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Abstract

A generalization of Navier-Stokes’ model is considered, where the Cauchy stress tensor depends on
the pressure as well as on the shear rate in a power-law-like fashion, for values of the power-law
index r ∈

(
2d
d+2 , 2

]
. We develop existence of generalized (weak) solutions for the resultant system of

partial differential equations, including also the so far uncovered cases r ∈
(

2d
d+2 ,

2d+2
d+2

]
and r = 2.

By considering a maximal sensible range of the power-law index r, the obtained theory is in effect
identical to the situation of dependence on the shear rate only.
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1 Introduction

Let T > 0, Ω ∈ Rd be an open Lipschitz domain and denote Q = (0, T )× Ω. We would like to study
unsteady flows of incompressible homogeneous fluids in Ω. Setting density to be identically one for
simplicity, balance of linear momentum and balance of mass for such fluids can be written down as

∂tv + div(v ⊗ v)− divT = f ,

div v = 0,
(1)

both holding in Q, where f represents the external forces acting on the fluid and T is the Cauchy
stress tensor. When the fluid is additionally supposed to be Newtonian, the Cauchy stress is of the
form

T = −pI + νDv, (2)
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where p is the pressure (the indeterminate part of the stress),

Dv =
1

2

(
∇v +∇Tv

)
is the symmetric part of the velocity gradient and ν > 0 is the shear viscosity. When T is of the
form (2), the equation (1) becomes the notorious Navier-Stokes model. Unfortunately, despite all the
rapt attention that this model has drawn in renown mathematicians throughout the last century and
beyond, the hitherto obtained results are still far from satisfactory. Worse yet, it is well known that
this model is incapable of capturing manifold features manifested by non-Newtonian fluids, such as
shear-thinning or -thickening, pressure-dependent viscosity etc.

In this paper we are interested in the situation where the Cauchy stress is of the form

T = −pI + S(p,Dv) = −pI + ν(p, |Dv|2)Dv, (3)

in which the viscous stress tensor S is supposed to meet certain requirements; see Assumptions 2.1
and 2.2. This particular model goes back to two papers by Málek et al. [21, 22] and has been dealt
with on multiple occasions ever since (see e.g. [5, 12, 15, 20] and the discussion below Theorem 3.1).

It has been convincingly documented in experiments that viscosity of a fluid may vary significantly
with the pressure (exponentially or even more dramatically; see e.g. [1, 3] or comprehensive references
in [24]). Likewise, the already mentioned shear-thinning or shear-thickening behavior can be cap-
tured through a non-constant viscosity ν = ν(|Dv|2) like in the mathematically popular model of
Ladyzhenskaya’s. By means of the constitutive relation (3), we can capture both these dependencies
in a single model. It comes at a price, sadly, for instance we are able to handle only shear-thinning,
not shear-thickening, behavior (see the main result, Theorem 3.1, and the upper bound for the power
exponent r).

The objective we set is to prove existence of weak solutions for the model. Therefore we have
to add initial and suitable boundary conditions, for which sake let us denote Γ = (0, T ) × ∂Ω. We
consider an impermeable boundary, that is

v · n = 0 on Γ,

where n is the unit outer normal vector of Ω. We cannot, however, resort to the no-slip boundary
condition

v = 0 on Γ,

for in that case we would be unable to construct the pressure (see the discussion below Theorem 3.1).
Instead, we choose the Navier slip condition

αvτ = −(Sn)τ on Γ

for some α ≥ 0, which is the heart of the matter here due to the dependence of S on p. For
u : ∂Ω→ Rd, a vector field on the boundary, we define its tangential component as

uτ = u− (u · n)n.

Note that from an instinctive point of view, the Navier slip may be regarded as a bridge between the
no-slip condition (α→∞) and the perfect slip condition (α = 0).

On account of the pressure-dependent viscous stress, we have yet to add some kind of pressure
anchoring, which we take in the form

1

|Ω|

∫
Ω
p(t, x) dx = h(t) in (0, T ) (4)
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for a given function h. Ideally one should like to prescribe the pressure locally (at some point) but
since our pressure will be merely an integrable function, dictating its pointwise values is out of the
question. A possible approximation could lie in the integral average over a given subset Ω0 ⊂ Ω but in
our case, corresponding attempts led to insurmountable technical difficulties, hence (4) for simplicity.

All in all, the model to be analyzed reads

∂tv + div(v ⊗ v)− divS(p,Dv) +∇p = f in Q,

div v = 0 in Q,

v · n = 0 on Γ,

αvτ = −(Sn)τ on Γ,

v(0) = v0 in Ω,

1

|Ω|

∫
Ω
p dx = h in (0, T ).


(5)

As far as the structure of this paper goes, next we are about to introduce our notation and certain
assumptions, in particular those on the viscous stress S, i.e. Assumptions 2.1 and 2.2. In the ensuing
section, we present the result of this paper, Theorem 3.1 on existence of weak solutions to problem (5),
and devote a few lines to the discussion of its relevance to past works and to the sketch of the
fundamental techniques employed in the proof. In Section 4, we list various nontrivial results that are
exploited in the proof of Theorem 3.1, to which the entire Section 5 and Appendix are dedicated.

2 Preliminaries

For 0 < t < T we write Qt = (0, t)×Ω and Γt = (0, t)× ∂Ω. For r ∈ (1,∞) we denote r′ = r/(r − 1).
For a Lebesgue measurable set Ω we denote |Ω| its Lebesgue measure. If X(Ω) is a Lebesgue or
Sobolev space, we denote

X̊(Ω) =
{
f ∈ X(Ω)

∣∣∣ ∫
Ω
f(x) dx = 0

}
.

For f ∈ L1(Ω) we denote

fΩ =
1

|Ω|

∫
Ω
f(x) dx.

Usually, no explicit distinction between spaces of scalar- and vector-valued functions will be made.
Confusion should never come to pass as we employ small boldfaced letters to denote vectors and bold
capitals for tensors. The same applies also to traces of Sobolev functions, which we denote like the
original functions. Only when in need, we use Tr for a trace. Accordingly, for r > 1 we set

W 1,r
n (Ω) =

{
f ∈W 1,r(Ω)

∣∣ Trf · n = 0 on ∂Ω
}
,

W 1,r
n,div(Ω) =

{
W 1,r

n (Ω)
∣∣ div f = 0 in Ω

}
,

W−1,r′
n (Ω) =

(
W 1,r

n (Ω)
)∗
,

Xr
n = Lr(0, T ;W 1,r

n (Ω)) ∩ L2(0, T ;L2(∂Ω)),

Xr
n,div = Lr(0, T ;W 1,r

n,div(Ω)) ∩ L2(0, T ;L2(∂Ω)),

C∞c (Ω) =
{
f ∈ C∞(Ω)

∣∣ f is compactly supported in Ω
}
.
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If r > 0 and x ∈ Rd, let Br(x) = {|y − x| < r}. For f ∈ L1
loc(Rd+1) and (t, x) ∈ Rd+1, we define the

parabolic maximal operator

M∗(f)(t, x) = sup
0<%<∞

1

2%

∫ t+%

t−%
sup

0<r<∞

1

|Br(x)|

∫
Br(x)

|f(s, y)| dy ds.

When applied to functions not defined on the whole Rd+1, we implicitly consider their zero extension.
For more details about maximal operators see [26] or, only for the fundamental properties of M∗
needed here, Appendix A of [13].

The symbol · stands for the scalar product and ⊗ signifies the tensor product. For open subsets
A, B of Rd, we write A b B if A ⊂ A ⊂ B and A is compact. We denote (·, ·) the inner product in
L2(Ω), while (·, ·)S stands for the inner product in L2(S) for a measurable set S other than Ω. Generic
constants are denoted simply by C and, when circumstances require it, we may also include quantities
on which the constants depend, e.g. C(‖v0‖2).

The external body forces f are for the sake of convenience supposed to be of the form

f = −divF ,

Consider r ∈ (1, 2] a fixed number and d ≥ 2. Inspired by [22], below we reproduce assumptions
on the viscous stress, i.e. the smooth nonlinearity S:

Assumption 2.1 Let there be positive constants C1 and C2 such that for all B,D ∈ Rd×dsym and p ∈ R

C1(1 + |D|2)(r−2)/2|B|2 ≤ ∂S(p,D)

∂D
· (B ⊗B) ≤ C2(1 + |D|2)(r−2)/2|B|2.

Assumption 2.2 Let for all D ∈ Rd×dsym and p ∈ R∣∣∣∣∂S(p,D)

∂p

∣∣∣∣ ≤ γ0(1 + |D|2)(r−2)/4, with 0 < γ0 <
C1

Creg(C1 + C2)
,

where Creg is attributed to the solution operator of Neumann’s problem on Ω; see (15) and below.

3 Main result

Theorem 3.1 Let d ≥ 2, T > 0, α > 0, 2d/(d+ 2) < r ≤ 2 and Ω ∈ C1,1 be a bounded domain in Rd.
Denote

q =
r(d+ 2)

2d
> 1 (6)

and consider F ∈ Lr′(Q), h ∈ Lq(0, T ) and v0 ∈ L2
n,div(Ω). Finally suppose that Assumptions 2.1

and 2.2 hold. Then there exists a weak solution (v, p) to the problem (5), that is

v ∈ Cw([0, T ];L2(Ω)) ∩Xr
n,div, ∂tv ∈ Lq(0, T ;W−1,q

n (Ω)),

p ∈ Lq(0, T ;Lq(Ω)) and

∫
Ω
p(t, x) dx = h(t) for a.e. t ∈ (0, T )

and the weak formulation is satisfied, i.e. for all ϕ ∈W 1,q′
n (Ω) and a.e. t ∈ (0, T ) we have

〈∂tv(t),ϕ〉 − ((v ⊗ v)(t),∇ϕ) + (S(t),Dϕ) + α(v(t),ϕ)∂Ω − (p(t),divϕ) = (F (t),∇ϕ), (7)

with S(t) = S(p(t),Dv(t)). The initial condition is attained through lim
t→0+

‖v(t)− v0‖L2(Ω) = 0.
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With this result, we practically conclude the existence theory for the corresponding class of models
conceived by Málek et al. in [21, 22]. More precisely, with the condition r > 2d/(d+2) we have reached
the same lower bound as in the case of pressure-independent viscosity ν = ν(|Dv|2); see Diening et
al. [13]. This bound is the best one guaranteeing compactness of the convective term v ⊗ v in L1(Q)
and in this regard it may be considered optimal.

Although the range r ∈ (2d/(d + 2), 2) has already been investigated in [5], it was in the steady
case and therefore the situation was considerably simpler, although the bedrock of the proof was quite
similar. As for the evolutionary system like that of ours, the best result so far comes from [10], where
existence for r ∈ ((2d+ 2)/(d+ 2), 2) was proven. In [7], the problem has already been grappled with
Ω = R3 and r ∈ (9/5, 2). For local results (small data, short times), see [17, 18, 25]. In [11], the
model of ours is ivestigated, enriched additionally by the temperature dependence, in which case only
r ∈ (3d/(d+ 2), 2) can be handled, imposing a restriction d = 2, 3.

