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Abstract. The concept of the core problem in total least squares (TLS) problems with single
right-hand side introduced in [C. C. Paige and Z. Strakoš, SIAM J. Matrix Anal. Appl., 27, 2006, pp.
861–875] separates necessary and sufficient information for solving the problem from redundancies
and irrelevant information contained in the data. It is based on orthogonal transformations such
that the resulting problem decomposes into two independent parts. One of the parts has nonzero
right-hand side and minimal dimensions and it always has the unique TLS solution. The other part
has trivial (zero) right-hand side and maximal dimensions. Assuming exact arithmetic, the core
problem can be obtained by the Golub–Kahan bidiagonalization.

Extension of the core concept to the multiple right-hand sides case AX ≈ B in [I. Hnětynková,
M. Plešinger, and Z. Strakoš, SIAM J. Matrix Anal. Appl., 34, 2013, pp. 917–931], which is
highly nontrivial, is based on application of the singular value decomposition. In this paper we
prove that the band generalization of the Golub–Kahan bidiagonalization proposed in this context
by Å. Björck also yields the core problem. We introduce generalized Jacobi matrices and investigate
their properties. They prove useful in further analysis of the core problem concept. This paper
assumes exact arithmetic.

Key words. total least squares problem, multiple right-hand sides, core problem, Golub–Kahan
bidiagonalization, generalized Jacobi matrices.
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1. Introduction. This paper further elaborates on extending the core problem
concept to total least squares problems with multiple right-hand sides; see [13]. We
will use the same notations as in [13] and very briefly recall some basic facts. Consider
a linear approximation problem

AX ≈ B, or, equivalently, [B|A]
[
−Id
X

]
≈ 0, (1.1)

where A ∈ R
m×n, X ∈ R

n×d, B ∈ R
m×d, and ATB 6= 0, without any further

assumption on the positive integers m, n, d. The matrices A, B, [B|A], and X
are called the system matrix, the right-hand side (or the observation) matrix, the
extended (or data) matrix, and the matrix of unknowns, respectively. We will focus
on incompatible problems, i.e., R(B) 6⊂ R(A), although, the compatible case is not
strictly excluded. Consider the orthogonal transformations

ÂX̂ ≡ (PTAQ)(QTXR) ≈ (PTBR) ≡ B̂, (1.2)
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where P−1 = PT , Q−1 = QT , R−1 = RT ; or, equivalently,

[B̂|Â]
[ −Id

X̂

]
≡
(
PT [B|A]

[
R 0
0 Q

])([
RT 0
0 QT

] [
−Id
X

]
R

)
≈ 0. (1.3)

We call problems (1.1) and (1.2)–(1.3) orthogonally invariant and require thatX solves

(1.1) if and only if X̂ = QTXR solves (1.2)–(1.3). Within this paper we investigate
the most common case of the total least squares problem (TLS)

min
X,E,G

‖[G|E]‖F subject to (A+ E)X = B +G, (1.4)

where ‖ · ‖F denotes the Frobenius norm.
The TLS problem has been studied for a long time, including the works of Golub

and Van Loan [10], Van Huffel and Vandewalle [21], Wei [22], [23], and many others.
The paper [10] analyzes the single right-hand side case (d = 1) and uses a strict
decrease of the smallest singular value of the extended matrix [b|A] in comparison
to the smallest singular value of A as the sufficient condition for existence of the
TLS solution. The subsequent work [21] extends the concept of the TLS solution
by projecting out the inappropriate right singular vectors of [b|A] (called unwanted
directions) associated with the smallest singular values. This allows constructing the
classical TLS algorithm (see [21, Section 3.6.1]) which always gives as an output a
computationally defined “solution”, with a relatively straightforward computational
extension to problems with multiple right hand sides (d > 1). The analytic part
of this computationally defined algorithmic output, i.e., explanation of its precise
meaning in terms of the formulation of the TLS problem, remains very involved and
in this work not fully explained. The work of Wei [22], [23] complements the previous
results by focusing mainly on the rank deficient problems. All the theory in [10],
[21], [22], [23] follows essentially the path outlined in [10], in particular, it is mostly
based on the sufficient (not necessary and sufficient) condition for existence of the
TLS solution. The solvability of multiple right-hand side problems has been then
analyzed in a full generality only recently in [11], revealing the intriguing difficulties
in the classical approach. In particular, it shows that the computationally defined
“solution” of the TLS problem may be in some cases different from the true TLS
solution, i.e., the classical TLS algorithm may not reach the existing TLS solution.

The core problem concept, introduced in [16] for d = 1, is based on a different
reasoning. It asks what does it mean in terms of the original data A and b that the
solution in the TLS sense does not exist. Van Huffel and Vandewalle indicate that
this happens in the presence of the so-called nonpredictive multicollinearities (see [21,
p. 71]), when the linear dependency between the columns of A is stronger than the
linear dependency between the range of A and the right-hand side b. Projecting out
some unwanted directions in construction of the computationally defined “solution”
does not remove all redundancies and irrelevant information from [b|A]. For an or-
thogonally invariant linear approximation problem this is done by the core problem
reduction allowing to simply formulate the necessary and sufficient condition for the
existence of the TLS solution for d = 1; see [16]. The core problem reduction can be
done by the singular value decomposition (SVD) of A or by the Golub–Kahan itera-
tive bidiagonalization [9]; see [16], [14]. Moreover, the core problem approach reveals
that any partial result of the Golub–Kahan iterative bidiagonalization contains a part
of the necessary information for solving the original problem and it does not contain
any redundancies or irrelevant information.
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In the multiple right hand side case the situation is more complicated. The first
steps in generalizing the core problem concept for d > 1 were done by Björck in the
series of talks [2], [3], [4], and in the unpublished manuscript [5], by Sima in [19],
by Sima and Van Huffel in [20], and by Plešinger in [18]. Following these works and
the paper [11] fully classifying situations which can occur when d > 1, the paper
[13] provides a rigorous extension of the core problem concept to TLS with multiple
right-hand sides (1.4). The orthogonal transformation (data reduction) used there is
based on the SVD of the matrix A.

The results for single right-hand side problems give a motivation for using the
band generalization of the Golub–Kahan bidiagonalization (or simply the band algo-
rithm) also in the multiple right hand side case, as proposed in [2]–[5]. Here the
deflation due to possible zero entries reducing the band shape of the transformed
matrix plays a crucial role. We investigate the band algorithm and prove rigorously
that it indeed provides a core problem in the sense of [13]. Furthermore, we derive
additional properties of the core problem with multiple right-hand sides that might
be useful in analysis of its solvability.

