Implicitly constituted materials: mixed formulations, numerical solutions and computations

Jaroslav Hron

Mathematical Institute

faculty of mathematics and physics

with J. Stebel, K. Touška (Charles University in Prague)

Governing equations

► balance equations

$$\varrho \frac{\partial \mathbf{v}}{\partial t} + \varrho [\nabla \mathbf{v}] \mathbf{v} = \operatorname{div} \mathbf{T} + \varrho \mathbf{f}$$
$$\operatorname{div} \mathbf{v} = 0$$

► constitutive equations

$$\mathcal{G}(\mathbf{T},\mathbf{D})=0$$

boundary conditions

$$\begin{aligned} & \textbf{v} = \textbf{v}_{\textit{B}} \\ & \textbf{Tn} = \textbf{g} \\ & \textbf{v} \cdot \textbf{n} = \textbf{0}, \quad \alpha \textbf{v} \cdot \textbf{t} = \textbf{Tn} \cdot \textbf{t} \end{aligned}$$

▶ incompressible Newtonian fluid

$$\mathbf{T} = -p\mathbf{I} + 2\mu\mathbf{D}$$
 $\mathbf{D} = \frac{1}{2}(\nabla\mathbf{v} + \nabla\mathbf{v}^T)$

generalized Newtonian fluid

$$\mathbf{T} = -\rho \mathbf{I} + 2\mu(|\mathbf{D}|, ...)\mathbf{D}$$

► general non-Newtonian simple viscous fluid, implicit constitutive law

$$\mathcal{G}(\mathbf{T}, \mathbf{D}, ...) = 0$$

▶ rate type models, visco-elastic models, ...

$$\mathcal{G}(\mathbf{T}, \frac{d\mathbf{T}}{dt}, ..., \mathbf{D}, \frac{d\mathbf{D}}{dt}, ..., ...) = 0$$

Questions: Existence and qualitative properties of the solution...

K. R. Rajagopal, On implicit constitutive theories for fluids, 2006.

Málek: Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations. 2008.

Development of numerical methods

- ▶ discretization
 - \blacktriangleright in time fractional θ scheme (Rothe method)
 - ▶ in space mixed FEM stable pair (Q_2/P_1^{disc}) or equal order stabilized formulation (local projection, GLS, internal penalty)
- solving the discrete nonlinear system
 - ► Large scale Newton or quasi-Newton method
 - Linearization, Jacobian computation: analytical, automatic differentiation, finite differences approximation
- ► solving large linear system
 - ▶ direct sparse methods
 - iterative Krylov space based methods, multigrid methods, problem dependent smoothing operators, preconditioners
 - effective parallel implementation to use full current hardware potential
- ► error evaluation, adaptivity...

Time discretization

 \blacktriangleright time discretization by one step θ scheme: i.e. Crank-Nicholson scheme, implicit Euler scheme

$$\frac{\partial f}{\partial t} = A(f) \qquad \Rightarrow \qquad \frac{f^{n+1} - f^n}{\Delta t} = \theta A(f^{n+1}) + (1 - \theta)A(f^n)$$

▶ time discretization in constitutive law

$$\mathcal{G}(\mathbf{T}, \frac{d\mathbf{T}}{dt}, \mathbf{D}, \frac{d\mathbf{D}}{dt}) \approx \mathcal{G}(\mathbf{T}^{n+1}, \mathbf{D}^{n+1}, \mathbf{v}^{n+1}, \mathbf{L}^{n+1}, ...)$$

Stokes system - steady, slow flow, no inertial effects

Various formulations - velocity

Consider Stokes system with explicit constitutive law:

$$\begin{aligned} -\operatorname{div}\mathbf{T} &= \mathbf{f} & & & \text{in } \Omega \\ \operatorname{div}\mathbf{v} &= 0 & & & \text{in } \Omega \\ \mathbf{T} &= -\rho\mathbf{I} + \sigma &= -\rho\mathbf{I} + \mathcal{A}(\mathbf{D}) & & & \text{in } \Omega \\ \mathbf{v} &= 0 & & & \text{on } \partial\Omega \end{aligned}$$

$$\begin{split} \bullet & \sigma = \mathcal{A}(\mathbf{D}), \text{ explicit constitutive law formulation: find} \\ \mathbf{v} \in \mathbb{V}_{\text{div}} = \{H^1(\Omega); \mathbf{v} | \Gamma = 0, \text{div } \mathbf{v} = 0\} \text{ such that} \\ & \int_{\Omega} \mathcal{A}(\mathbf{D}(\mathbf{v})) : \mathbf{D}(\varphi) = \int_{\Omega} \mathbf{f} \cdot \varphi, \quad \forall \varphi \in \mathbb{V}_{\text{div}} \\ & [\tilde{\mathcal{A}}] \ [\mathbf{v}] = [\mathbf{f}] \end{split}$$

