pp) € Vi x Pj, such that
[ A D) — py diveo+ vy = [ £ W(p6) € Vi x P

or if we define  a(u,v) = [, A(D(u)) : D(v), b(p,u) = [,pdivu
a(Vh, ) = b(pn, ) =(f, )
b(¢,vp) =0
let {¢} denote a basis for V;, and {¢/} denote a basis for P}, then we look for
vh =) Vig! pn=>_ P&
denoting X = (V, P) we can write the finite dimensional nonlinear system as
R(X)=0
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Finite element selection

\{

equal order elements = need for aditional stabilization
inf-sup stability (Pc/Pe—1, Qc/ Qe—1, Qc/P&S5)

inf b(pn, vh)

Ph€Ph vy eV, m

v

=pp=2B>0

» conforming vs. nonconforming

v

discretely div-free solution: if divv, € P, (Scott, Vogelius)

vast existing literature for example: Babuska, Brezzi, Fortin, etc.
= assures that the linear problem is solvable
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Solution of the nonlinear problem - Newton method

compute the Jacobian matrix (analytic, automatic differentiation,
divided differences)

IR oo [RIOC +ce)) = [R(X — ce))
[WL(X )~ i 1),

solve the linear system for X

|| K= R0

adaptive line search strategy X"™' = X" + wX w € [-1,0)
continuation methods
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Jacobian approximation

» structure of the Jacobian

OR [A -BT
X |B 0

» finite difference approximation

r n n n n
IR oy o R +2Xe)) = [RI(X" = X))
x| X))~ 3 ;
L ij €
e/ TOL 108 104 10—2 101
10—8 7/107.57 [21.52] 12/57.08[26.52] | 12/47.00(23.75] | 17/33.0627.38]
10—4 7/108.71 [24.57] 8/62.75[17.77] | 10/42.20[18.95] | 18/3133[29.05]
10=2 | 16/109.75[51.65] | 20/47.35[38.28] | 25/29.80(38.58] | 56/16.98[73.83]
10—T | 44711611 (14130] | 48/3579[81.72] | 49/17.92[65.77]

nonlinear solver it. / avg. linear solver it. [CPU time] for B|CGStab(ILU(O))

BIRS 2012



Solution of the linear systems

I direct sparse solver (umfpack, superLU)

» Krylov space based iterative solver with preconditioning (general ILU(k),
special preconditioners?)
» multigrid geometric
. standard geometric multigrid approach
. smoother by overlapping block Gauss-Seidel (Vanka-like smoother)
. full inverse of the local dense problems by standard LAPACK
. full @, and P7¢ prolongation P by interpolation, restriction defined by
R=P’

» multigrid algebraic
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Dual mixed formulation - stress, velocity

Consider again Stokes like system:

—divT=f  divv=0, T=-pl+o=—pl+AD(V))

» D = A'(T), dual mixed formulation: find (T,v) € S x V such that

/A_1(T):x+v-diVx—diV0'~<p:/f-ap, V(x,p) €ESxV
Q Q

e S1E-TF)
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General mixed formulation - stress, velocity, D

Stokes like system with general implicit constitutive law:

_divT=f, divv=0, §(T;,D)=0, D:%(Vv—f—(Vv)T)

» dual mixed formulation: find (D,v,T) € D x V x S such that

/Q’(T,D):w—diVT~g0+D:X—Q—V-diVX:/f‘go, V(w,p,x) €D XV x|
Q Q

Gp 0 Gr D 0
0 0 —div| |v| = |f
I divv o0 T 0

» classical inf-sup for velocity-pressure or velocity-stress
» double inf-sup for D-velocity-stress

@ J.S. Howell, H.J. Walkington, Inf-Sup Conditions for Twofold Saddle Point Problems, Numer. Math., 2010.
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Nonsymmetric saddle point problems

Generalized saddle point problem

Sufficient and necessary conditions for well-posedness

A 571w g [Bernardi et al. (1988)]:
1 =
[Bz & } [”] [g] » A restricted to ker B, is isomorphism onto (ker B;)*
» B; and B, have full rank

Generalized twofold saddle point problem

A o B u f
0 0 & Pl = |&
B G0 P2 &

Sufficient and necessary conditions for well-posedness iHoweli etal. @oto:
» A restricted to ker B, is isomorphism onto (ker B;)*
» B, and B, restricted to ker G, ker Gy, respectively, have full rank
» G, and G have full rank

BIRS 2012



Requirements on the finite elements for the cases (o, v, p), (T, V)
and (D, v,T) - ). Stebel