Apart from optimization from below, we have also finally incorporated the value r = 2 among
amenable values of the exponent r, which has only recently been achieved for the steady-state prob-
lem in [12]. The work [10] also covers the value r = 2, yet under a slightly different analogue of
Assumption 2.2. Similarly in [9], where the case d = 2 with the periodic boundary conditions is
treated. Inclusion of the critical value r = 2 in our paper not only makes the theory cover the
Navier-Stokes model but, more importantly, allows us to consider balance equations (5)1 of the form

∂tv + div(v ⊗ v)−∆v − divS(p,Dv) +∇p = f ,

with S fulfilling Assumptions 2.1 and 2.2 with r < 2 if need be.
It is important to notice that we actively avoid the homogeneous Dirichlet boundary condition,

corresponding informally to α = ∞. The reason is that we need a measurable pressure for the
sake of the pressure-dependent viscous stress, which in the case of zero boundary condition remains
an insurmountable task. The snag lies in incompatibility of the Helmholtz decomposition with the
Dirichlet boundary condition or, in other words, the fact that in the Neumann problem for Poisson’s
equation, the trace of the gradient cannot be required to be zero; only its normal component can
(see (13)). This obstacle will be experienced in the flesh in (36) and below.

Even though α =∞ is out of the question, in Theorem 3.1 we could take α = 0 without scruples.
This situation would correspond to the perfect-slip condition, accounting for the fluid slipping along
the boundary. From the analytical point of view, the proof would be simplified slightly as we would
be completely unflapped by the trace of the velocity field. Navier’s condition (5)4 can be further
generalized; see [8] where the so called threshold slip was investigated. This condition is a very natural
approximation of the no-slip condition as it models a fluid adhering to the boundary until a certain
threshold stress is experienced, after which the fluid abides by Navier’s condition.

Although, as stated, the result of Theorem 3.1 is optimal in terms of the range of r, there are still
opportunities for improvement. Firstly, the condition from Assumption 2.2,

γ0 <
C1

Creg(C1 + C2)
,

now depends on the set Ω through the constant Creg. It is highly probable, however, that like in the
steady case (see [12]), one may relax the condition to the point

γ0 <
C1

C1 + C2
. (8)

It would require replacing the solving operator of the Neumann problem N (see (13)) with something
more refined, i.e. an operator with all the properties we want from N , enjoying additionally Creg = 1.
In [12], we were able to do so by means of the Newtonian potential. In the time-dependent case,
however, this choice is no longer viable due to the loss of certain necessary compactness with respect
to the time derivative.
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Secondly, in (5)6 it would seem more appropriate to prescribe pΩ0(t) over some (possibly small)
measurable Ω0 ⊂ Ω, thus to approximately fix the pressure at some point. Unluckily, not only
does such a generalization lead to severe technical difficulties in the proof but, perhaps even more
importantly, Assumption 2.2 was then altered to

γ0 <

√
|Ω0|
|Ω|

C1

Creg(C1 + C2)
,

see [11]. This condition is sufficiently deterring in itself as |Ω0| → 0 implies γ0 → 0. Bear in mind
that this is again not the case for the steady problem, where (8) would suffice.

As far as the proof of Theorem 3.1 is concerned, we employ a two-level approximation scheme
(see (128)). The inner level (limit parameter k) consists in truncation of the convective and boundary
terms so that up to that point we have a sufficiently regular pressure and the velocity field is a legal
test function. Getting rid of this approximation level lies virtually at the heart of this paper and the
entire Section 5 is devoted to it. It is based on a pressure decomposition (see p. 12) into a lowly
integrable but compact part and a highly integrable part that is at first sight only weakly convergent.
Besides this decomposition, we resort to the Lipschitz truncation of functions lying in Bochner spaces
(see Lemmas 4.5 and 4.6) to deal with the issue of insufficient regularity of the velocity field to make
it an admissible test function in (7).

The primary objective of the outer level is to introduce the pressure. Unlike the traditional
Navier-Stokes model, we cannot invoke De Rham’s theorem in our situation, for the viscous stress
tensor itself is pressure-dependent – the resultant pressure would be a distribution in time. Also,
there would then appear two possibly distinct pressures (one in S(p,Dv) and the other generated by
De Rham’s theorem) and we might have to resort to some fixed-point argument to equate them. Here
we construct the pressure by means of an auxiliary elliptic problem, the so called quasicompressible
approximation (see [15]), replacing the condition on solenoidality (5)2 by

εp = N (div v),

(see (13) for the definition of N ), intuitively making the velocity field only almost divergence-free.
Since this level of approximation is comparatively simpler to lift than the truncation, we leave it for
Appendix.

Moving on to the following section, we survey several nontrivial results exploited in the proof of
Theorem 3.1.

4 Auxiliary tools

To begin with, we list a couple of crucial properties exhibited by the nonlinear viscous stress tensor S.

Lemma 4.1 ([15], Lemmas 3.3, 3.4) Let Assumptions 2.1 and 2.2 hold. For arbitrary D1,D2 ∈ Rd×dsym

and p1, p2 ∈ R we set

I1,2 :=

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D1 −D2|2 ds,

with D(s) = D2 + s(D1 −D2). Then

1

2
C1I

1,2 ≤ (S(p1,D1)− S(p2,D2)) · (D1 −D2) +
γ2

0

2C1
|p1 − p2|2. (9)

Furthermore

|(S(p1,D1)− S(p2,D2)| ≤ γ0|p1 − p2|+ C2

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D1 −D2| ds. (10)
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Finally, for all p ∈ R, r ∈ (1, 2] and D ∈ Rd×dsym

S(p,D) ·D ≥ C1

2r
(|D|r − 1) (11)

and

|S(p,D)| ≤ C2

r − 1
(1 + |D|)r−1. (12)

The corresponding statement in [15] does not include (10). However, it is only an easy observation
stemming from

S(p1,D1)− S(p2,D2) =

∫ 1

0

d

ds
S(p2 + s(p1 − p2),D2 + s(D1 −D2)) ds

and Assumptions 2.1 and 2.2.
We also recall the Helmholtz decomposition and the Lq-regularity theory of the Neumann problem

for Poisson’s equation: If q ∈ (1,∞) and Ω ∈ C1,1, let N : L̊q(Ω)→ W̊ 2,q(Ω) ascribe to z ∈ L̊q(Ω) the
unique solution v of

∆v = z in Ω, ∇v · n = 0 at ∂Ω, vΩ = 0. (13)

The Helmholtz decomposition of the space W 1,q
n (Ω)d allows us to resolve any u ∈W 1,q

n (Ω)d as a sum

u = udiv +∇gu, (14)

where gu = N (divu) and udiv = u −∇gu. The Lq-continuity of u 7→ udiv [16, Remark III.1.1] and
the Lq-regularity for N with Ω ∈ C1,1 [19, Proposition 2.5.2.3] imply

‖N (z)‖W 2,q(Ω) ≤ Creg,q ‖z‖Lq(Ω) , ‖udiv‖W 1,q(Ω) ≤ (Creg,q + 1) ‖u‖W 1,q(Ω) ,

‖gu‖W 1,q(Ω) ≤ C(Ω, q) ‖u‖Lq(Ω) , ‖udiv‖Lq(Ω) ≤ C(Ω, q) ‖u‖Lq(Ω) ,
(15)

for any z ∈ L̊q(Ω) and u ∈W 1,q
n (Ω)d. Later on we will need especially Creg = Creg,2 which is why we

utilize different notation for these constants.

Lemma 4.2 (Korn’s inequality, [14], Theorem 10.15) Let Ω ∈ C0,1 and r ∈ (1,∞). Then there exists
a positive constant C = C(Ω, r) such that for all u ∈W 1,r(Ω) it holds that

‖u‖W 1,r(Ω) ≤ C
(
‖Du‖Lr(Ω) + ‖u‖L1(Ω)

)
. (16)

Lemma 4.3 (Compactness of traces) Let r and q retain their meaning from Theorem 3.1 and suppose
that {vi}∞i=1 is bounded in

Lr(0, T ;W 1,r
n (Ω) ∩W 1,q(0, T ;W−1,q

n ).

Then {Trvi}∞i=1 is precompact in Lr(0, T ;Lr(∂Ω)).

Proof. The standard Aubin-Lions lemma implies precompactness of {vi}∞i=1 in Lr(0, T ;Lr(Ω)). Inter-
polation (see e.g. [23, Lemma 2.18]) then yields precompactness of {vi}∞i=1 in Lr(0, T ;W 1−ε,r(Ω)) for an
arbitrarily small ε > 0. There is also a continuous trace operator from W p1,p2(Ω) into W p1−1/p2,p2(∂Ω)
for any p1 ∈ R+ and p2 ≥ 1 such that p1p2 > 1 (see [27] and the remark in [4, Lemma B.3]). Taking

ε > 0 so small that (1 − ε)r > 1, we have Lr(0, T ;W 1−ε− 1
r
,r(∂Ω)) ↪→ Lr(0, T ;Lr(∂Ω)) and thus also

the claim.
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Lemma 4.4 (Biting lemma, [2]) Let S ⊂ Rd have a finite Lebesgue measure and {fk} be a bounded
sequence in L1(S). Then there exist a function f ∈ L1(S), a subsequence {f j} of {fk} and a non-
increasing sequence of measurable sets Dm ⊂ S with limm→∞ |Dm| = 0, such that f j → f weakly in
L1(S \Dm) for every fixed m.

Lemma 4.5 (Parabolic Lipschitz approximation I, [13], Lemma 3.11, Theorem 3.21) Let Ω ⊂ Rd be an
open bounded set, u ∈ L∞(0, T ;L2(Ω)d)∩Lq(0, T ;W 1,q(Ω)d) (1 < q <∞) and H ∈ Lσ(0, T ;Lσ(Ω)d×d)
(1 < σ <∞) be such that

−
∫
Q
u · ∂tϕ dx dt =

∫
Q
H · ∇ϕ dx dt (17)

for all ϕ ∈ C∞c (Q). For Λ > 0 we define

OΛ = {M∗(|∇uk|) +M∗(|H|) > Λ}.

Let E ⊂ Rd+1 be an open set such that Q ∩ OΛ ⊂ E ⊂ Q.
Then there exists LEu ∈ L∞loc(0, T ;W 1,∞

loc (Ω)d) such that LEu = u in Q \ E and1

‖LEu‖Lp(Q) ≤ C‖u‖Lp(Q) for any 1 ≤ p ≤ ∞. (18)

Let K ⊂ Q be a compact set. There is a constant CK > 0 depending on K such that

‖∇LEu‖L∞(K) ≤ C
(
Λ + CK‖u‖L1(E)

)
. (19)

Furthermore, the function (∂tLEu) · (LEu− u) belongs to L1(K ∩ E) and we have

‖(∂tLEu) · (LEu− u)‖L1(K∩E) ≤ C|E|
(
Λ + CK‖u‖L1(E)

)2
. (20)

Finally, for all g ∈ C∞c (Q) holds the identity∫ T

0

〈
∂tu(t), (LEu(t))g(t)

〉
dt

=
1

2

∫
Q

(
|LEu|2 − 2u · LEu

)
∂tg dx dt+

∫
E

(∂tLEu) · (LEu− u)g dx dt. (21)

The original version of the stated lemma contains also a certain scaling parameter2 α > 0. For our
purposes we need the case α = 1 only and we have adapted the statement of the lemma accordingly.