Standard mixed formulation - velocity, pressure

Stokes like system:

$$-\operatorname{div} \mathbf{T} = \mathbf{f}, \qquad \operatorname{div} \mathbf{v} = 0, \qquad \mathbf{T} = -p\mathbf{I} + \sigma = -p\mathbf{I} + \mathcal{A}(\mathbf{D}(\mathbf{v}))$$

• $\sigma = \mathcal{A}(\mathbf{D})$, mixed formulation: find $(\mathbf{v}, p) \in \mathbb{V} \times \mathbb{P}$ such that

$$\int_{\Omega} \mathcal{A}(\mathbf{D}(\mathbf{v})) : \mathbf{D}(\varphi) - p \operatorname{div} \varphi + \xi \operatorname{div} \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \varphi, \quad \forall (\varphi, \xi) \in \mathbb{V} \times \mathbb{P}$$

$$\begin{bmatrix} \tilde{\mathcal{A}} & -\operatorname{div}^T \\ \operatorname{div} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \boldsymbol{\rho} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix}$$

Standard mixed formulation - velocity, pressure

finite element formulation: find $(\mathbf{v}_h, p_h) \in \mathbb{V}_h \times \mathbb{P}_h$ such that

$$\int_{\Omega} \mathcal{A}(\mathbf{D}(\mathbf{v}_h)) : \mathbf{D}(\varphi) - \rho_h \operatorname{div} \varphi + \xi \operatorname{div} \mathbf{v_h} = \int_{\Omega} \mathbf{f} \cdot \varphi, \quad \forall (\varphi, \xi) \in \mathbb{V}_h \times \mathbb{P}_h$$

or if we define $a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \mathcal{A}(\mathbf{D}(\mathbf{u})) : \mathbf{D}(\mathbf{v}), \quad b(p, \mathbf{u}) = \int_{\Omega} p \operatorname{div} \mathbf{u}$

$$a(\mathbf{v}_h, \varphi) - b(p_h, \varphi) = (f, \varphi)$$

 $b(\xi, \mathbf{v}_h) = 0$

let $\{\varphi^i\}$ denote a basis for \mathbb{V}_h and $\{\xi^i\}$ denote a basis for \mathbb{P}_h then we look for

$$\mathbf{v}_h = \sum V_i \varphi^i \qquad \qquad p_h = \sum P_i \xi^i$$

denoting $\mathbf{X} = (V, P)$ we can write the finite dimensional nonlinear system as

$$\mathcal{R}(\mathbf{X}) = \mathbf{0}$$

Finite element selection

- ▶ equal order elements ⇒ need for aditional stabilization
- ▶ inf-sup stability $(P_k/P_{k-1}, Q_k/Q_{k-1}, Q_k/P_{k-1}^{\text{disc}})$

$$\inf_{\boldsymbol{p}_h \in \mathbb{P}_h} \sup_{\boldsymbol{v}_h \in \mathbb{V}_h} \frac{b(\boldsymbol{p}_h, \boldsymbol{v}_h)}{||\boldsymbol{v}_h||_1 ||\boldsymbol{p}_h||_0} = \beta_h \geq \beta > 0$$

- conforming vs. nonconforming
- ▶ discretely div-free solution: if $\operatorname{div} \mathbf{v}_h \in \mathbb{P}_h$ (Scott, Vogelius)

vast existing literature for example: Babuška, Brezzi, Fortin, etc.

 \Rightarrow assures that the linear problem is solvable

Solution of the nonlinear problem - Newton method

 compute the Jacobian matrix (analytic, automatic differentiation, divided differences)

$$\left[\frac{\partial \mathcal{R}}{\partial \mathbf{X}}\right]_{ii}(\mathbf{X}^n) \approx \frac{[\mathcal{R}]_i(\mathbf{X}^n + \varepsilon \mathbf{e}_j) - [\mathcal{R}]_i(\mathbf{X}^n - \varepsilon \mathbf{e}_j)}{2\varepsilon},$$

▶ solve the linear system for X

$$\left[\frac{\partial \mathcal{R}}{\partial \mathbf{X}}(\mathbf{X}^n)\right]\tilde{\mathbf{X}} = \mathcal{R}(\mathbf{X}^n)$$