Theorem
Let Sy, Vp,, Qy satisfy the following conditions:

(p.div )

Tel o = cliplly VP € Qp;

(i) There exists ¢ > 0 such that: SUP, e vy

(i) {(De)’: @ € Vy} C Sy
Then the linearized problem has a unique solution (o p, , pp , Vp,)-

Theorem
Let Ty, , V, satisfy the following conditions:
() {Dp: o € Wy} C Tp,
(tr T,div ¢0)

(ii) There exists c > 0 such that: SUP&FEVh H‘Plh 3

> c|trTl; VT € Ty

Then the linearized problem has a unique solution (Ty, , vy, ).

Theorem
Let Dy, Vy,, Ty, satisfy the following conditions:

i) {Dyp: p € Wy} C Ty
(i) {15, TeT,} C Dy

(tr T,div ¢0)

>c|trT vT Ty .
Telly 2 = e Tl €Th

(iii) There exists ¢ > 0 such that: sup‘F c Vh

Then the linearized problem has a unique solution (Dp, , vp, , Tp,).
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Simulations of stress power-law model (with . stebel, K. Touska)

0.2

Boundary conditions

v =(10"2y(0.2 — y),0) onfy, M

v=0 onlw, (2)
Th-n=—p+Sn-n=0 onTlo, (3)
)

vxn=0 onrlo. (4
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Simulations of stress power-law model

A. Unknowns (S, v, p): B. Unknowns (T,v): C. Unknowns (T, v, D):
divs—-vp=Ff divT =f divT =f
divv =0 D(v) = (1 +[T7")"T D = (1+1°1")"7
D(v) = (1 + SP)"S. D(v)=D
Finite element approximation
triangular mesh quadrilateral mesh
A B C A B C
3 P1dISC T P1d/sc T P1dISC S deisc T de/‘sc T Q Za’isc
V| P vi| Pk v | P vV | Q V| Q V| Q
p P D P1disc p P1disc D Q desc

» Inthe cases B and C it is necessary to stabilize jumps of tr T across
edges in order to satisfy the inf-sup condition for the pressure on
simplex mesh.

» All approximate formulations lead apparently to the same results.
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Figure : Pressure (left) and norm of D(v) (right) along the channel.
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Numerical simulations of Bingham fluid (with k. Touska)

Stokes problem for regularized Bingham fluid in "semi-implicit” formulation:

divSs—-vp = f,
divy = 0,
S|D| — 2uD|Dc| — 7D = O,

IDe| = 4/ID]*+e

» Dual-mixed formulation: unknowns (v, p, T) - 5 equations (in 2 dimensions).
» It requires a series of computations with descending e.
» ¢ stepping needs small steps or heuristic approach, both are time expensive.

vl ——
0zl ] vpTD ——

Analytical soluion ——
ozer whh
0242 |- -
015 B 0261 |-
024 |

v,p, T T 1 7 om|

] 00 0238 -

1 ozt |
v,p,T,D [ ] 0230

005 P o2asl v 00000
— 0 02 04 06 08 1 0.40.420.440.460.48 0.5 0.520.540.560.58 0.6

v ¥
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Numerical simulations of Bingham fluid

v

Lid driven cavity benchmark
Unknowns (D, v, T):
divT = f,

v

D
D=0= |T%| < 7%, D¢0:>T<5:T*ﬁ+2,m,
Dv = D.

» Regularization:

G(T°,D) := T°|D.| — 7*D — 2uD|D.|, |Dc|=/e? +|D|2

» The weak statement Dv = D improves convergence for large 7*

@ D. Vola, L. Boscardin, J.C. Latché: Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results,
2003.
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Lid driven cavity with Bingham fluid

0 2 a 6 8 10 ) 10 20 30 a0 50

Satisfaction of the constitutive relation. Left: 7* = 10, right: 7 = 100.
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Further developement - challanging problems

15" Crystal plasticity — P. Minakowski
I Fluid-structure interaction in biomechanics

Spatial discretization: domain boundary incaurate; Material
parameters: viscosity, wall stiffness inacurate; Boundary conditions:
inflow/outflow location?, multiple inflow/outflows?, velocity/pressure
values?...

I5" complete understanding of each step - from model equations, trough
analysis and numerical solution

5" efficient linear solver, preconditioners for block systems, as
combination with iterative GMRES/BiCGStab/multigrid and direct
methods...

15" stopping criteria for nonlinear/linear solvers...
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