Lemma 4.6 (Parabolic Lipschitz approximation II, [6], Lemma 2.5) Let Ω ⊂ Rd be an open bounded
set, T > 0 and r ∈ (1,∞). For any functions H, H and arbitrary sequences {uk} and {Hk} we set

ak = |Hk|+ |H|+ |H| and bk = |Duk|

and suppose that for certain C∗ > 1 and all k we have

‖ak‖Lr(Q) + ‖bk‖Lr′ (Q) + sup
t∈(0,T )

‖uk(t)‖L2(Ω) ≤ C∗,

uk → 0 a.e. in Q.

1The generic constants C below depend only on the dimension d.
2This scaling parameter α is competely unrelated to that in the boundary condition (5)4.

8



In addition, let {Gk} consist of symmetric Gk such that

Gk → 0 strongly in L1(Q)d×d (22)

and let us have the distributional identity

∂tu
k + div(Hk −H + Gk) = 0.

Then there is β > 0 such that for arbitrary Q̂ b Q, λ∗ ∈ (r
1

(r−1) ,∞) and n ∈ N there exist sequences
{λk,n}k ⊂ R, {Bk,n}k of open sets Bk,n ⊂ Q and {uk,n}k bounded in L∞loc(0, T ;W 1,∞

loc (Ω)d) such that

{λk,n}k ⊂ [λ∗, r
1−rn
r−1 (λ∗)r

n
], (23)

lim sup
k→∞

|Q̂ ∩Bk,n| ≤ C(Q̂)

(λ∗)r
, (24)

uk,n → 0 strongly in Ls(Q̂)d as k →∞ for any 1 ≤ s <∞, (25)

uk,n = uk in Q̂ \Bk,n, (26)

‖Duk,n‖
L∞(Q̂)

≤ C(Q̂)λk,n. (27)

Morevover, for all τ ∈ C∞c (Q̂; [0, 1]) the following estimates hold:

lim sup
k→∞

∫
Q̂∩Bk,n

(|Hk|+ |H|+ |H|)|Duk,n| dx dt ≤ C(Q̂)(r(λ∗)1−r + n−β), (28)

− lim inf
k→∞

∫ T

0
〈∂tuk,uk,nτ〉 dt ≤ C(Q̂)(r(λ∗)1−r + n−1)β. (29)

Strictly speaking, the above lemma as we state it is not a precise reproduction of [6]. To avoid
unnecessary generality of Orlicz spaces, our theorem pertains to a special choice of the N -function
ψ(x) = xr

r , to which we adapted all parameters of the original theorem. Dependencies of constants on
fixed parameters, e.g. Ω or r, were also omitted. In (29), the estimate should also hang on ‖τ‖L∞(Ω)

but since we restrict ourselves to ‖τ‖L∞(Ω) ≤ 1, we may assume that the bound is really independent

of the truncating function τ and that each C(Q̂) in (24)–(29) are the same.

5 Proof of the existence theorem

Without loss of generality we will assume h ≡ 0, that is to say∫
Ω
p(t, x) dx = 0

for almost every time. We can think so since in the general case we would first investigate the equation
for p = p− h. Due to h ∈ Lq(0, T ), if p ∈ Lq(Q) then of course also p ∈ Lq(Q).

There is a couple of strategies how to deal with the convective term, be it the addition of a penalty
term, its mollification, or truncation (see e.g. [6, 11, 13], respectively). Here, we choose the truncation
and for this purpose, let Φ ∈ C1([0,∞)) be a non-increasing function such that Φ(x) = 1 if x ≤ 1,
Φ(x) = 0 if x ≥ 2 and Φ(x) ∈ (0, 1) otherwise, with |Φ′(x)| ≤ 2. For k > 0 then define

Φk(x) = Φ(k−1x).
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With fixed k > 0, the original system (5) will be approximated by

∂tv + div(v ⊗ vΦk(|v|))− divS +∇p = −divF in Q,

div v = 0 in Q,

v · n = 0 on Γ,

αvτΦk(|vτ |) = −(Sn)τ on Γ,

v(0) = v0 in Ω,

pΩ = 0 in (0, T ).


(30)

The boundary conditions imply vτ = v on Γ and therefore we will not distinguish between these two
entities (see the weak formulation (31)).

Existence of weak solutions for thus truncated system can be shown by standard means (see
e.g. [10, 11]) and we postpone it for Appendix. To be more precise, we suppose momentarily that the
following lemma holds:

Lemma 5.1 Under the assumptions of Theorem 3.1, for every k > 0 there exists a weak solution to
the truncated problem (30), i.e. a couple (vk, pk) such that

vk ∈ Lr(0, T ;W 1,r
n,div(Ω)), ∂tv

k ∈ Lr′(0, T ;W−1,r′
n (Ω)), pk ∈ Lr′(0, T ; L̊r

′
(Ω)),

satisfying3 lim
t→0+

‖vk(t)− v0‖L2(Ω) = 0 and

〈∂tvk(t),ϕ〉 − (vk ⊗ vkΦk(|vk|)(t),∇ϕ) + (Sk(t),Dϕ) + α(vkΦk(|vk|),ϕ)∂Ω − (pk(t), divϕ)

= (F (t),∇ϕ) (31)

with Sk(t) = S(pk(t),Dvk(t)), for every ϕ ∈W 1,r
n (Ω) and a.e. t ∈ (0, T ).

5.1 Truncation removal (k →∞)

The reinstatement of the full-fledged convective term is the key limit process. Our first steps will be
devoted to finding bounds independent of k > 0 in suitable function spaces.

Uniform estimates Taking ϕ = vk(t) in (31) and exploiting integration by parts and solenoidality
of vk, we note that

(vk ⊗ vkΦk(|vk|),∇vk)Q =
(
vk,∇

∫ |vk|
0

sΦk(s) ds
)
Q

= 0,

owing to which (ensuing relations hold for a.e. t ∈ (0, T ))

1

2

d

dt
‖vk(t)‖2L2(Ω) + (Sk(t),Dvk(t)) + α‖Φ1/2

k (|vk|)vk(t)‖2L2(∂Ω) = (F (t),∇vk(t)).

Due to coercivity of the stress tensor (11), the fact that Φk ≤ Φ
1/2
k and Hölder’s inequality,

1

2

d

dt
‖vk(t)‖2L2(Ω) +

C1

2r
‖Dvk(t)‖rLr(Ω) + α‖Φk(|vk|)vk(t)‖2L2(∂Ω)

≤ ‖F (t)‖Lr′ (Ω)‖∇v
k(t)‖Lr(Ω) +

C1|Ω|
2r

. (32)

3Note that vk ∈ C([0, T ];L2(Ω)).

10



By means of Hölder’s, Young’s and Korn’s inequality (16), we then obtain

sup
t∈(0,T )

‖vk(t)‖2L2(Ω) + ‖vk‖rLr(0,T ;W 1,r(Ω)) + ‖Φk(|vk|)vk‖2L2(Γ) ≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (33)

Using boundedness of the stress tensor (12), we get in addition

‖Sk‖r′
Lr′ (Q)

≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (34)

Combined with L∞(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,r(Ω)) ↪→ L2q(Q) with q > 1 (defined in (6)), we have
also

‖vn‖L2q(Q) ≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (35)

As for a bound on the pressure pk, due to the convective term we have to relax our require-
ments from the current integrability pk ∈ Lr′(Q) – we will estimate it in Lq(Q). Let us consider the
equation (31) with the test function

ϕk = ∇N
(
|pk|q−2pk − (|pk|q−2pk)Ω

)
, (36)

which due to (15) satisfies

‖ϕk‖Lq′ (0,T ;W 1,q′ (Ω)) ≤ C‖|p
k|q−1‖Lq′ (Q) = C‖pk‖q−1

Lq(Q),

divϕk = |pk|q−2pk − (|pk|q−2pk)Ω a.e. in Q.

Here we want to point out that had we chosen Dirichlet’s boundary conditions instead of Navier’s,
we would now have run into serious trouble. The culprit is Trϕk – in the Dirichlet setting we would
be unable to justify it is actually zero, making the choice of (36) illegal for the weak formulation
corresponding to Dirichlet’s problem. indeed, we could choose ϕk differently so that Trϕk = 0 (e.g.
by means of the Bogovskĭı operator) but then we would face new problems stemming from the time
derivative ∂tv

k (see I5 below and how it vanishes with our choice of ϕk).
From (31) it holds that

‖pk‖qLq(Q) = (pk, divϕk)Q =
5∑
i=1

Ii,

where due to Hölder’s inequality and estimates (33), (34) and (35) (note q′ ≥ 2),

I1 = −(F ,∇ϕk)Q ≤ ‖F ‖Lr′ (Q)‖∇ϕ
k‖Lr(Q) ≤ C‖ϕk‖Lq′ (0,T ;W 1,q′ (Ω)),

I2 = (Sk,Dϕk)Q ≤ ‖Sk‖Lr′ (Q)‖∇ϕ
k‖Lr(Q) ≤ C‖ϕk‖Lq′ (0,T ;W 1,q′ (Ω)),

I3 = α(vkΦk(|vk|),ϕk)Γ ≤ α‖Φk(|vk|)vk‖2L2(Γ)‖ϕ
k‖L2(Γ) ≤ C‖ϕk‖Lq′ (0,T ;W 1,q′ (Ω)),

I4 = −(vk ⊗ vkΦk(|vk|),∇ϕk)Q ≤ ‖vk‖2L2q(Q)‖ϕ
k‖Lq′ (0,T ;W 1,q′ (Ω)) ≤ C‖ϕ

k‖Lq′ (0,T ;W 1,q′ (Ω)),

I5 =

∫ T

0
〈∂tvk,ϕk〉 dt = −

(
∂t div vk,N

(
|pk|q−2pk − (|pk|q−2pk)Ω

))
Q

= 0.

Thus we have the desired estimate

‖pk‖Lq(Q) ≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (37)
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Next, estimates (33), (34), (35) and (37) divulge that functionals Ψk defined on L∞(0, T ;W 1,∞
n ) as

Ψk(ϕ) = (vk ⊗ vkΦk(|vk|),∇ϕ)Q − (Sk,Dϕ)Q − α(vkΦk(|vk|),ϕ)Γ + (pk,divϕ)Q + (F ,∇ϕ)Q,

satisfy ∣∣Ψk(ϕ)
∣∣ ≤ C(‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
‖ϕ‖

Lq′ (0,T ;W 1,q′
n (Ω))

uniformly in k. In other words, from eq. (31) it follows that

‖∂tvk‖Lq(0,T ;W−1,q
n (Ω))

≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (38)

Limit k → ∞ With help of uniform bounds (33)–(38) and the compactness lemma 4.3, we may
select a subsequence (vk, pk) satisfying4

vk → v weakly in Lr(0, T ;W 1,r
n,div(Ω)), (39)

vk → v weakly∗ in L∞(0, T ;L2(Ω)), (40)

∂tv
k → ∂tv weakly in Lq(0, T ;W−1,q

n (Ω)), (41)

vk → v strongly in Ls(Q) for all s ∈ [1, 2q), (42)

vk → v strongly in Lr(Γ), (43)

Φk(|vk|)vk → v weakly in L2(Γ), (44)

Φk(|vk|)vk → v strongly in Ls(Γ) for all s ∈ [1, 2), (45)

vk → v a.e. in Q, (46)

pk → p weakly in Lq(0, T ; L̊q(Ω)), (47)

Sk → S weakly in Lr
′
(Q). (48)

We also have v ∈ Cw([0, T ];L2(Ω)) by (40) and (41). These convergences, when applied to equation
(31), produce∫ T

0
〈∂tv,ϕ〉 dt− (v ⊗ v,∇ϕ)Q + (S,Dϕ)Q + α(v,ϕ)Γ − (p,divϕ)Q = (F ,∇ϕ)Q (49)

for every ϕ ∈ Lq′(0, T ;W 1,q′
n (Ω)).