The paper is organized in the following way. Section 2 recalls the background
results. Section 3 describes the band generalization of the Golub–Kahan bidiagonal-
ization. Section 4 introduces generalized Jacobi matrices and analyzes properties of
the band subproblem. Section 5 concludes the paper.

Throughout the text R(M) and N (M) denote the range and null-space of a
matrix M , respectively; Iℓ (or just I) denotes an ℓ × ℓ identity matrix; ek denotes
the kth column of I; 0ℓ,ξ (or just 0) denotes an ℓ × ξ zero matrix; and ‖v‖ denotes
the Euclidean norm of a vector v. The following convention concerning the entries of
matrices will simplify the exposition:

• club (♣) stands for a nonzero entry, ♣ 6= 0;
• heart (♥) stands for a general entry which can also be zero;
• empty spaces in matrices always represent zero entries.

Throughout the paper we assume exact arithmetic.

2. The core problem and other background results. In order to make the
text as self-consistent as possible, we briefly recall the known results used below.

2.1. Core problem. The core problem within the problem (1.1) is defined as
follows (see [13, Definition 5.2]):

Definition 2.1 (Core problem). The subproblem A11X1 ≈ B1 is a core problem
within the approximation problem AX ≈ B if [B1|A11] is minimally dimensioned and
A22 maximally dimensioned subject to the orthogonal transformations of the form

PT [B|A]
[
R 0
0 Q

]
= PT [BR|AQ] ≡

[
B1 0 A11 0
0 0 0 A22

]
, (2.1)

where P−1 = PT , Q−1 = QT , R−1 = RT .

Let A11 ∈ R
m×n have k distinct singular values σj with multiplicities rj and the

orthonormal bases of the corresponding left singular vector subspaces Uj ∈ R
m×rj ,

j = 1, . . . , k. Let rk+1 ≡ dim(N (AT11)), with Uk+1 ∈ R
m×rk+1 having the orthonormal

basis vectors of N (AT11) as its columns. Then U ≡ [U1, . . . , Uk, Uk+1] ∈ R
m×m and

UT = U−1. The core problem A11X1 ≈ B1 has the following properties (see [13,
p. 925]):

(CP1) The matrix A11 ∈ R
m×n is of full column rank equal to n ≤ m.
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(CP2) The matrix B1 ∈ R
m×d is of full column rank equal to d ≤ m.

(CP3) The matrices Φj ≡ UTj B1 ∈ R
rj×d are of full row rank equal to rj ≤ d, for

j = 1, . . . , k + 1.

These properties guarantee minimality of the core problem; see [13, section 4]. Di-
mensions of any subproblem A11X1 ≈ B1 having the properties (CP1)–(CP3) cannot
be reduced by any orthogonal transformation of the form (2.1). Moreover

UT [B1|A11] =




Φ1 UT1 A11

...
...

Φk UTk A11

Φk+1 0




}r1
...
}rk
}rk+1




m,

︸ ︷︷ ︸
d

︸ ︷︷ ︸
n

where [U1, . . . , Uk]
TA11 is a square nonsingular matrix of the size n×n, n = r1+. . .+rk,

and Φk+1 is of full row rank rk+1 = m−n. Thus (CP1)–(CP3) imply that the extended
matrix [B1|A11] is of full row rank equal to m, max{n, d} ≤ m ≤ n+ d.

2.2. Golub–Kahan bidiagonalization. Consider first d = 1, i.e., the single
right-hand side problem Ax ≈ b. Here the core problem can be obtained by the Golub–
Kahan iterative bidiagonalization1 . Using the initial vectors q0 = 0 and p1 = b/γ1,
where γ1 = ‖b‖, it computes for j = 1, 2, . . .

qjαj = AT pj − qj−1γj , (2.2)

pj+1γj+1 = Aqj − pjαj , (2.3)

such that ‖qj‖ = ‖pj+1‖ = 1, and αj > 0, γj+1 > 0. The matrices

Pj ≡ [p1, . . . , pj] ∈ R
m×j, Qj ≡ [q1, . . . , qj ] ∈ R

n×j ,

have orthonormal columns, PTj Pj = QTj Qj = Ij ; see [9]. The iterative process (2.2)–
(2.3) terminates when the right-hand side of one of the equations becomes zero, i.e.,
either qjαj = 0 (in the incompatible case) or pj+1γj+1 = 0 (in the compatible case)
for some j. Consider that Ax ≈ b is incompatible, b 6∈ R(A), and let qn+1αn+1 = 0.
Then, denoting P cp

1 ≡ Pn+1 and Qcp
1 ≡ Qn,

(P cp
1 )T [b|AQcp

1 ] =




γ1 α1

γ2
. . .

. . . αn
γn+1



= [b1|A11] ∈ R

(n+1)×(n+1) (2.4)

represents the core problem within [b|A], and

PT [b|A]
[

1 0
0 Q

]
=

[
b1 A11 0
0 0 A22

]
, P ≡ [P cp

1 , P cp
2 ], Q ≡ [Qcp

1 , Q
cp
2 ],

where P cp
2 , Qcp

2 are chosen such that P−1 = PT , Q−1 = QT ; see [16]. A generalization
of the Golub–Kahan bidiagonalization for the problems with multiple right-hand sides
is given in section 3 below.

1Due to the close connection to the Lanczos algorithm one can also find it under the name the
Golub–Kahan–Lanczos bidiagonalization; see, e.g., [1], [3], [4].
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2.3. Right-hand side preprocessing. In order to get an equivalent problem
with the full column rank right-hand sides matrix, we preprocess B in an analogous
way as in [13, section 3.1]. Let d ≡ rank(B) ≤ min{m, d}, B ∈ R

m×d. Consider any
decomposition of B in the form

B = [C, 0]RT , C ∈ R
m×d, R ∈ R

d×d, (2.5)

where C is of full column rank, and R is square orthogonal, i.e. R−1 = RT . Multipli-
cation of (1.1) from the right by R gives

A(XR) ≈ BR, where XR ≡ [Y, Y ′] ∈ R
n×d, Y ∈ R

n×d (2.6)

(if d = d, then it can be considered R = Id, B = C, X = Y ). The original problem
(1.1) is in this way split into two subproblems,

AY ≈ C and AY ′ ≈ 0, (2.7)

where the second problem is homogeneous. Following the arguments in [16], we con-
sider the meaningful solution Y ′ ≡ 0. In this way, the approximation problem (1.1)

reduces to AY ≈ C in (2.7). The full column rank matrix C ∈ R
m×d is called the

preprocessed right-hand side.