- ▶ adaptive line search strategy $\mathbf{X}^{n+1} = \mathbf{X}^n + \omega \tilde{\mathbf{X}}$ $\omega \in [-1, 0)$
- continuation methods

► structure of the Jacobian

$$\frac{\partial \mathcal{R}}{\partial \mathbf{X}} = \begin{bmatrix} A & -B^T \\ B & 0 \end{bmatrix}$$

► finite difference approximation

$$\left[\frac{\partial \mathcal{R}}{\partial \mathbf{X}}\right]_{ij}(\mathbf{X}^n) \approx \frac{[\mathcal{R}]_i(\mathbf{X}^n + \varepsilon X_j^n \mathbf{e}_j) - [\mathcal{R}]_i(\mathbf{X}^n - \varepsilon X_j^n \mathbf{e}_j)}{2\varepsilon},$$

ε / TOL	10-8	10-4	10-2	10-1
10-8	7 /107.57 [21.52]	12 /57.08 [26.52]	12 /47.00 [23.75]	17 /33.06 [27.38]
10-4	7 /108.71 [24.57]	8 /62.75 [17.77]	10 /42.20 [18.95]	18 /31.33 [29.05]
10-2	16 /109.75 [51.65]	20 /47.35 [38.28]	25 /29.80 [38.58]	56 /16.98 [73.83]
10-1	44 /116.11 [141.30]	48 /35.79 [81.72]	49 /17.92 [65.77]	-

nonlinear solver it. / avg. linear solver it. [CPU time] for BiCGStab(ILU(0))

Solution of the linear systems

direct sparse solver (umfpack, superLU)

- Krylov space based iterative solver with preconditioning (general ILU(k), special preconditioners?)
- ► multigrid geometric
 - . standard geometric multigrid approach
 - . smoother by overlapping block Gauss-Seidel (Vanka-like smoother)
 - . full inverse of the local dense problems by standard LAPACK
 - . full Q_2 and P_1^{disc} prolongation **P** by interpolation, restriction defined by $\mathbf{R} = \mathbf{P}^T$
- multigrid algebraic

Dual mixed formulation - stress, velocity

Consider again Stokes like system:

$$-\operatorname{div} \mathbf{T} = \mathbf{f}, \qquad \operatorname{div} \mathbf{v} = 0, \qquad \mathbf{T} = -\rho \mathbf{I} + \sigma = -\rho \mathbf{I} + \mathcal{A}(\mathbf{D}(\mathbf{v}))$$

▶ **D** = $\mathcal{A}^{-1}(\mathbf{T})$, dual mixed formulation: find $(\mathbf{T}, \mathbf{v}) \in \mathbb{S} \times \mathbb{V}$ such that

$$\int_{\Omega} \mathcal{A}^{-1}(\mathbf{T}) : \boldsymbol{\chi} + \mathbf{v} \cdot \operatorname{div} \boldsymbol{\chi} - \operatorname{div} \boldsymbol{\sigma} \cdot \boldsymbol{\varphi} = \int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi}, \quad \forall (\boldsymbol{\chi}, \boldsymbol{\varphi}) \in \mathbb{S} \times \mathbb{V}$$

$$\begin{bmatrix} A^{-1} & \operatorname{div}^{\mathsf{T}} \\ -\operatorname{div} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\sigma} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{f} \end{bmatrix}$$

General mixed formulation - stress, velocity, D

Stokes like system with general implicit constitutive law:

$$-\operatorname{div} \boldsymbol{T} = \boldsymbol{f}, \qquad \operatorname{div} \boldsymbol{v} = 0, \qquad \mathcal{G}(\boldsymbol{T}_{\delta}, \boldsymbol{D}) = 0, \qquad \boldsymbol{D} = \frac{1}{2}(\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T)$$

▶ dual mixed formulation: find $(\mathbf{D}, \mathbf{v}, \mathbf{T}) \in \mathbb{D} \times \mathbb{V} \times \mathbb{S}$ such that

$$\int_{\Omega} \mathcal{G}(\mathbf{T},\mathbf{D}) : \boldsymbol{\omega} - \operatorname{div} \mathbf{T} \cdot \boldsymbol{\varphi} + \mathbf{D} : \boldsymbol{\chi} + \mathbf{v} \cdot \operatorname{div} \boldsymbol{\chi} = \int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi}, \quad \forall (\boldsymbol{\omega},\boldsymbol{\varphi},\boldsymbol{\chi}) \in \mathbb{D} \times \mathbb{V} \times \mathbb{C}$$

$$\begin{bmatrix} \mathcal{G}_{\textbf{D}} & 0 & \mathcal{G}_{\textbf{T}} \\ 0 & 0 & -\operatorname{div} \\ I & \operatorname{div}^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \textbf{D} \\ \textbf{v} \\ \textbf{T} \end{bmatrix} = \begin{bmatrix} 0 \\ \textbf{f} \\ 0 \end{bmatrix}$$

- classical inf-sup for velocity-pressure or velocity-stress
- ► double inf-sup for **D**-velocity-stress

J.S. Howell, H.J. Walkington, Inf-Sup Conditions for Twofold Saddle Point Problems, *Numer. Math.*, 2010.