The next step, basically the core of this paper, consists in showing S = S (i.e. S(p,Dv)) and this
will be achieved through Vitali’s theorem, since S(·, ·) is continuous. To this end we have to show the
pointwise convergence of Dvk and pk a.e. in Q.

Decomposition of pk We will overcome the problem of low5 pressure integrability by decomposing
the pressure into two parts – one keeping the low q-integrability, yet converging pointwise, and the
other r′-integrable, for which we then prove the pointwise convergence.

According to (31), for any ϕ ∈W 2,q′(Ω) such that ∇ϕ · n = 0 at ∂Ω and a.e. t ∈ (0, T ), we have

(pk(t),∆ϕ) = −(vk ⊗ vkΦk(|vk|)(t),∇2ϕ) + (Sk(t),∇2ϕ) + α(vkΦk(|vk|)(t),∇ϕ)∂Ω − (F (t),∇2ϕ).
(50)

We will decompose the pressure as pk = pk1 + pk2, where pk2 ∈ Lr
′
(0, T ; L̊r

′
(Ω)) is the unique solution to

(pk2(t),∆ϕ) = (Sk(t),∇2ϕ)− (F (t),∇2ϕ),

(pk2(t))Ω = 0
(51)

4We employ bars for unidentified weak limits.
5Relative to the ε-limit, cf. Subsection 6.1.
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for any ϕ ∈ W 2,r(Ω) such that ∇ϕ · n = 0 on ∂Ω and a.e. t ∈ (0, T ). For details about solvability of
this equation, formally corresponding to

∆pk2(t) = div div
(
Sk(t)− F (t)

)
,

see [4, (3.51)], where a procedure based on an approximation of what is here Sk(t)−F (t) by compactly
supported smooth functions is explained in more depth. Let us show {pk2} is bounded in Lr

′
(Q). To

this end take
ϕ(t) = N

(
|pk2(t)|r′−2pk2(t)− (|pk2(t)|r′−2pk2(t))Ω

)
and recall that for N we have Lq-regularity (15), implying

‖ϕ(t)‖W 2,r(Ω) ≤ C(Ω, r)‖|pk2(t)|r′−1‖Lr(Ω) = C(Ω, r)‖pk2(t)‖r′−1
Lr′ (Ω)

. (52)

Next we insert such ϕ into (51), obtaining

‖pk2‖r
′

Lr′ (Q)
= (pk2,∆ϕ)Q = (Sk − F ,∇2ϕ)Q ≤

(
‖Sk‖Lr′ (Q) + ‖F ‖Lr′ (Q)

)
‖ϕ‖Lr(0,T ;W 2,r(Ω))

≤ C‖pk2‖r
′−1
Lr′ (Q)

by means of Hölder’s inequality and the estimates (34) and (52). Therefore we may assume there
exists p2 ∈ Lr

′
(0, T ; L̊r

′
(Ω)) such that

pk2 → p2 weakly in Lr
′
(Q). (53)

By (50) and (54), the other partial pressure pk1 = pk − pk2 must satisfy

(pk1(t),∆ϕ) = −(vk ⊗ vkΦk(|vk|)(t),∇2ϕ) + α(vkΦk(|vk|)(t),∇ϕ)∂Ω, (54)

for any ϕ ∈ W 2,q′(Ω) such that ∇ϕ · n = 0 at ∂Ω and (pk1(t))Ω = 0 for a.e. t ∈ (0, T ). It follows
from (47) and (53) that {pk1} is bounded in Lq(0, T ; L̊q(Ω)). We will show it also converges strongly
in L1(0, T ;L1(Ω)). Let k, l ∈ N and 1 < s < q be arbitrary. Take

ϕ(t) = N
(
|pk1 − pl1|s−2(pk1 − pl1)(t)− (|pk1 − pl1|s−2(pk1 − pl1)(t))Ω

)
and like in (52), observe that due to Lq-regularity (15),

‖ϕ(t)‖W 2,s′ (Ω) ≤ C(Ω, s)‖|pk1 − pl1|s−1(t)‖Ls′ (Ω) = C(Ω, s)‖(pk1 − pl1)(t)‖s−1
Ls(Ω). (55)

Plugging ϕ into (54) yields

‖pk1 − pl1‖sLs(Q) = (pk1 − pl1,∆ϕ)Q = I1 + I2,

where, using (55),

I1 = (vl ⊗ vlΦl(|vl|)(t)− vk ⊗ vkΦk(|vk|)(t),∇2ϕ)Q,

≤ ‖vl ⊗ vlΦl(|vl|)− vk ⊗ vkΦk(|vk|)‖Ls(Q)‖ϕ‖Ls′ (0,T ;W 2,s′ (Ω))

≤ C(Ω, s)‖vl ⊗ vlΦl(|vl|)− vk ⊗ vkΦk(|vk|)‖Ls(Q)‖pk1 − pl1‖s−1
Ls(Q)

and

I2 = α(vkΦk(|vk|)(t)− vlΦl(|vl|)(t),∇ϕ)Γ

≤ α‖vkΦk(|vk|)− vlΦl(|vl|)‖Ls(Γ)‖ϕ‖Ls′ (Γ)

≤ C(Ω, s)‖vkΦk(|vk|)− vlΦl(|vl|)‖Ls(Γ)‖ϕ‖Ls′ (0,T ;W 2,s′ (Ω))

≤ C(Ω, s)‖vkΦk(|vk|)− vlΦl(|vl|)‖Ls(Γ)‖pk1 − pl1‖s−1
Ls(Q).

13



The above computations imply that {pk1} is a Cauchy sequence in Ls(Q) since by the estimate (35)
and the strong convergence (42), we observe

lim
k,l→∞

‖vl ⊗ vlΦl(|vl|)− vk ⊗ vkΦk(|vk|)‖Ls(Q) ≤ 2 lim
k→∞

‖vk ⊗ vkΦk(|vk|)− v ⊗ v‖Ls(Q)

≤ 2 lim
k→∞

‖vk ⊗ vkΦk(|vk|)− vk ⊗ vk‖Ls(Q)

≤ 4 lim
k→∞

‖vk‖2L2s(Q∩{|vk|>k})

≤ C lim
k→∞

∣∣Q ∩ {|vk| > k}
∣∣ q−sqs

= 0

and similarly, using and the strong convergence (45),

lim
k,l→∞

‖vkΦk(|vk|)− vlΦl(|vl|)‖Ls(Γ) = 0.

Hence there exists p1 ∈ Lq(0, T ; L̊q(Ω)) such that

pk1 → p1 weakly in Lq(Q),

pk1 → p1 strongly in L1(Q).
(56)

The first convergence was trivial by the already shown weak convergences (47) and (53). In particular,
we may assume

pk1 → p1 a.e. in Q.

From (56) we also infer by the dominated convergence theorem and (12) that

S(pk1 + p2,Dv)→ S strongly in Lr
′
(Q). (57)

Showing the pointwise convergence of pk2 is all that remains. We will treat the cases r < 2 and
r = 2 separately. The procedure necessitated by the former case may be accommodated to deal also
with the latter (and vice versa, actually). Nonetheless, it would require to prove an improved version
of Lemma 4.6, which we do not find necessary. Even though it may not be the most elegant way of
tackling the issue, we have taken the path of least resistance and resolved to cover the case r = 2 rather
by the spiritual ancestor of the aformentioned Lemma 4.6, i.e. by Lemma 4.5. This result could be in
turn utilized to handle also the case r < 2 but it would be considerably messier than with Lemma 4.6.

5.2 Convergence for r < 2

Let N ∈ N be fixed. Take QN b Q̂N b Q such that

|Q \QN | ≤
1

N
. (58)

Now we invoke the parabolic Lipschitz truncation lemma 4.6, set up as follows:

H = p2I − S,

Hk = pk2I − Sk,

H = |S|+ |S|,
uk = vk − v,

Gk = vk ⊗ vkΦk(|vk|)− v ⊗ v + (pk1 − p1)I.
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Next we take numbers λ∗ = λ∗(N) and n = n(N) large enough so that the constant C(Q̂N ) from (28)
and (29) satisfies

C(Q̂N )(r(λ∗)1−r + n−β) ≤ 1

N
, (59)

C(Q̂N )(r(λ∗)1−r + n−1)β ≤ 1

N
, (60)

where the number β > 0 is produced by the said Lemma 4.6. Note that (59) also implies

C(Q̂N )

(λ∗)r
≤ 1

N
. (61)

To finish the setup of Lemma 4.6, we take

Q̂ = Q̂N .

As a result, there exist sequences {λk,n}k ⊂ R, {Bk,n}k of open sets Bk,n ⊂ Q and {uk,n}k bounded
in L∞loc(0, T ;W 1,∞

loc (Ω)d) such that (23)–(29) hold.

Furthermore, we take τN ∈ C∞c (Q̂N ; [0, 1]) such that

τN ≡ 1 in QN (62)

and

C(Q̂N )λk,n
∣∣{0 < τN < 1}

∣∣1/r ≤ 1

N
for every k, (63)

which is possible by (23).
Finally, we define bad sets Ek,n and good sets Gk,n as

Ek,n = Bk,n ∪ {τN < 1}, (64)

Gk,n = Q \ Ek,n. (65)

Informally speaking, the bad set consists of points near the boundary or those where the Lipschitz
approximation does not match the original function; see (26). From the estimate (24), bounds (58)
and (61) and the property (62), it follows that

lim sup
k→∞

|Ek,n| ≤ 2

N
. (66)

Convergence of pk2 Denote πk = pk2 − p2. We are going to show

lim
k→∞

‖πk‖L2(Q) = 0. (67)

Towards this goal, we set

ϕk = N (πk) (68)

and observe that by (15) and (53), ϕk satisfies

‖ϕk‖L2(0,T ;W 2,2(Ω)) ≤ Creg‖πk‖L2(Q), (69)

ϕk → 0 weakly in Lr
′
(0, T ;W 2,r′(Ω)). (70)
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Let O(k−1) signify a quantity satisfying lim supk→∞O(k−1) ≤ 0. For quantities Ak, Bk we write

Ak
k∼ Bk if Ak ≤ Bk +O(k−1). With this notation6 we develop

‖πk‖2L2(Q) = (πk,∆ϕk)Q
k∼ (pk2,∆ϕk)Q

k∼ (Sk,∇2ϕk)Q

by (51) and the weak convergence (70). Since

(S(pk1 + p2,Dv),∇2ϕk)Q
k∼ 0

by (57) and (70) (note r′ ≥ 2), we may write

‖πk‖2L2(Q)
k∼ (Sk,∇2ϕk)Q

k∼ (Sk − S(pk1 + p2,Dv),∇2ϕk)Q

≤ γ0

∫
Q
|πk||∇2ϕk| dx dt+ C2

∫
Q

∫ 1

0
(1 + |D(s)|2)(r−2)/2|Duk||∇2ϕk| ds dx dt, (71)

by (10) with D(s) = Dv + s(Dvk −Dv). Denote

Ik =

∫ 1

0
(1 + |D(s)|2)(r−2)/2|Duk|2ds. (72)

As (1+ |D(s)|2)(r−2)/2 ≤ (1+ |D(s)|2)(r−2)/4, Hölder’s inequality and bound (69) applied to (71) yield

‖πk‖2L2(Q)
k∼ γ0Creg‖πk‖2L2(Q) + C2Creg

(∫
Gk,n

Ik dx dt
)1/2
‖πk‖L2(Q) +O(N−1),

where we got rid of the bad set Ek,n (see its defition (64)) by means of the bound on its measure (66),
boundedness stemming from (39) and (53) and r < 2 as follows:

C2

∫
Ek,n

∫ 1

0
(1 + |D(s)|2)(r−2)/2|Duk||∇2ϕk| ds dx dt ≤ C‖Duk‖Lr(Q)‖πk‖L2(Q)|Ek,n|

2−r
2r

k∼ O(N−1).