Remark 2.2. A decomposition (2.5) can be obtained using the LQ decomposition
of B (see [13, remark 3.1]) in the form

ΠB = [Λ, 0]RT , Π ∈ R
m×m, Λ ∈ R

m×d, R ∈ R
d×d,

where Π is a permutation matrix (representing possible row pivoting of B), and Λ is
in a lower triangular column echelon form with nonzero columns. Then C ≡ ΠTΛ is
called the LQ-preprocessed right-hand side. Alternatively, one can use the SVD of B
(see [13, section 3.1]) in the form

B = S[Θ, 0]RT , S ∈ R
m×d, Θ ∈ R

d×d, R ∈ R
d×d, (2.8)

where S has mutually orthonormal columns, and the square nonsingular Θ contains
the singular values of B on the diagonal. Then C ≡ SΘ has (nonzero) mutually
orthogonal columns and it is called the SVD-preprocessed right-hand side.

3. Band generalization of the Golub–Kahan bidiagonalization. Now we
describe in details the band algorithm. Consider the problem AY ≈ C, where C ∈
R
m×d is of full column rank obtained above. As an extension of (2.4), we want

to reduce [C|A] to the upper triangular band matrix with (at most) d + 1 nonzero
diagonals (all entries above the dth superdiagonal are zero). We start with the QR
decomposition of the right-hand side C. The basic band structure is then obtained
using Householder reflections. The whole transformation can be reformulated as an
iterative procedure that, employing deflations, reveals a subproblem representing the
core problem analogously to (2.2)–(2.4).

3.1. Basic structure of the band algorithm. First, the right-hand side C is
transformed to the upper triangular form. Consider the QR decomposition

C = P(0)F, F =

[
F1

0

]
, F1 =




γ1,1 β1,2 · · · β1,d

γ2,2
. . .

...
. . . βd−1,d

γd,d



, (3.1)
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where P(0) ∈ R
m×m, P−1

(0) = PT(0), and F1 is the upper triangular square matrix with a

positive diagonal, γj,j > 0, j = 1, . . . , d. If C is the SVD-preprocessed right-hand side,
then F1 = Θ is diagonal containing the singular values of the original right-hand side
B, and the first d columns of P(0) are the columns of S; see (2.8). It should be noted
that the matrix P(0) as well as the matrices P(k) below, which are all ∈ R

m×m, are
distinct from the matrices Pj ∈ R

m×j used above in description of the Golub–Kahan
iterative bidiagonalization. Denote L(0) ≡ PT(0)A, then

PT(0)[C|A] = [F |L(0)]. (3.2)

It remains to transform L(0) to a lower triangular band matrix with (at most) d + 1

nonzero diagonals (all entries below the dth subdiagonal are zero). This can be done,
e.g., by multiplications of L(0) with suitable Householder matrices HQ,j , HP,j , j =
1, 2, . . . from the right and left, respectively. Let for k = 1, 2, . . .

P(k) = P(0)HP,1HP,2 . . . HP,k ∈ R
m×m, Q(k) = HQ,1HQ,2 . . . HQ,k ∈ R

n×n (3.3)

be orthogonal matrices yielding a transformation

PT(k)[C|AQ(k)] = [F |PT(k)AQ(k)] (3.4)

=




γ1,1 β1,2 · · · β1,d α1,d+1

γ2,2
. . .

... β2,d+1

. . .

. . . βd−1,d

...
. . . αk,d+k

γd,d βd,d+1 βk+1,d+k ♥ · · · ♥

γd+1,d+1

. . .
...

...
...

. . . βk+d−1,d+k ♥ · · · ♥
γd+k,d+k ♥ · · · ♥

♥ · · · ♥
...

...
♥ · · · ♥




, (3.5)

with αj,d+j > 0, γd+j,d+j > 0, for j = 1, . . . , k. (3.6)

Denote

L(j) ≡ PT(j)AQ(j) = HT
P,jL(j−1)HQ,j , (3.7)

and L(j−) ≡ PT(j−1)AQ(j) = L(j−1)HQ,j , j = 1, . . . , k. (3.8)

The entry αj,d+j represents the norm of the trailing subrow (of length n − j + 1) of
the jth row of L(j−1), and analogously the entry γd+j,d+j represents the norm of the

trailing subcolumn (of length m− j − d + 1) of the jth column of L(j−). If the first
row of L(0) is zero (i.e., α1,d+1 = 0), or if the trailing subcolumn of L(1−) of length

m− d is zero (i.e., γd+1,d+1 = 0), or if the problem does not have enough rows (i.e.,
γd+1,d+1 does not exist), then the transformation (3.4) to the form (3.5) with the
condition (3.6) does not exist. In such case we formally put k = 0 and Q(0) ≡ In.
This particular case is discussed later in section 3.2. In the rest of this paragraph we
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for simplicity consider αj,d+j > 0, γd+j,d+j > 0, j = 1, . . . , k. Denote p1, . . . , pd+k
the first d+ k columns of P(k) and q1, . . . , qk the first k columns of Q(k). Using (3.7)
rewritten as

AQ(k) = P(k)L(k) and ATP(k) = Q(k)L
T
(k), (3.9)

we can write for Aqj and AT pj

Aqj = [pj , pj+1, . . . , pj+d−1, pj+d][αj,d+j , βj+1,d+j , . . . , βj+d−1,d+j , γd+j,d+j ]
T, (3.10)

AT pj = [qj−d, qj−d+1, . . . , qj−1, qj ][γj,j , βj,j+1, . . . , βj,j+d−1, αj,d+j ]
T . (3.11)

Using the initial vectors p1, . . . , pd given by (3.1) and q1−d = . . . = q0 ≡ 0, the

columns of the (d+ k)× k leading principal block of L(k), and the columns q1, . . . , qk,
and pd+1, . . . , pd+k are iteratively generated by

qjαj,d+j ≡ AT pj − qj−dγj,j −
(∑d−1

i=1
qj−d+iβj,j+i

)
, (3.12)

βj+i,d+j ≡ pTj+iAqj , for i = 1, . . . , d− 1, (3.13)

pd+jγd+j,d+j ≡ Aqj − pjαj,d+j −
(∑d−1

i=1
pj+iβj+i,d+j

)
, (3.14)

where ‖qj‖ = ‖pj+d‖ = 1, αj,d+j > 0, γd+j,d+j > 0, for j = 1, 2, . . . , k. The β entries
represent orthogonalization coefficients.