Nonsymmetric saddle point problems

Generalized saddle point problem

Sufficient and necessary conditions for well-posedness [Bernardi et al. (1988)]:

- - \triangleright B_1 and B_2 have full rank

Generalized twofold saddle point problem

$$\begin{bmatrix} A & 0 & B_1^\top \\ 0 & 0 & C_2 \\ B_2 & C_1^\top & 0 \end{bmatrix} \begin{bmatrix} u \\ p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} f \\ g_1 \\ g_2 \end{bmatrix}$$

Sufficient and necessary conditions for well-posedness [Howell et al. (2010)]:

- ▶ A restricted to ker B_2 is isomorphism onto (ker B_1)*
- \triangleright B_1^{\top} and B_2^{\top} restricted to ker C_2 , ker C_1 , respectively, have full rank
- $ightharpoonup C_1$ and C_2 have full rank

Requirements on the finite elements for the cases (σ, \mathbf{v}, p) , (\mathbf{T}, \mathbf{v}) and $(\mathbf{D}, \mathbf{v}, \mathbf{T})$ - J. Stebel

Theorem

Let Sh, Vh, Qh satisfy the following conditions:

- (i) There exists c>0 such that: $\sup_{\varphi\in V_h}\frac{(p,\operatorname{div}\varphi)}{\|\varphi\|_{1,2}}\geq c\|p\|_2 \ \forall p\in Q_h$;
- (ii) $\{(\mathbf{D}\boldsymbol{\varphi})^{\delta};\; \boldsymbol{\varphi}\in V_{h}\}\subset S_{h}.$

Then the linearized problem has a unique solution (σ_h , p_h , \mathbf{v}_h).

Theorem

Let Th, Vh satisfy the following conditions:

- (i) $\{\mathbf{D}\boldsymbol{\varphi};\,\boldsymbol{\varphi}\in\boldsymbol{W}_h\}\subset T_h;$
- (ii) There exists c>0 such that: $\sup_{\varphi\in V_h} \frac{(\operatorname{tr} \mathbf{T},\operatorname{div} \varphi)}{\|\varphi\|_{1,2}} \geq c \|\operatorname{tr} \mathbf{T}\|_2 \ \forall \mathbf{T} \in T_h$.

Then the linearized problem has a unique solution (\mathbf{T}_h , \mathbf{v}_h).

Theorem

Let Dh, Vh, Th satisfy the following conditions:

- (i) $\{\mathbf{D}\boldsymbol{\varphi};\,\boldsymbol{\varphi}\in\boldsymbol{W}_h\}\subset T_h;$
- (ii) $\{\mathbf{T}^{\delta}; \mathbf{T} \in T_h\} \subset D_h;$
- (iii) There exists c>0 such that: $\sup_{\varphi\in V_h} \frac{(\operatorname{tr} \mathbf{T},\operatorname{div} \varphi)}{\|\varphi\|_{1,2}} \geq c \|\operatorname{tr} \mathbf{T}\|_2 \ \forall \mathbf{T} \in T_h$.

Then the linearized problem has a unique solution (\mathbf{D}_h , \mathbf{v}_h , \mathbf{T}_h).

Simulations of stress power-law model (with J. Stebel, K. Touška)