(73)

Consequently

‖πk‖2L2(Q)
k∼
(

C2Creg
1− γ0Creg

)2 ∫
Gk,n

Ik dx dt+O(N−1). (74)

The integral on the right can be estimated by means of (9):∫
Gk,n

Ik dx dt ≤ γ2
0

C2
1

‖πk‖2L2(Q) +
2

C1

(
Sk − S(pk1 + p2,Dv),Duk

)
Gk,n

k∼ γ2
0

C2
1

‖πk‖2L2(Q) +O(N−1),

(75)

provided

I1 = (Sk,Duk)Gk,n
k∼ O(N−1), (76)

I2 = −(S(pk1 + p2,Dv),Duk)Gk,n
k∼ O(N−1). (77)

The limit inequalities (74) and (75) would then yield

‖πk‖2L2(Q)
k∼
(

γ0C2Creg
C1(1− γ0Creg)

)2

‖πk‖2L2(Q) +O(N−1),

6We exploit it analogously also for other limit quantities, so for instance O(N−1) or, later on, O(ε).
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implying the desired convergence (67), as long as

γ0C2Creg
C1(1− γ0Creg)

< 1,

which does hold, however, due to Assumption 2.2, namely

γ0 <
C1

Creg(C1 + C2)
.

We must therefore justify (76) and (77). Recall that in Gk,n we have uk = uk,n; see the definition (65).
Also note that by (23), (25) and (27), for any fixed N (hence also for n = n(N) and λ∗ = λ∗(N)), we
may assume

∇uk,n → 0 weakly in Lr(Q̂N ) as k →∞. (78)

We rewrite I1 as

I1 = (Sk,D(τNuk,n))Gk,n = (Sk,D(τNuk,n))Q − (Sk,D(τNuk,n)){τN>0}\Gk,n . (79)

Since ∇τN = 0 a.e. in Gk,n and

{τN > 0} \Gk,n =
(
{τN > 0} ∩Bk,n

)
∪
(
{0 < τN < 1} \Bk,n

)
,

we recast (79) as

I1 = (Sk,D(τNuk,n))Q − (Sk,uk,n ⊗∇τN ){τN>0}\Gk,n

− (Sk, τNDuk,n){τN>0}∩Bk,n − (Sk, τNDuk,n){0<τN<1}\Bk,n .

According to the strong convergence (25), it holds that

lim
k→∞

(Sk,uk,n ⊗∇τN ){τN>0}\Gk,n = 0. (80)

Additionally, by the Lipschitz bound (27), the weak convergence of Sk from (48) and then by (63),∣∣(Sk, τnDuk,n){0<τn<1}\Bk,n
∣∣ ≤ C(Q̂N )λk,n

∣∣{0 < τN < 1}
∣∣1/r‖Sk‖Lr′ (Q) ≤

C

N
. (81)

As a result of (80) and (81),

I1
k∼ (Sk,D(τNuk,n))Q − (Sk, τNDuk,n){τN>0}∩Bk,n +O(N−1)

k∼ (Sk − S,D(τNuk,n))Q − (Sk − S, τNDuk,n){τN>0}∩Bk,n +O(N−1)

by (25) and (78) in the first term and (28) and (59) in the second one. Now we recall the weak
formulations (31) and (49) and notice that τNuk,n is a legal test function in either of them (which
mere uk fails to meet). Substituting the term (Sk − S,D(τNuk,n))Q accordingly, we obtain

I1
k∼ J1 + J2 + J3 +O(N−1),

where

J1 = −
∫ T

0
〈∂tuk, τNuk,n〉 dt

k∼ C(Q̂N )(r(λ∗)1−r + n−1)β ≤ 1

N
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by (29) and (60). Next,

J2 = (Gk,div(τNuk,n))Q
k∼ 0

by (22), (23) and (27). Finally,

J3 = (πk, div(τNuk,n))Q − (Sk − S, τNDuk,n){τN>0}∩Bk,n

k∼ (πk, τN divuk,n){τN>0}∩Bk,n − (Sk − S, τNDuk,n){τN>0}∩Bk,n

= (Hk −H, τNDuk,n){τN>0}∩Bk,n ≤
1

N
.

by dint of (25), (28) and (59) since evidently

{τN > 0} ∩Bk,n ⊂ Q̂N .

Thus (76) has been shown.
As far as I2 in (77) is concerned, we recall that uk = uk,n in Gk,n and notice

Gk,n = {τN ≡ 1} \
(
{τN ≡ 1} ∩Bk,n

)
.

Since {τN ≡ 1} ⊂ Q̂N , we recall the strong convergence (57) and the weak convergence (78) to deduce

I2
k∼ −(S,Duk,n)Gk,n = (S,Duk,n){τN≡1}∩Bk,n − (S,Duk,n){τN≡1}

k∼ (S,Duk,n){τN≡1}∩Bk,n
k∼ C(Q̂N )(r(λ∗)1−r + n−β) ≤ 1

N
,

by (28) and (59), thus showing (77) and ultimately proving also (67) for r < 2.

Convergence of Duk Recalling the definition (72), we can infer by Hölder’s inequality that∥∥Duk
∥∥r
Lr(S)

≤
∫
S

(∫ 1

0
(1 + |D(s)|2)(r−2)/2|Duk|2(1 + |Dvk|2 + |Dv|2)(2−r)/2 ds

)r/2
dx dt

≤
(∫

S
Ik
)r/2(∫

Q
(1 + |Dvk|2 + |Dv|2)r/2

)(2−r)/2
,

for any measurable S ⊂ Q, implying with help of the uniform estimate (33) in the end

C‖Duk‖2Lr(S) ≤
∫
S
Ik for any measurable S ⊂ Q. (82)

Applying Biting lemma 4.4 to

fk(t, x) = |Duk(t, x)|r, (t, x) ∈ Q,

there is a nonincreasing sequence of measurable sets Dm ⊂ Q with limm→∞ |Dm| = 0, such that
(without loss of generality) fk converge weakly in L1(Q \Dm) for every m. Our aim is to prove

‖Duk‖Lr(Q\Dm)
k∼ 0 (83)

for any m ∈ N. Since limm→∞ |Dm| = 0, the pointwise convergence (for a subsequence) follows.
Let D ∈ {Dm}. Since fk converge weakly in L1(Q \ D), they are uniformly equi-integrable in

Q \D. Let us take an arbitrary σ > 0 and N > σ−1, such that

S ⊂ Q \D, |S| < 2

N
⇒ ‖fk‖L1(S) < σ for every k. (84)
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We use this N as the starting parameter for the Lipschitz approximation scheme started at the
beginning of Subsection 5.2. We may assume |Ek,n| < 2N−1 for all k by (66), which combined
with (82) and (84) yields

C‖Duk‖2Lr(Q\D) ≤
∫
Gk,n\D

Ik + C‖Duk‖2Lr(Ek,n\D) ≤
∫
Gk,n

Ik +O(σ), (85)

given that Ik ≥ 0. Relations (75) and (67) then imply∫
Gk,n

Ik dx dt
k∼ γ2

0

C2
1

‖πk‖2L2(Q) +O(N−1)
k∼ O(N−1) = O(σ).

If we plug this observation back into (85), we obtain the desired (83). Together with the compactness
of the partial pressures (56) and (67), we may assume both pk and Dvk converge pointwise a.e. in Q,
which yields ultimately S = S(p,Dv) for r < 2 by Vitali’s theorem.

5.3 Convergence for r = 2

The above procedure, followed step by step, is rendered useless when r = 2 for we cannot get rid
of the polluting term in (73). On the other hand, the strong convergence in L2(Q) is not essential
for the pointwise convergence of a subsequence. Now we show only the strong convergence in L1(Q),
arriving at the same conclusion. Although we could have skipped the case r < 2 entirely, given that
the method applied to r = 2, resting on Lemma 4.5, may be presented in such a way that it conquers
also the former case, we treat this situation apart for two reasons: Firstly, it is much more convenient
to use Lemma 4.6 when applicable (see [13] for usage of Lemma 4.5 for a wider range of exponents).
Secondly, dealing with the case r = 2 individually lets us balance out its slightly increased technicality
with simplification of certain terms; consider e.g. Ik in (72).

Several definitions We set

gk =M∗
(
|∇uk|

)
+M∗

(
|Sk − S|

)
+M∗

(
|πk|

)
. (86)

By the properties of M∗ and boundedness of the individual arguments in L2(Q) (see (39), (48)
and (53)), the sequence {gk} is also bounded in L2(Q). Therefore7

n∑
i=0

∫{
22n+i<gk≤22n+i+1

}(gk)2 dx dt ≤ C for any n ∈ N,

independently of k and n, which guarantees there are

22n ≤ λk,n ≤ 222n (87)

such that ∫{
λk,n<gk≤(λk,n)2

}(gk)2 dx dt ≤ C

n
for any k, n ∈ N. (88)

Let us define level sets related to gk:

Ak,n1 =
{
gk ≤ λk,n

}
,

Ak,n2 =
{
λk,n < gk ≤

(
λk,n

)2}
,

Ak,n3 =
{(
λk,n

)2
< gk

}
.

(89)

7Notice that 22n+i+1

=
(
22n+i)2

, which is the reason for our choice of such numbers.
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By (88), we can bound the measure of Ak,n2 as

∣∣Ak,n2

∣∣ =

∫{
λk,n<gk≤(λk,n)2

} 1 dx dt ≤
∫{

λk,n<gk≤(λk,n)2
} (

gk
)2(

λk,n
)2 dx dt ≤ C

n
(
λk,n

)2 . (90)

Chebyshev’s inequality also implies

(λk,n)4
∣∣Ak,n3

∣∣ ≤ C. (91)

Furthermore, we define

F k = {M∗(|vk ⊗ vkΦk(|vk|)− v ⊗ v + (pk1 − p1)I|) > 1}.