3.2. Deflation in the band algorithm. Now we focus on the case when the
right-hand side of (3.12) or (3.14) becomes zero (including the case k = 0). Let ℓ
be the first index for which either qℓαℓ,d+ℓ = 0 (yielding formally αℓ,d+ℓ = 0), or

pd+ℓγd+ℓ,d+ℓ = 0 (yielding formally γd+ℓ,d+ℓ = 0), 1 ≤ ℓ ≤ min{n + 1,m − d + 1}.
The cases ℓ = n+1 and ℓ = m− d+1 represent reaching the number of columns and
rows of the system matrix, respectively.

3.2.1. Upper deflation. Let for ℓ < n + 1 we get qℓαℓ,d+ℓ = 0. Recall that

αℓ,d+ℓ is the norm of a trailing subrow of the ℓth row of L(ℓ−1) = PT(ℓ−1)AQ(ℓ−1) to
the right of βℓ,d+ℓ−1, therefore

PT(ℓ−1)[C|AQ(ℓ−1)] = [F |L(ℓ−1)] =




. . .

. . . αℓ−1,d+ℓ−1. . . βℓ,d+ℓ−1 0 · · · 0

βℓ+1,d+ℓ−1 ♥ · · · ♥
...

...
...




. (3.15)

In this case the Householder matrix HQ,ℓ is constructed to transform the first row
below the ℓth row having a nonzero trailing subrow (say, the ξth row) while producing
αξ,d+ℓ > 0.

This upper deflation can be easily described using (3.12)–(3.14). Consider that
the (ℓ + 1)th row of [F |L(ℓ−1)] has the nonzero trailing subrow. The formula for
computing αℓ+1,d+ℓ > 0 and qℓ is then given by equating the (ℓ+1)th (instead of the

ℓth) columns of ATP(ℓ) = Q(ℓ)L
T
(ℓ); see also (3.9) and (3.11). Formulas (3.12)–(3.14)
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are then for j = ℓ, ℓ+ 1, . . ., modified to

qjαj+1,d+j ≡ AT pj+1 − qj−d+1γj+1,j+1 −
(∑d−1

i=2
qj−d+iβj+1,j+i

)
, (3.16)

βj+i,d+j ≡ pTj+iAqj , for i = 2, . . . , d− 1, (3.17)

pd+jγd+j,d+j ≡ Aqj − pj+1αj+1,d+j −
(∑d−1

i=2
pj+iβj+i,d+j

)
. (3.18)

The number of summands and computed coefficients β is reduced by one for all j ≥ ℓ.
Each upper deflation changes the pattern of nonzero entries in the band matrix by
reducing the effective bandwidth from the top by one.

3.2.2. Lower deflation. Let for ℓ < m− d+ 1 we get pd+ℓγd+ℓ,d+ℓ = 0. Recall
that γd+ℓ,d+ℓ is the norm of a trailing subcolumn of the ℓth column of L(ℓ−) =

PT(ℓ−1)AQ(ℓ) below βℓ+d−1,d+ℓ, therefore

PT(ℓ−1)[C|AQ(ℓ)] = [F |L(ℓ−)] =




. . .
. . .

...
...

γd+ℓ−1,d+ℓ−1 βℓ+d−1,d+ℓ ♥ · · ·
0 ♥ · · ·
...

...
0 ♥ · · ·



. (3.19)

Then we take HP,ℓ = Im. The matrix L(ℓ−) in (3.19) is multiplied by HQ,ℓ+1 from
the right, giving αℓ+1,d+ℓ+1, and the algorithm proceeds with transformation of the
(ℓ+ 1)th column (provided its trailing subcolumn is nonzero). For capturing this
lower deflation analogously as above, it is convenient to consider a row-oriented for-
mulation of (3.12)–(3.14). Each lower deflation modifies the pattern of nonzero entries
in the band matrix by reducing the effective bandwidth from the bottom by one.

3.2.3. Band subproblem. Since the matrix [F |L(k)] has (d+ 1) nonzero diag-

onals (see (3.5)), after d deflations the effective bandwidth is reduced to one. Denote
P ∈ R

m×m, Q ∈ R
n×n the products of the resulting Householder matrices (see (3.3))

and denote L ≡ PTAQ. Then

PT [C|AQ] = [F |L] ≡
[
B1 A11 0
0 0 A22

]
(3.20)

and the problem is decomposed in the desired subproblems, see, e.g., the following
illustration:



γ1,1 β1,2 β1,3 α1,4

γ2,2 β2,3 β2,4 α2,5

γ3,3 β3,4 β3,5 α3,6

γ4,4 β4,5 β4,6 α4,7

0 γ5,6 β5,7 α5,8

γ6,7 β6,8 0
γ7,8 α7,9

γ8,9 α8,10

0 ♥ · · · ♥
...

...
♥ · · · ♥




.

upper deflation
☛
✡

✟
✠

❄

lower deflations
☛
✡

✟
✠

❅
❅

❅
❅

❅
❅■

��✒



GENERALIZED BIDIAGONALIZATION AND THE CORE PROBLEM 9

Let A11 ∈ R
m×n, B1 ∈ R

m×d, and denote P cp
1 ≡ [p1, . . . , pm] ∈ R

m×m, Qcp
1 ≡

[q1, . . . , qn] ∈ R
n×n. In the rest of this paper we show that the band subproblem

(P cp
1 )T [C|AQcp

1 ] = [B1|A11] ∈ R
m×(n+d) (3.21)

represents the core problem, by proving that it satisfies the properties (CP1)–(CP3);
see section 2.1.

An implementation of the band algorithm with inputs A and B, and outputs
A11, B1, P

cp
1 , Qcp

1 , and R (see (2.5)) can be found in Appendix A. For alternative
implementations see [19, Algorithm 2.4, p. 38] or [18, Algorithm 5.1, p. 74].