Boundary conditions

$$\mathbf{v} = (10^{-2}y(0.2 - y), 0) \qquad \text{on } \Gamma_I, \qquad (1)$$

$$\mathbf{v} = \mathbf{0} \qquad \text{on } \Gamma_W, \qquad (2)$$

$$\mathbf{Tn} \cdot \mathbf{n} = -p + \mathbf{Sn} \cdot \mathbf{n} = 0 \qquad \text{on } \Gamma_O, \qquad (3)$$

$$\mathbf{v} \times \mathbf{n} = 0$$
 on Γ_O . (4)

on Γ_I ,

Simulations of stress power-law model

A. Unknowns
$$(\mathbf{S}, \mathbf{v}, p)$$
:

$$\operatorname{div} \mathbf{S} - \nabla \rho = \mathbf{f}$$

$$div\, \textbf{T} = \textbf{f}$$

$$\operatorname{div} \mathbf{T} = \mathbf{f}$$

D(v) = D

$$\text{div}\, \boldsymbol{v}=0$$

$$D(v) =$$

$$\mathbf{D}(\mathbf{v}) = (1 + |\mathbf{T}^d|^2)^n \mathbf{T}^d$$

$$\mathbf{D} = (1 + |\mathbf{T}^d|^2)^n \mathbf{T}^d$$

$$D(v) = (1 + |S|^2)^n S.$$

triangular mesh

quadrilateral mesh

Α		В		С	
S	P ₁ disc	T	P ₁ disc	T	P ₁ disc
V	P_2	V	P_2	v	P_2
р	<i>P</i> ₁			D	P ₁ disc

A		В		C	
S	Q_2^{disc}	Т	Q_2^{disc}	Т	Q_2^{disc}
V	Q_2^-	V	Q_2^-	v	Q_2^-
р	P_1^{disc}			D	Q_2^{disc}

- ► In the cases B and C it is necessary to stabilize jumps of tr T across edges in order to satisfy the inf-sup condition for the pressure on simplex mesh.
- ► All approximate formulations lead apparently to the same results.

Figure: Velocity in the middle cross-section (left), along the channel (right).

Figure : Pressure (left) and norm of **D(v)** (right) along the channel.

Numerical simulations of Bingham fluid (with K. Touška)

Stokes problem for regularized Bingham fluid in "semi-implicit" formulation:

$$\begin{array}{rcl} \operatorname{div} \mathbf{S} - \nabla \rho & = & \mathbf{f}, \\ \operatorname{div} \mathbf{v} & = & \mathbf{0}, \\ \mathbf{S} |\mathbf{D}_{\varepsilon}| - 2\mu \mathbf{D} |\mathbf{D}_{\varepsilon}| - \tau^* \mathbf{D} & = & \mathbf{0}, \\ |\mathbf{D}_{\varepsilon}| & = & \sqrt{|\mathbf{D}|^2 + \varepsilon^2}. \end{array}$$

- ▶ Dual-mixed formulation: unknowns (\mathbf{v} , p, \mathbf{T}) 5 equations (in 2 dimensions).
- ▶ It requires a series of computations with descending ε .
- ightharpoonup arepsilon stepping needs small steps or heuristic approach, both are time expensive.

Numerical simulations of Bingham fluid

- ► Lid driven cavity benchmark
- ► Unknowns (**D**, **v**, **T**):

$$\begin{aligned} \operatorname{div} \mathbf{T} &= \mathbf{f}, \\ \mathbf{D} &= \mathbf{0} \Rightarrow |\mathbf{T}^{\delta}| \leq \tau^*, \quad \mathbf{D} \neq \mathbf{0} \Rightarrow \mathbf{T}^{\delta} = \tau^* \frac{\mathbf{D}}{|\mathbf{D}|} + 2\mu \mathbf{D}, \\ \mathbf{D} \mathbf{v} &= \mathbf{D}. \end{aligned}$$

Regularization:

$$\mathcal{G}(\mathsf{T}^\delta,\mathsf{D}) := \mathsf{T}^\delta |\mathsf{D}_arepsilon| - au^* \mathsf{D} - 2\mu \mathsf{D} |\mathsf{D}_arepsilon|, \quad |\mathsf{D}_arepsilon| = \sqrt{arepsilon^2 + |\mathsf{D}|^2}$$

▶ The weak statement $\mathbf{D}\mathbf{v} = \mathbf{D}$ improves convergence for large τ^*

D. Vola, L. Boscardin, J.C. Latché: Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results, 2003.

Lid driven cavity with Bingham fluid

Satisfaction of the constitutive relation. Left: $\tau^* = 10$, right: $\tau^* = 100$.

Further developement - challanging problems

Crystal plasticity → P. Minakowski

Fluid-structure interaction in biomechanics

Spatial discretization: domain boundary incaurate; Material parameters: viscosity, wall stiffness inacurate; Boundary conditions: inflow/outflow location?, multiple inflow/outflows?, velocity/pressure values?...

- complete understanding of each step from model equations, trough analysis and numerical solution
- efficient linear solver, preconditioners for block systems, as combination with iterative GMRES/BiCGStab/multigrid and direct methods...
- stopping criteria for nonlinear/linear solvers...