By means of the strong-type estimate for M∗ and (35), (42) and (56), we obtain

lim
k→∞

∣∣F k∣∣ ≤ C lim
k→∞

∥∥vk ⊗ vkΦk(|vk|)− v ⊗ v + (pk1 − p1)I
∥∥σ
Lσ(Q)

= 0 for some σ > 1. (92)

For fixed n ∈ N we also find τn ∈ C∞c (Q; [0, 1]) such that∣∣{τn < 1}
∣∣ ≤ 1

222n+1n
. (93)

Finally we include all the adverse sets into one so that we define

Ek,n =
(
Ak,n2 ∪Ak,n3 ∪ F k ∪ {τn < 1}

)
∩Q, (94)

Gk,n = Q \ Ek,n. (95)

It follows easily from the definiton of Ek,n, (87), (92) and (93) that(
λk,n

)2∣∣Ek,n ∩Ak,n1

∣∣ k∼ O(n−1). (96)

We would like to engage Theorem 4.5 with Ek,n playing the role of E. Setting

Hk = vk ⊗ vkΦk(|vk|)− v ⊗ v − Sk + S + (pk − p)I,

the equation (17) evidently holds with uk and Hk. The sets Ek,n are open due to the lower semicon-
tinuity of M∗. Finally, subadditivity of M∗ yields{

gk > λk,n
}
∪ F k ⊃

{
M∗

(
|∇uk|

)
> λk,n

}
∪
{
M∗

(
|Sk − S − πkI|

)
> λk,n

}
∪ F k

⊃
{
M∗

(
|∇uk|) > λk,n

}
∪
{
M∗

(
|Hk|

)
> λk,n + 1

}
⊃
{
M∗

(
|∇uk|

)
+M∗

(
|Hk|

)
> 3λk,n

}
,

implying the required property{
M∗

(
|∇uk|

)
+M∗

(
|Hk|

)
> 3λk,n

}
∩Q ⊂ Ek,n.

Therefore we may invoke Theorem 4.5 with Λ = 3λk,n. Let us denote

uk,n = LEk,nuk.

Note that due to the Lp-estimate (18) and the strong convergence (42) it holds that

uk,n → 0 strongly in L2(Q) as k →∞ for any n ∈ N. (97)
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Accessory calculation In this part we show a result that will be useful in a while, namely(
Sk − S(pk1 + p2,Dv),Duk

)
Gk,n

k∼ O(n−1). (98)

The individual steps to be taken will be(
Sk − S(pk1 + p2,Dv),Duk

)
Gk,n

k∼
(
Sk − S,Duk

)
Gk,n

+O(n−1) (99)

k∼
(
Sk − S,D(τnuk,n)

)
Q

+O(n−1) (100)

k∼ O(n−1). (101)

As for the first relation (99), in view of the strong convergence (57), it boils down to showing(
S − S,Duk

)
Gk,n

k∼ O(n−1). (102)

By Theorem 4.5 we have uk = uk,n in Gk,n, which set we rewrite by (94) as

Gk,n = {τn = 1} \
(
(F k ∩Ak,n1 ∩ {τn = 1}) ∪ ((Ak,n2 ∪Ak,n3 ) ∩ {τn = 1})

)
. (103)

The Lipschitz bound (19) combined with the strong convergence (97) allows us to assume that for any
n ∈ N,

∇uk,n → 0 weakly in L2
(
{τn = 1}

)
as k →∞. (104)

By (19) again and the shrinkage of F k expressed in (92), it follows that∣∣(S − S,Duk,n
)
Fk∩Ak,n1 ∩{τn=1}

∣∣ ≤ C|F k|1/2(λk,n + C{τn=1}‖uk‖L1(Q)

) k∼ 0. (105)

Lastly, we easily deduce by (19), bounds on |Ak,n2 ∪Ak,n3 | given in (90) and (91) that∣∣(S − S,Duk,n
)

(Ak,n2 ∪Ak,n3 )∩{τn=1}
∣∣ ≤ ‖S − S‖

L2(Ak,n2 ∪Ak,n3 )
‖∇uk,n‖L∞({τn=1})|A

k,n
2 ∪Ak,n3 |

1/2

k∼ O(n−1).
(106)

Combining (103)–(106), we obtain (102) and hence also the first step of (99).
Towards showing the second step (100), we start noticing that(

Sk − S,Duk,n
)
Ek,n∩{τn=1}

k∼ O(n−1). (107)

Indeed, treating the level sets (89) individually, we estimate(
Sk − S,Duk,n

)
Ek,n∩Ak,n1 ∩{τn=1} =

(
Sk − S,Duk,n

)
Fk∩Ak,n1 ∩{τn=1}

k∼ 0

as in (105) due to boundedness of Sk in L2(Q) (see (48)). Then

(
Sk − S,Duk,n

)
Ak,n2 ∩{τn=1} ≤ Cn

−1/2(λk,n)−1
(
λk,n + C{τn=1}‖uk‖L1(Q)

) k∼ O(n−1)

by the bounds (19) and (90). Very similarly, using the bounds (19) and (91),

(
Sk − S,Duk,n

)
Ak,n3 ∩{τn=1} ≤ C(λk,n)−2

(
λk,n + C{τn=1}‖uk‖L1(Q)

) k∼ O(n−1).
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Hence (107) holds and therefore also(
Sk − S,Duk

)
Gk,n

=
(
Sk − S,Duk,n

)
Gk,n

k∼
(
Sk − S,Duk,n

)
{τn=1} +O(n−1). (108)

Next, we would like to add another negligible term, namely the Lipschitz bound (19) and properties
(87) and (93) imply(

Sk − S, τnDuk,n
)
{0<τn<1}

k∼ C
∣∣{τn < 1}

∣∣1/2(λk,n + Cspt τn‖uk‖L1(Q)

) k∼ O(n−1).

As a result, we may improve (108) into(
Sk − S,Duk

)
Gk,n

k∼
(
Sk − S, τnDuk,n

)
Q

+O(n−1)
k∼
(
Sk − S,D(τnuk,n)

)
Q

+O(n−1),

recalling also the strong convergence of the Lipschitz approximations (97). The last inequality justifies
the second step (100) and we may jubilate, for τnuk,n is a legal test function in both the weak
formulations (31) and (49). We exploit this fact to rewrite(

Sk − S,D(τnuk,n)
)
Q

=
(
pk − p, div(τnuk,n)

)
Q

+
(
vk ⊗ vkΦk(|vk|)− v ⊗ v,∇(τnuk,n)

)
Q

−
∫ T

0
〈∂tuk, τnuk,n〉 dt = I1 + I2 + I3. (109)

We will demonstrate Ii
k∼ O(n−1) for each i = 1, 2, 3. Beginning with I1, the strong convergence (56)

and the bound (19) yield

I1
k∼
(
pk2 − p2,div(τnuk,n)

)
Q

=
(
πk,uk,n · ∇τn

)
Q

+
(
πk, τn divuk,n

)
Q

k∼
(
πk, τn divuk,n

)
Q

=
(
πk, τn divuk,n

)
Ek,n

.
(110)

We could ignore the term (πk,uk,n ·∇τn)Q due to the strong convergence (97) and boundedness coming
from (53). Classical properties of Sobolev functions also guarantee divuk,n = divuk = 0 a.e. in Gk,n,
which we exploited in the last equality. The rest follows the track of (107). More precisely,(

πk, τn divuk,n
)
Ek,n∩Ak,n1

≤ C
∣∣Ek,n ∩Ak,n1

∣∣1/2(λk,n + Cspt τn‖uk‖L1(Q)

) k∼ O(n−1)

by the observation (96). Then(
πk, τn divuk,n

)
Ek,n∩Ak,n2

≤ Cn−1/2(λk,n)−1
(
λk,n + Cspt τn‖uk‖L1(Q)

) k∼ O(n−1)

by estimates stemming from (19), (53) and (90). And similarly, only switching to (91) in order to

bound |Ak,n3 |,(
πk, τn divuk,n

)
Ek,n∩Ak,n3

≤ C(λk,n)−2
(
λk,n + Cspt τn‖uk‖L1(Q)

) k∼ O(n−1).

Thus we have shown that (110) can be concluded as

I1
k∼ O(n−1). (111)

The term I2 is quite effortless to tackle. Due to the strong convergences (42) and (97), we have

I2 =
(
vk ⊗ vkΦk(|vk|)− v ⊗ v,∇(τnuk,n)

)
Q

k∼
(
vk ⊗ vkΦk(|vk|)− v ⊗ v, τn∇uk,n

)
Q

≤ C‖vk ⊗ vkΦk(|vk|)− v ⊗ v‖L1(Q)

(
λk,n + Cspt τn‖uk‖L1(Q)

) k∼ 0. (112)
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To process the last term I3, corresponding to the time derivative, we recall the integration by parts
formula (21), according to which we can rewrite I3 as

I3 =
1

2

∫
Q

(
2u · uk,n − |uk,n|2

)
∂tτ

n dx dt+

∫
Ek,n

(∂tu
k,n) · (u− uk,n)τn dx dt

k∼
∫
Ek,n

(∂tu
k,n) · (u− uk,n)τn dx dt ≤ C

∣∣Ek,n∣∣(λk,n + Cspt τn‖uk‖L1(Q)

)2
, (113)

first by the strong convergence (97) and then by the estimate (20). However, the sets Ek,n by their
very definition (94) satisfy trivially∣∣Ek,n∣∣ ≤ ∣∣Ak,n2

∣∣+
∣∣Ak,n3

∣∣+
∣∣F k∣∣+

∣∣{τn < 1}
∣∣.

Estimates for the individual summands are contained in (90)–(93) and we plug them into (113) to
infer

I3
k∼ C

∣∣Ek,n∣∣(λk,n + Cspt τn‖uk‖L1(Q)

)2 k∼ O(n−1).

We insert this last result into (109) together with (111) and (112), procuring the third and final
relation (101). The longed-for (98) has been hereby justified.

Pressure test function For K > 0 we consider the usual truncation operator TK : R→ R

TK(x) =

{
x for |x| ≤ K,
K sgnx for |x| > K.

In contrast to the case r < 2 (cf. (68)), now we take

ϕk,n = N
(
Tλk,nπ

k − (Tλk,nπ
k)Ω

)
.

For all p <∞ we may assume due to the convergence (53) and the boundedness of λk,n (87) that

Tλk,nπ
k → T

n
weakly in Lp(Q) as k →∞, (114)

T
n → T weakly in L2(Q) as n→∞. (115)

By the weak convergences (53) and (114) evidently

Tλk,nπ
k − πk → T

n
weakly in L2(Q) as k →∞.

Due to (53) and the bound (87), we may estimate∫
Q
|Tλk,nπk − πk| ≤ 2

∫
{|πk|>λk,n}

|πk| ≤ 2

∫
{|πk|>λk,n}

|πk|2

λk,n
= O(n−1),

specifying the weak convergence (115) more closely as

T
n → 0 weakly in L2(Q) as n→∞.

By the same token (up to a subsequence)

Tλk,nπ
k − (Tλk,nπ

k)Ω → T
n
0 weakly in Lp(Q) as k →∞,

T
n
0 → 0 weakly in L2(Q) as n→∞. (116)

Back to ϕk,n, the property (15) entails for any 1 < p <∞ that

‖ϕk,n‖Lp(0,T ;W 2,p(Ω)) ≤ Creg,p‖Tλk,nπk − (Tλk,nπ
k)Ω‖Lp(Q) (117)

≤ Creg,p λk,n. (118)

As a result, and also owing to (116), we may assume that for all p <∞

ϕk,n → ϕn weakly in Lp(0, T ;W 2,p(Ω)) as k →∞, (119)

ϕn → 0 weakly in L2(0, T ;W 2,2(Ω)) as n→∞. (120)
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Convergence of pk2 Let n ∈ N. We are going to show

(πk, Tλk,nπ
k)Q

k∼ O(n−1), (121)

implying πk → 0 strongly in L1(Q), hence πk → 0 a.e. in Q for a subsequence. We write

(πk, Tλk,nπ
k)Q = (πk, Tλk,nπ

k − (Tλk,nπ
k)Ω)Q = (πk,∆ϕk,n)Q

k∼ (Sk − S,∇2ϕk,n)Q

by the weak formulation for pk2 (51), strong convergence (43) and weak convergences (53) and (119).
We carry on by means of the strong convergence (57):

(πk, Tλk,nπ
k)Q

k∼ (Sk − S,∇2ϕk,n)Q
k∼ (Sk − S(pk1 + p2,Dv),∇2ϕk,n)Q − (S − S,∇2ϕn)Q

≤ γ0

∫
Q
|πk||∇2ϕk,n| dx dt+ C2

∫
Q
|Duk||∇2ϕk,n| dx dt+O(n−1), (122)

by (10) and (120). We will concentrate on the second integral, decomposing Q into four subdomains
(see (89), (94) and (95) for definitions):

Q = (Ek,n ∩Ak,n1 ) ∪ (Ek,n ∩Ak,n2 ) ∪ (Ek,n ∩Ak,n3 ) ∪Gk,n.