4. Core problem in the band form. The equations (3.20)–(3.21) immediately
give

ATP cp
1 = Q

[
AT11
0

]
, and [C|AQcp

1 ] = P

[
B1 A11

0 0

]
,

which represent QR decompositions of matrices ATP cp
1 and [C|AQcp

1 ], respectively.
The matrix A11 is in the lower triangular column echelon form with nonzero columns,
thus it is of full column rank n giving the property (CP1). The right-hand side B1 is
in the upper triangular form with nonzero entries on the diagonal (see (3.1)), thus it
is of full column rank d giving the property (CP2). Further [B1|A11] is in the upper
triangular row echelon form with nonzero rows, thus it is of full row rank m giving
the inequality

max{n, d} ≤ m ≤ n+ d. (4.1)

Note that for d = 1 the matrix B1 becomes a vector b1, the band algorithm
becomes the standard Golub–Kahan bidiagonalization of A, the matrices [b1|A11], A11

become bidiagonal with [b1|A11]
T [b1|A11], A11A

T
11, and AT11A11, representing Jacobi

matrices (symmetric tridiagonal matrices with positive subdiagonal entries). This
relationship has been used in [14] and [12]. Jacobi matrices represent thoroughly
studied objects with the origin in the first half of the 19th century; see the historical
note 3.4.3 in [15, section 3.4, pp. 108–136]; see also [17, Chapter 7, pp. 119–150], [24,
section 5, §36–§48, pp. 299–316], and [7, Chapter 1.3, pp. 10–20].

In the following we introduce generalized Jacobi matrices, discuss their spectral
properties, and show their relationship to the band subproblem with d > 1. In partic-
ular, we investigate bases of eigenspaces of generalized Jacobi matrices in section 4.1,
and we show that A11A

T
11 represents generalized Jacobi matrix in section 4.2. As a

consequence, the bases of the left singular vector subspaces of A11 have the properties
guaranteeing that the band subproblem [B1|A11] satisfies also the property (CP3).
Other generalizations of Jacobi matrices can be found, e.g., in [6, Chapter 3].

4.1. Generalized Jacobi matrices. Let T ∈ R
n×n be a symmetric matrix

with entries tk,j . In analogy to the notation in, e.g., [8, section 4.1], we consider for
k = 1, . . . , n

f(k) = min{j : tk,j 6= 0}, and h(k) = k − f(k). (4.2)

The number f(k) is the column index of the first nonzero entry in the kth row of
T (provided it exists), and h(k) is the distance between this and the diagonal entry.
Consider the following matrices.
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Definition 4.1 (ρ-wedge-shaped matrix). Let T ∈ R
n×n be a symmetric matrix,

and ρ, 1 ≤ ρ < n, an integer. If h(k) for k = ρ+1, . . . , n is positive and nonincreasing,
then we call T a ρ-wedge-shaped matrix.

For clarity we give some examples of 3-wedge-shaped matrices:




♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥ ♥ ♥
♣ ♥ ♥ ♥ ♥
♣ ♥ ♥ ♥




,




♥ ♥ ♥ ♣
♥ ♥ ♥ ♥
♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥ ♥ ♣

♣ ♥ ♥ ♥
♣ ♥ ♥ ♣

♣ ♥




,




♥ ♥ ♥
♥ ♥ ♥
♥ ♥ ♥ ♣

♣ ♥ ♣
♣ ♥ ♣
♣ ♥ ♣
♣ ♥




.

Recall that clubs (♣) stand for nonzero entries, and hearts (♥) stand for general
entries which can also be zero. Since 1-wedge-shaped matrices are symmetric tridiag-
onal with nonzero subdiagonal entries, the wedge-shaped matrices can be seen as a
generalization of Jacobi matrices.

Jacobi matrices have simple eigenvalues; see, e.g., [17, Lemma 7.7.1]. In the text
below it is shown that multiplicities of eigenvalues of a ρ-wedge-shaped matrix are
bounded by ρ. The following example of a 2-wedge-shaped matrix




0 0 1

0 0 0
. . .

1 0 0
. . . 1

. . .
. . .

. . . 0

1 0 0



=




0 1
1 0 1

1 0 1
1 0


⊗ I2 ∈ R

8×8

with eigenvalues

λ1,2 = −
√
5 + 1

2
, λ3,4 = −

√
5− 1

2
, λ5,6 =

√
5− 1

2
, λ7,8 =

√
5 + 1

2

illustrates that the bound is sharp, in the sense that the multiple eigenvalues with the
multiplicity ρ can be present. This also shows that the strict interlacing property of
eigenvalues of Jacobi matrices (see, e.g., [17, section 7.10]) does not hold for wedge-
shaped matrices. Eigenvectors of Jacobi matrices have nonzero first and last entries;
see, e.g., [17, Theorem 7.9.3 (7.9.5 in the original Prentice-Hall edition)]. The following
theorem shows how to generalize the property of the nonzero first element to leading
subvectors of eigenvectors of wedge-shaped matrices. This immediately gives the
bound for the multiplicities of the individual eigenvalues. Subsequently we show how
to generalize the property of the nonzero last element to eigenvectors of wedge-shaped
matrices.

Theorem 4.2. Let T ∈ R
n×n be a ρ-wedge-shaped matrix, 1 ≤ ρ < n. Let λ ∈ R,

v = [ν1, . . . , νn]
T ∈ R

n be an eigenpair of T , i.e., Tv = λv, v 6= 0. Then the leading
subvector [ν1, . . . , νρ]

T ∈ R
ρ of v is nonzero.

Proof. Because h(k), k = ρ + 1, . . . , n is nonincreasing, the first nonzero entry
tk,f(k) in the kth row is also the last nonzero entry in the (f(k))th column of T . Using
the symmetry of T , tf(k),k is the last nonzero entry in the (f(k))th row. Thus the
(f(k))th row of Tv = λv can for k = ρ+ 1, . . . , n be written as

(∑k−1

ℓ=1
tf(k),ℓ νℓ

)
+ tf(k),k νk = λ νf(k). (4.3)
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Let, by contradiction, ν1 = . . . = νρ = 0. Then (4.3) is for k = ρ+ 1 reduced to

tf(ρ+1),ρ+1 νρ+1 = λ νf(ρ+1).

Because h(ρ+1) is positive, f(ρ+1) < ρ+1, and νf(ρ+1) = 0. Since tf(ρ+1),ρ+1 6= 0,
then νρ+1 = 0. Repeating the argument gives for k = ρ+2, . . . , n, νρ+2 = . . . = νn = 0,
which contradicts v 6= 0.

This theorem has the following corollary.

Corollary 4.3. Let T ∈ R
n×n be a ρ-wedge-shaped matrix, 1 ≤ ρ < n. Let

λ ∈ R be an eigenvalue of T with the multiplicity r. Let vℓ = [ν1,ℓ, . . . , νn,ℓ]
T ∈ R

n,
ℓ = 1, . . . , r, be an arbitrary basis of the corresponding eigenspace, i.e., TV = λV ,
where V ≡ [v1, . . . , vr] ∈ R

n×r. Then the leading ρ× r block of V ,

Ω ≡



ν1,1 · · · ν1,r
...

. . .
...

νρ,1 · · · νρ,r


 ∈ R

ρ×r, (4.4)

is of full column rank r.

Proof. Since V w = [ω1, . . . , ωn]
T represents for any w 6= 0 ∈ R

r an eigenvector
of T , by theorem 4.2, Ωw = [ω1, . . . , ωρ]

T is nonzero, which gives the assertion.

If r > ρ, then there exists a nontrivial linear combination of the columns of V which
gives a vector with the first ρ entries zero, i.e., Ω ∈ R

ρ×r can obviously not have full
column rank. This gives the bound for the multiplicities of individual eigenvalues:

Corollary 4.4. An eigenvalue of a ρ-wedge-shaped matrix T ∈ R
n×n, 1 ≤ ρ <

n, has multiplicity at most ρ.

The following theorem generalizes the property of the last nonzero element of
eigenvectors of Jacobi matrices to eigenvectors of wedge-shaped matrices. The proof
is analogous to the proof of theorem 4.2.

Theorem 4.5. Let T ∈ R
n×n be a ρ-wedge-shaped matrix, 1 ≤ ρ < n. Let λ ∈ R,

v = [ν1, . . . , νn]
T ∈ R

n be an eigenpair of T , i.e., Tv = λv, v 6= 0. Denote

{s1, . . . , sρ} ≡ {1, . . . , n} \ {f(k) : k = ρ+ 1, . . . , n},
s1 < s2 < . . . < sρ ,

where f(k) is given by (4.2). Then the subvector [νs1 , . . . , νsρ ]
T ∈ R

ρ of v is nonzero.

Proof. Since tk,f(k) is the first nonzero entry in the kth row of T , the kth row of
Tv = λv can for k = ρ+ 1, . . . , n be written as

tk,f(k) νf(k) +
(∑n

ℓ=f(k)+1
tk,ℓ νℓ

)
= λ νk. (4.5)

Let, by contradiction, νs1 = . . . = νsρ = 0. Because h(n) is positive, f(n) < n, and
νℓ = 0 for all ℓ > f(n), in particular, νn ≡ νsρ = 0. Thus (4.5) is for k = n reduced
to

tn,f(n) νf(n) = 0,

and tn,f(n) 6= 0 gives νf(n) = 0. Repeating the argument for k = n− 1, n− 2, . . . up
to ρ+ 1 gives νf(n−1) = νf(n−2) = . . . = νf(ρ+1) = 0, which contradicts v 6= 0.
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Note that s1, . . . , sρ represent the row (and column) indices where the effective band-
width of T is reduced by one, and sρ = n. Both nonzero subvectors of length ρ de-
scribed by theorems 4.2 and 4.5 can be observed from the pattern of a wedge-shaped
matrix. As an illustration, eigenvectors of the following 3-wedge-shaped matrix of the
size 9 have nonzero subvectors [ν1, ν2, ν3]

T and [ν3, ν6, ν9]
T :




ν1
ν2
ν3
ν4
ν5
ν6
ν7
ν8
ν9




←→
←→
←→




♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♥
♣ ♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥ ♥ ♣

♣ ♥ ♥ ♥
♣ ♥ ♥ ♣

♣ ♥ ♣
♣ ♥




←→

←→

←→




ν1
ν2
ν3
ν4
ν5
ν6
ν7
ν8
ν9




.

4.2. Singular values and vectors of the band subproblem. To prove (CP3),
we first show the link of the band subproblem (3.20)–(3.21) to the wedge-shaped ma-
trices. For a positive definite matrix M = ZTZ with its (upper triangular) Cholesky
factor Z it is well known that

env(M) = env(ZT + Z), where env(T ) = {(k, j) : f(k) ≤ j < k} (4.6)

denotes the so-called envelope of a symmetric matrix T , and f(k) is given by (4.2); see,
e.g., [8, section 4.2]. Analogously, using the structure of the band subproblem (3.20)–
(3.21), it is reasonable to expect that the symmetric positive semidefinite matrices
A11A

T
11 and [B1|A11]

T [B1|A11] inherit the band structure and represent wedge-shaped
matrices. However, their full row rank upper triangular factors AT11 and [B1|A11],
respectively, do not represent the Cholesky factors, in general. Thus the above men-
tioned result cannot be used directly; see also an example in Figure 4.1. Therefore we
state and prove the following lemma which shows when A11A

T
11 and [B1|A11]

T [B1|A11]
are wedge-shaped matrices.

Lemma 4.6. Let A11X1 ≈ B1, A11 ∈ R
m×n, B1 ∈ R

m×d be the band subproblem
(3.20)–(3.21). If m > d, then the matrix

A11A
T
11 ∈ R

m×m,

is d-wedge-shaped. Since d+ n > d, then the matrix

[B1|A11]
T [B1|A11] ∈ R

(d+n)×(d+n),

is also d-wedge-shaped.