Accordingly ∫
Q
|Duk||∇2ϕk,n| dx dt = I1 + I2 + I3 + I4,

where

I1 =

∫
Ek,n∩Ak,n1

|Duk||∇2ϕk,n| dx dt ≤ ‖Duk‖
L∞(Ak,n1 )

‖∇2ϕk,n‖L2(Q)|Ek,n ∩A
k,n
1 |

1/2

≤ Cλk,n|Ek,n ∩Ak,n1 |
1/2 k∼ O(n−1),

by the observation (96), |Duk| ≤ λk,n a.e. in Ak,n1 and the estimate of ϕk,n (117). Next

I2 =

∫
Ek,n∩Ak,n2

|Duk||∇2ϕk,n| dx dt ≤ ‖Duk‖
L2(Ak,n2 )

‖∇2ϕk,n‖L2(Q) ≤ C‖gk‖L2(Ak,n2 )
= O(n−1),

by the key property of Ak,n2 (88) and the estimate (117), and

I3 =

∫
Ek,n∩Ak,n3

|Duk||∇2ϕk,n| dx dt ≤ ‖Duk‖L2(Q)‖∇2ϕk,n‖Lp(Q)|A
k,n
3 |

p−2
2p ≤ C(λk,n)

4−p
p

k∼ O(n−1)

for any p > 4 by the bound on |Ak,n3 | (91) and (118) for a fixed p > 4. Finally,

I4 =

∫
Gk,n
|Duk||∇2ϕk,n| dx dt

≤
( γ2

0

C2
1

‖πk‖2
L2(Ak,n1 )

+
2

C1

(
Sk − S(pk1 + p2,Dv),Duk

)
Gk,n

)1/2
‖∇2ϕk,n‖L2(Q)

k∼ γ0

C1
‖πk‖

L2(Ak,n1 )
‖∇2ϕk,n‖L2(Q) +O(n−1),
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by (9), Gk,n ⊂ Ak,n1 , the accessory calculation (98) and the estimate (117). We see that only the last
term I4 adds a palpable contribution to (122), which hence simplifies into

(πk, Tλk,nπ
k)Q

k∼ γ0

(
1 +

C2

C1

)
‖πk‖

L2(Ak,n1 )
‖∇2ϕk,n‖L2(Q) +O(n−1)

≤ γ0Creg

(
C1 + C2

C1

)
‖πk‖

L2(Ak,n1 )
‖Tλk,nπk − (Tλk,nπ

k)Ω‖L2(Q) +O(n−1)

≤ γ0Creg

(
C1 + C2

C1

)
‖πk‖

L2(Ak,n1 )
‖Tλk,nπk‖L2(Q) +O(n−1), (123)

by (117) and an elementary manipulation

‖Tλk,nπk − (Tλk,nπ
k)Ω‖2L2(Q) = ‖Tλk,nπk‖2L2(Q) − |Ω|(Tλk,nπ

k)2
Ω ≤ ‖Tλk,nπk‖2L2(Q).

What remains is to relate (πk, Tλk,nπ
k)Q to the right-hand side in a better way: Recalling the definition

of gk (86), we have trivially
|Tλk,nπk| ≤ |πk| ≤ gk a.e. in Q.

Therefore, and by the estimates (88) and (91), we observe

‖Tλk,nπk‖2L2(Q) ≤ ‖π
k‖2
L2(Ak,n1 )

+ ‖gk‖2
L2(Ak,n2 )

+ ‖λk,n‖2
L2(Ak,n3 )

≤ ‖πk‖2
L2(Ak,n1 )

+O(n−1).

Then we add an obvious inequality

‖πk‖2
L2(Ak,n1 )

≤ (πk, Tλk,nπ
k)Q

and (123) combined with 0 < γ0 <
C1

Creg(C1 + C2)
from Assumption 2.2 becomes the desired (121)

and we may hence assume (bearing in mind the already proved result for pk1 (56))

pk → p a.e. in Q. (124)

Convergence of Duk This time the Biting lemma will be engaged on

fk(t, x) = |πk(t, x)|2 + |Duk(t, x)|2, (t, x) ∈ Q,

with our sight set on

‖Duk‖Lr(Q\Dm)
k∼ 0

for any m ∈ N, where Dm are the sets provided by the Biting lemma, like in (83). Assuming without
loss of generality that fk are themselves weakly convergent in L1(Q \ Dm), in particular they are
equi-integrable in Q\Dm, for any m ∈ N, Vitali’s theorem and the pointwise convergence (124) imply

πk → 0 strongly in L2(Q \Dm) for every m ∈ N. (125)

Let m0 ∈ N be fixed. Equi-integrability of fk and the definition of Ek,n (94) imply

‖Duk‖2L2(Q\Dm0 )
k∼ ‖Duk‖2L2(Gk,n\Dm0 ) +O(n−1) ≤ ‖Duk‖2L2(Gk,n\Dm) +O(n−1)

for any m ≥ m0. Take m(n) ≥ m0 fulfilling∣∣Dm(n)
∣∣ ≤ 1

222n+1n
. (126)
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Applying the estimate (9) and convergence (125), we obtain

C‖Duk‖2
L2(Gk,n\Dm(n))

k∼ (Sk − S(pk1 + p2,Dv),Duk)Gk,n\Dm(n)

k∼ −(Sk − S(pk1 + p2,Dv),Duk,n)Gk,n∩Dm(n) +O(n−1),

where we recalled the accessory calculation (98), i.e.(
Sk − S(pk1 + p2,Dv),Duk

)
Gk,n

k∼ O(n−1),

for the second relation. The rest is assured by the Lipschitz bound (19) and (126):

(Sk − S(pk1 + p2,Dv),Duk,n)Gk,n∩Dm(n) ≤ C|Dm(n)|1/2
(
λk,n + C{τn=1}‖uk‖L1(Q)

) k∼ O(n−1),

yielding

‖Duk‖2L2(Q\Dm0 )
k∼ O(n−1),

hence also the pointwise convergence (for a subsequence) of Duk. Together with the compactness of
the pressure (124) we obtain also S = S(p,Dv) for r = 2.

5.4 Initial condition

Proceeding exactly like in the Galerkin approximation (see Appendix), we could justify

(v0 − v(0),w) = 0 for all w ∈W 1,q′
n (Ω),

i.e. v(0) = v0. Next we will show

vk(t)→ v(t) weakly in L2(Ω) for all t ∈ (0, T ). (127)

Let t ∈ (0, T ), then {vk(t)}k is bounded in L2(Ω) and we may assume that for a subsequence

vkm(t)→ v weakly in L2(Ω).

Recall (31) and take ϕ = wχ(0,t) for an arbitrary w ∈W 1,q′
n (Ω). Then

(vkm(t),w)− (v0,w) = (vkm ⊗ vkmΦkm(|vkm |),∇w)Qt − (Skm ,Dw)Qt

− α(vkmΦkm(|vkm |),w)Γt + (pkm , divw)Qt + (F ,∇w)Qt ,

which tends for m→∞ to

(v,w)− (v0,w) = (v ⊗ v,∇w)Qt − (S,Dw)Qt − α(v,w)Γt + (p,divw)Qt + (F ,∇w)Qt

= (v(t),w)− (v0,w),

by the already proved weak formulation (7). Therefore v = v(t) and we may extend the result beyond
a mere subsequence, in other words (127) holds.

Regarding the strong convergence to the initial value in L2(Ω), in the weak formulation (31) we
can take ϕ = vkχ(0,t) for any t ∈ (0, T ), obtaining

‖vk(t)‖2L2(Ω) − ‖v0‖2L2(Ω) = (F ,∇vk)Qt − (Sk,Dvk)Qt − α(vkΦk(|vk|),vk)Γt ≤ (F ,∇vk)Qt + Ct,

by means of the property (11) and non-negativity of the boundary term.
Adding (127) and the lower semicontinuity of the norm then yields

lim
t→0+

‖v(t)− v0‖2L2(Ω) = lim
t→0+

‖v(t)‖2L2(Ω) − ‖v0‖2L2(Ω)

≤ lim
t→0+

lim inf
k→∞

‖vk(t)‖2L2(Ω) − ‖v0‖2L2(Ω)

≤ lim
t→0+

(
(F ,∇v)Qt + Ct

)
= 0.

With this last fragment we have established the claim of Theorem 3.1.
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6 Appendix

In this ancillary part we prove Lemma 5.1. Towards that aim, with fixed ε, k > 0, the original
problem (5) will be further approximated by the following quasicompressible system:

∂tv + div(v ⊗ vΦk(|v|))− divS +∇p = −divF in Q,

div v = ε∆p in Q,

∇p · n = 0 on Γ,

v · n = 0 on Γ,

αvτΦk(|vτ |) = −(Sn)τ on Γ,

v(0) = v0 in Ω,

pΩ = 0 in (0, T ).


(128)

Like in the case of the system with only the convective term truncated, we are insterested in
existence of weak solutions. In the following lemma we both particularize this concept and affirm the
existential question.

Lemma 6.1 Under the assumptions of Theorem 3.1, for every ε, k > 0 there exists a weak solution
to the approximate problem (128), i.e. a couple (vε,k, pε,k) satisfying

vε,k ∈ Lr(0, T ;W 1,r
n (Ω)),

∂tv
ε,k ∈ Lr′(0, T ;W−1,r′

n (Ω)),

pε,k ∈ L2(0, T ; W̊ 1,2(Ω)) ∩ Lr′(Q)

and for all ϕ ∈W 1,r
n (Ω) and a.e. t ∈ (0, T ), it holds that

〈∂tvε,k(t),ϕ〉 − (vε,k ⊗ vε,kΦk(|vε,k|)(t),∇ϕ) + (S(pε,k(t),Dvε,k(t)),Dϕ)

+ α(vε,kΦk(|vε,k|)(t),ϕ)∂Ω − (pε,k(t),divϕ) = (F (t),∇ϕ), (129)

as well as for every ψ ∈W 1,2(Ω) and a.e. t ∈ (0, T ) the identity

ε (∇pε,k(t),∇ψ) = −(div vε,k(t), ψ). (130)

The initial condition is being attained in the form lim
t→0+

‖vε,k(t)− v0‖L2(Ω) = 0.

Proof. Let {wi}i∈N ⊂W 1,2
n (Ω) be an orthogonal basis in W 1,2

n (Ω) and an orthonormal basis in L2(Ω).
We also standardly require of the basis that L2-projections

Pnu =

n∑
i=1

(u,wi)wi, u ∈ L2(Ω), n ∈ N,

be orthogonal in W 1,2
n (Ω). Note that Pnv0 converges to v0 in L2(Ω) for n→∞.