Proof. Denote aTk ≡ eTkA11 the kth row of A11, thus a
T
k aj represents the (k, j)th

entry of A11A
T
11. We look for the first nonzero entry in the kth row of A11A

T
11,

k = d + 1, . . . ,m. Denote ϕ(j) ∈ {1, . . . ,m} the row index of the first nonzero entry
in the jth column of A11, i.e.,

aTϕ(j) = [♥, . . . ,♥︸ ︷︷ ︸
j−1

, αϕ(j),d+j , 0, . . . , 0︸ ︷︷ ︸
n−j

], j = 1, . . . , n. (4.7)
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♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣

♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣

♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣

♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣

♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥

♣ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥
♣ ♥♥ ♥♥ ♥♥ ♥♥ ♣

♣ ♥♥ ♥♥ ♥♥ ♥♥
♣ ♥♥ ♥♥ ♥♥ ♣

♣ ♥♥ ♥♥ ♣
♣ ♥♥ ♣

♣ ♥♥ ♣
♣ ♥♥ ♣

♣ ♥♥
♣ ♣

♣

[B1|A11]

✒✑
✓✏

m = 21
n = 16

d = 8

3 lower deflations (in cols. 1, 8, and 10 of A11)
5 upper deflations (in rows 10, 11, 13, 19, and 21)

♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥

♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣
♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥

♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥
♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥ ♣

♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♥♥
♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥ ♣

♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♥♥
♣♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥ ♣

♣♥♥ ♥♥ ♥♥ ♥♥ ♣♥♥ ♥♥
♣♥♥ ♥♥ ♥♥ ♣♥♥ ♣

♣♥♥ ♥♥ ♣♥♥ ♣
♣♥♥ ♣♥♥ ♣

♣♥♥ ♣♥♥
♣♥♥ ♣♣

♣♣

[B1|A11]
T [B1|A11]

✒✑
✓✏

Fig. 4.1. Top: A band problem Z ≡ [B1|A11] with d = 8. Bottom: One can see that the positive

semidefinite matrix M ≡ [B1|A11]T [B1|A11] is a 8-wedge-shaped matrix. Since the upper triangular

matrix Z in the top does not represent the Cholesky factor of the matrix M in the bottom, then

env(M) 6= env(ZT +Z); see, e.g., the encircled nonzero entry in the top part and the encircled zero

entry in the bottom part.
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Denote ψ(k) ∈ {1, . . . , n} the column index of the first nonzero entry in the kth row
of A11, i.e.,

aTk = [0, . . . , 0︸ ︷︷ ︸
ψ(k)−1

, γk,d+ψ(k),♥, . . . ,♥︸ ︷︷ ︸
n−ψ(k)

], k = d+ 1, . . . ,m. (4.8)

For j = ψ(k) the entries αϕ(j),d+j and γk,d+ψ(k) belong to the same column, i.e.,

aTk aϕ(ψ(k)) = γk,d+ψ(k) αϕ(ψ(k)),d+ψ(k) > 0. (4.9)

Using the lower echelon form of A11, all rows above aT
ϕ(ψ(k)) ((4.7) with j = ψ(k))

are structurally orthogonal to aTk (4.8), thus all entries to the left of aTk aϕ(ψ(k)) (4.9)
are zero. Consequently, aTk aϕ(ψ(k)) (4.9) is the first nonzero entry in the kth row of

A11A
T
11, k = d+ 1, . . . ,m. Thus

f(k) = ϕ(ψ(k)),

see (4.2). The matrix A11 has the band form with the α entries located on the top
and the γ entries on the bottom of the band; see section 3.2.3 above. The row aTϕ(ψ(k))
((4.7) with j = ψ(k)) is always placed above the row (4.8). Thus (4.9) is on the left
of the diagonal entry aTk ak in the kth row of A11A

T
11, i.e., ϕ(ψ(k)) < k and

h(k) = k − ϕ(ψ(k))

is positive for k = d + 1, . . . ,m. Because both ϕ(j) and ψ(k) are increasing, the
composed function ϕ(ψ(k)) is also increasing, and h(k) is nonincreasing for k = d+ 1,
. . . ,m. Consequently, A11A

T
11 is a d-wedge-shaped-matrix.

The proof for [B1|A11]
T [B1|A11] is analogous: Replace A11 by [B1|A11]

T and
exchange the roles of the α and γ entries.

Recall that m ≥ max{n, d}; see (4.1). Thus the only case not covered by the previous
lemma is m = d, where A11A

T
11 has no particular structure. Note that d + n =

d (i.e., A11 has no columns) occurs in the excluded case ATB = 0 (after the QR
decomposition (3.1)–(3.2), the band algorithm starts with d upper deflations). The
matrix AT11A11 ∈ R

n×n is the trailing principal block of the d-wedge-shaped matrix
[B1|A11]

T [B1|A11]. If n > d, then AT11A11 represents a d-wedge-shaped matrix; see
also Figure 4.1. If n ≤ d, then AT11A11 has no particular structure.

Now we are ready to apply the spectral properties of wedge-shaped matrices
proved in section 4.1 to the band subproblem (3.20)–(3.21).

Corollary 4.7. Let A11X1 ≈ B1, A11 ∈ R
m×n, B1 ∈ R

m×d be the band
subproblem (3.20)–(3.21), i.e., [B1|A11] and A11 are the upper and lower triangular
band matrices, respectively, with (at most) d+ 1 nonzero diagonals. Then:

(a) The singular values of [B1|A11] and A11 have multiplicities at most d.
(b) Let v1, . . . , vr be an orthonormal basis of the right singular vector subspace of

[B1|A11] corresponding to a singular value with the multiplicity r (or of the
null-space N ([B1|A11]) with the dimension r). Then the leading d × r block

of [v1, . . . , vr] ∈ R
(n+d)×r is of full column rank r.

(c) Let u1, . . . , ur be an orthonormal basis of the left singular vector subspace
of A11 corresponding to a singular value with the multiplicity r (or of the
null-space N (AT11) with the dimension r). Then the matrix

Φ ≡ [u1, . . . , ur]
TB1 ∈ R

r×d
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is of full row rank r, i.e., the band subproblem A11X1 ≈ B1 satisfies the
condition (CP3); see section 2.1.

Proof. Assertion (a) follows directly from lemma 4.6 and corollary 4.4, except for
the case of A11 with m = d. Since A11 ∈ R

m×n is of full column rank, m ≥ n, the
assertion becomes in this case trivial. Assertion (b) follows directly from lemma 4.6

and corollary 4.3. Assertion (c): The leading block Ω ∈ R
d×r of [u1, . . . , ur] ∈ R

m×r,
is of full column rank r by corollary 4.3 (the case m = d excluded in lemma 4.6

becomes again trivial) and B1 = [FT1 , 0]
T , where F1 ∈ R

d×d is nonsingular; see (3.1).
Thus Φ is of full row rank r.

Consequently, we have proved that the band algorithm computes the problem
A11X1 ≈ B1 that satisfies conditions (CP1)–(CP3) defining the core problem formu-
lated in section 2.1. We state this result as the following theorem.

Theorem 4.8. The band subproblem A11X1 ≈ B1 (3.20)–(3.21) obtained as the
output of the band algorithm described in section 3 applied on the problem AX ≈ B
represents a core problem within AX ≈ B in the sense of definition 2.1. It can
therefore be called the core problem in the band form.

5. Concluding remarks. We have shown that the band generalization of the
Golub–Kahan iterative bidiagonalization algorithm always yields the minimally di-
mensioned subproblem within the original linear approximation problem AX ≈ B.
This consistently extends the results obtained in [16] to problems with multiple right-
hand sides.

Assertions (a) and (b) of corollary 4.7 give some additional properties of core prob-
lems. For d = 1, these properties reduce to the well known facts that singular values
of [b1|A11] are simple and the right singular vectors have nonzero first components,
guaranteeing existence of the unique TLS solution of the core problem. The proper-
ties from corollary 4.7 might be helpful in analysis of solvability of core problems for
d > 1. This issue is, however, still under investigation.
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Appendix A. Implementation of the band algorithm.

Algorithm 1 implements the band algorithm. Assuming exact arithmetic, it re-
turns for general input data A, B the matrices A11, B1 of the core problem in the
band form, and the corresponding transformation matrices P cp

1 , Qcp
1 (see (3.21)), and

R (see (2.5)). For alternative implementations see [19, Algorithm 2.4, p. 38] or [18,
Algorithm 5.1, p. 74]. In the algorithm pk, qj denote the kth and jth column of P and
Q, and Pk ≡ [p1, . . . , pk] ∈ R

m×k, Qj ≡ [q1, . . . , qj ] ∈ R
n×j (Q0 represents a matrix

with no columns); Lk,j ≡ PTk AQj denotes the k × j leading principal block of L, in
particular Lm,n = A11 (see (3.21)), and lk,j ≡ eTkLej is the (k, j)th entry of L. The
variables cU and cL are counters of the upper and lower deflations, respectively. The
algorithm stops when cU + cL = d = rank(B); see the line 7. The indices j and k
denote the number of columns and rows, respectively, of the currently computed part
of the matrix L. If j or k becomes equal to n or m, respectively, then the algorithm
stays in the loop of lines {7–13, 36–39, 7, etc.} or {7–26, 32–35, 38–39, 7, etc.}. The
value of cU respectively cL increases until cU + cL = d. The following schema illus-
trates (on the example given below (3.20)) how the algorithm assembles the matrix
A11; the arrows represent updates in the lines 24 or 31:

Ld,0 =




 24−→



α1,4

β2,4
β3,4


 31−→




α1,4

β2,4
β3,4
γ4,4




24−→




α1,4 0
β2,4 α2,5

β3,4 β3,5
γ4,4 β4,5




24−→




α1,4 0 0
β2,4 α2,5 0
β3,4 β3,5 α3,6

γ4,4 β4,5 β4,6




31−→




α1,4 0 0
β2,4 α2,5 0
β3,4 β3,5 α3,6

γ4,4 β4,5 β4,6
0 0 γ5,6




24−→




α1,4 0 0 0
β2,4 α2,5 0 0
β3,4 β3,5 α3,6 0
γ4,4 β4,5 β4,6 α4,7

0 0 γ5,6 β5,7




31−→ . . .
24−→




α1,4 0 0 0 0 0 0
β2,4 α2,5 0 0 0 0 0
β3,4 β3,5 α3,6 0 0 0 0
γ4,4 β4,5 β4,6 α4,7 0 0 0
0 0 γ5,6 β5,7 α5,8 0 0
0 0 0 γ6,7 β6,8 0 0
0 0 0 0 γ7,8 α7,9 0
0 0 0 0 0 γ8,9 α8,10




= Lm,n = A11.

The sums in (3.12), (3.14), or in (3.16), (3.18), are implemented in the lines 11 and 25,
respectively. This implementation does not reflect, for simplicity, the structure of zero
entries in the band matrix; i.e., as an example, the sum in the line 11 computes the
full matrix-vector product of the matrix [q1, . . . , qj−1] with the last column of LTk,j−1.
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Algorithm 1 (Band generalization of the Golub–Kahan bidiagonalization).

1: input A ∈ R
m×n, B ∈ R

m×d {ATB 6= 0, rank(B) = d}
2: compute B = [C, 0]RT {RHS preprocessing, C ∈ R

m×d, RT = R−1}
3: compute C = PdF1 {QR decomposition in the economic form}
4: initialize Q0 ← [ ], Ld,0 ← [ ] {data arrays/matrices}
5: initialize cU ← 0, cL ← 0 {deflation counters}
6: initialize j ← 1, k ← d {control variables/indices}
7: while cU + cL < d do

8: if j = 1, then {compute an auxiliary vector}
9: auxq ← AT pj+cU = AT p1

10: else

11: auxq ← AT pj+cU −
∑j−1

i=1 qilj+cU ,i
12: end

13: if auxq 6= 0, then

14: αj+cU ,d+j ← ‖auxq‖ {compute α coefficient}
15: qj ← auxq/αj+cU ,d+j {compute q vector}
16: Qj ← [Qj−1, qj ] {update of Q matrix}
17: beta← [ ]
18: if cU + cL < d− 2, then

19: for i = j + 1 + cU , . . . , j + d− 1− cL do

20: βi,d+j ← pTi Aqj {compute β coefficients}
21: beta← [beta, βi,d+j ]
22: end

23: end

24: Lk,j ← [Lk,j−1, [01,j−1+cU , αj+cU ,d+j, beta ]
T ] {update of L (add a col.)}

25: auxp ← Aqj −
∑k
i=1 pili,j {compute an auxiliary vector}

26: if auxp 6= 0, then

27: k ← k + 1
28: γk,d+j ← ‖auxp‖ {compute γ coefficient}
29: pk ← auxp/γk,d+j {compute p vector}
30: Pk ← [Pk−1, pk] {update of P matrix}
31: Lk,j ← [LTk−1,j , [01,j−1, γk,d+j ]

T ]T {update of L matrix (add a row)}
32: else

33: cL ← cL + 1 {lower deflation}
34: end

35: j ← j + 1
36: else

37: cU ← cU + 1 {upper deflation}
38: end

39: end

40: m← k, n← j − 1, B1 ← [FT1 , 0d,m−d]
T , A11 ← Lm,n, P

cp
1 ← Pm, Qcp

1 ← Qn

41: output A11 ∈ R
m×n, B1 ∈ R

m×d, P cp
1 ∈ R

m×m, Qcp
1 ∈ R

n×n, R ∈ R
d×d