Galerkin approximation Dropping the ε, k-indices (both parameters stay fixed), for n ∈ N we
construct Faedo-Galerkin approximations

vn(t, x) =
n∑
i=1

cni (t)wi(x),

pn(t, x) = N
(

div vn

ε

)
(t, x) =

1

ε

n∑
i=1

cni (t)N (divwi)(x). (131)
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Recall (13) for the definition of N . What is to be found are absolutely continuous functions {cni }ni=1,
extensible to the whole [0, T ] and satisfying

(∂tv
n(t),wi)−(vn⊗vnΦk(|vn|)(t),∇wi)+(Sn(t),Dwi)+α(vnΦk(|vn|)(t),wi)∂Ω−(pn(t), divwi)

= (F (t),∇wi) for all i = 1, . . . , n, (132)

where Sn(t) = S(pn(t),Dvn(t)). We also set vn(0) = Pnv0.
The functions {cni }ni=1 would be found standardly with help of the Carathéodory theory, at least for

a short time interval. The extensibility onto the whole of [0, T ] will follow from the uniform estimates
derived presently.

Uniform estimates Multiplying eq. (132) by cni (t) and summing the n equalities yields

1

2

d

dt
‖vn(t)‖2L2(Ω) − (vn ⊗ vnΦk(|vn|)(t),∇vn(t)) + (Sn(t),Dvn(t)) + α‖Φ1/2

k (|vn|)vn(t)‖2L2(∂Ω)

− (pn(t), div vn(t)) = (F (t),∇vn(t)).

Due to eq. (131), boundedness of the truncated convective term and (11),

1

2

d

dt
‖vn(t)‖2L2(Ω) +

C1

2r
‖Dvn(t)‖rLr(Ω) + ε ‖∇pn(t)‖2L2(Ω)

≤
(
‖F (t)‖Lr′ (Ω) + C(k)

)
‖∇vn(t)‖Lr(Ω) +

C1|Ω|
2r

. (133)

Hölder’s inequality now implies

sup
t∈(0,T )

‖vn(t)‖2L2(Ω) ≤ 2
(
‖F ‖Lr′ (Q) + C(k)

)
‖∇vn‖Lr(Q) + ‖v0‖2L2(Ω) +

TC1|Ω|
r

,

which we apply in (133), getting

sup
t∈(0,T )

‖vn(t)‖2L2(Ω) +
C1

r
‖Dvn‖rLr(Q) + 2ε ‖∇pn‖2L2(Q)

≤ 2
(
‖F ‖Lr′ (Q) + C(k)

)
‖∇vn‖Lr(Q) + ‖v0‖2L2(Ω) +

TC1|Ω|
r

.

Now we recall Korn’s inequality (16) and then utilize Young’s inequality to deduce

sup
t∈(0,T )

‖vn(t)‖2L2(Ω) + ‖vn‖rLr(0,T ;W 1,r(Ω)) + ε ‖∇pn‖2L2(Q) ≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
,

finally implying, using (12) for the stress tensor S and Poincaré’s inequality for the pressure,

sup
t∈(0,T )

‖vn(t)‖2L2(Ω) + ‖vn‖rLr(0,T ;W 1,r(Ω)) + ‖Sn‖r
′

Lr′ (Q)
+ ε ‖pn‖2L2(0,T ;W 1,2(Ω))

≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (134)

The time derivative ∂tv
n will be momentarily estimated in L2(0, T ;W−1,2

n (Ω)). Noting that W 1,2
n (Ω)

is densely and continuously embedded in L2(Ω), for ϕ ∈W 1,2
n (Ω) we may write

〈∂tvn(t),ϕ〉 = (∂tv
n(t), Pnϕ)

≤ 4k2
∥∥∇Pnϕ∥∥

L1(Ω)
+
∥∥Sn(t)

∥∥
Lr′ (Ω)

∥∥DPnϕ
∥∥
Lr(Ω)

+ 2αk
∥∥Pnϕ∥∥

L2(∂Ω)

+
∥∥pn(t)

∥∥
L2(Ω)

∥∥∇Pnϕ∥∥
L2(Ω)

+
∥∥F (t)

∥∥
Lr′ (Ω)

∥∥∇Pnϕ∥∥
Lr(Ω)

≤ C ‖∇ϕ‖L2(Ω)

(
4k2 + ‖Sn(t)‖Lr′ (Ω) + 2αk + ‖pn(t)‖L2(Ω) + ‖F (t)‖Lr′ (Ω)

)
.
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The first inequality follows from the eq. (132), while the latter step made use of orthogonality of
Pn on W 1,2

n (Ω), as well as Hölder’s inequality (r ≤ 2) and the trace theorem for Sobolev functions.
Combining the last inequality with (134) yields the desired∫ T

0
‖∂tvn(t)‖2

W−1,2
n (Ω)

dt ≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (135)

Limit n→∞ With bounds (134)–(135), we may invoke the traditional compactness arguments like
reflexivity, the Banach-Alaoglu theorem, the Aubin-Lions lemma with W 1,r

n ↪→↪→ L2 ↪→ W−1,2
n and

Lemma 4.3, to select a subsequence (labelled again (pn,vn)) such that for n→∞

vn → v weakly in Lr(0, T ;W 1,r
n (Ω)), (136)

vn → v weakly∗ in L∞(0, T ;L2(Ω)), (137)

∂tv
n → ∂tv weakly in L2(0, T ;W−1,2

n (Ω)), (138)

vn → v strongly in L2(Q), (139)

vn → v strongly in Lr(Γ), (140)

‖vn(t)‖2 → ‖v(t)‖2 a.e. in (0, T ), (141)

vn → v a.e. in Q, (142)

pn → p strongly in L2(0, T ; W̊ 1,2(Ω)), (143)

pn → p a.e. in Q, (144)

Sn → S weakly in Lr
′
(Q). (145)

We were able to deduce the strong convergence of pn from (15) and (139).
Considering the continuity of N and properties of {wi}i∈N, we apply the convergence results

(136)–(145) to the equations (131) (132) to acquire

εp = N (div v) (146)

and∫ T

0
〈∂tv,ϕ〉 dt = (v ⊗ vΦk(|v|),∇ϕ)Q − (S,Dϕ)Q − α(vΦk(|v|),ϕ)Γ + (p,divϕ)Q + (F ,∇ϕ)Q

(147)

for every ϕ ∈ L2(0, T ;W 1,2
n (Ω)).

Improved pressure integrability The bound (134) is insufficient to infer p ∈ Lr′(Q) but we are
able to deduce it all the same, even uniformly in ε. The first thing we notice is that

p ∈ L2(0, T ;Lr
′
(Ω))

since r′ < 2d/(d− 2). This observation carries over to the equation (147), where it allows us to infer

∂tv ∈ L2(0, T ;W−1,r′
n (Ω)) and we may take ϕ ∈ L2(0, T ;W 1,r

n (Ω)).
For L > 0 denote χL the indicator function of the set {‖p(t)‖Lr′ (Ω) < L}. We will consider

ϕ = χL∇N
(
|p|r′−2p− (|p|r′−2p)Ω

)
.
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Notice from (15) that

‖ϕ(t)‖W 1,r(Ω)) ≤ C(Ω, r)χL(t)‖|p(t)|r′−1‖Lr(Ω) = C(Ω, r)‖χL(t)p(t)‖r′−1
Lr′ (Ω)

,

‖ϕ‖Lr(0,T ;W 1,r(Ω)) ≤ C(Ω, r)‖χLp‖r
′−1
Lr′ (Q)

, (148)

‖ϕ‖L∞(0,T ;W 1,r(Ω)) ≤ C(Ω, r)Lr
′−1,

divϕ =
(
|p|r′−2p− (|p|r′−2p)Ω

)
χL a.e. in Q.

In particular, we can make use of ϕ in the equation (147), implying

‖pχL‖r
′

Lr
′ (Q)

= (p,divϕ)Q =
5∑
i=1

Ii, (149)

where, by (147) and Hölder’s inequality,

I1 = −(F ,∇ϕ)Q ≤ ‖F ‖Lr′ (Q)‖∇ϕ‖Lr(Q) ≤ C ‖ϕ‖Lr(0,T ;W 1,r(Ω)) ,

I2 = (S,Dϕ)Q ≤ ‖S‖Lr′ (Q)‖∇ϕ‖Lr(Q) ≤ C ‖ϕ‖Lr(0,T ;W 1,r(Ω)) ,

I3 = −(v ⊗ vΦk(|v|),∇ϕ)Q ≤ C(k) ‖ϕ‖Lr(0,T ;W 1,r(Ω)) ,

I4 = α(vΦk(|v|),ϕ)Γ ≤ C(k)‖ϕ‖Lr(Γ) ≤ C(k) ‖ϕ‖Lr(0,T ;W 1,r(Ω)) ,

I5 =

∫ T

0
〈∂tv,ϕ〉 dt =

∫ T

0
〈∂t∇N (div v),ϕ〉 dt = ε

∫ T

0
〈∂t∇p,ϕ〉 dt, (150)

by the Helmholtz decomposition (14) and the relation (146). If p were smooth, then

I5 = −ε
∫ T

0
(∂tp, |p|r

′−2p)χL dt = − ε
r′
‖p(T )‖r

′

Lr′ (Ω)
χL(T ) ≤ 0.

In the general case we could use an approximation by smooth functions to conclude I5 ≤ 0. All in all,
from (148), (149) and the estimates on I1–I5 we have

‖pχL‖r
′

Lr′ (Q)
≤ C(k).

independently of L > 0, which entails Lr
′
-integrability of the pressure

‖p‖Lr′ (Q) ≤ C(k). (151)

Therefore the right-hand side of the equation (147) is well-defined for any ϕ ∈ Lr(0, T ;W 1,r
n (Ω)) and

we conclude ∂tv ∈ Lr
′
(0, T ;W−1,r′

n (Ω)).

Initial condition Attainment of the initial condition is almost trivial: Let ζ ∈ C1
c ([0, T )), such that

ζ(0) = −1. Multiply the eq. (132) with ζ, integrate over (0, T ) and perform the limit n→∞. Then

(v0,wi) = lim
n→∞

(vn(0),wi) = (v, ζ ′wi)Q + (v ⊗ vΦk(|v|),∇(ζwi))Q − (S,D(ζwi))Q

− α(vΦk(|v|), (ζwi))Γ + (p,div(ζwi))Q + (F ,∇(ζwi))Q for all i ∈ N. (152)

If we in (147) take ϕ = ζwi and compare the equation with (152), we obtain

(v0 − v(0),wi) = 0 for all i ∈ N,

so that v(0) = v0. Since v ∈ C([0, T ];L2(Ω)), we are finished.
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Identification of S What remains is to show S = S (i.e. S(p,Dv)). Since S(·, ·) is continuous and
we already have (144), it suffices to verify the pointwise convergence of Dvn a.e. in Q. Then S = S
by Vitali’s theorem.

Observe that we may without loss of generality assume in (141) that ‖vn(T )‖L2(Ω) → ‖v(T )‖L2(Ω)

for n → ∞. Indeed so; if it were otherwise, we would solve our equation from the beginning on
a larger time interval, say (0, T + 1). Then we could assume there is T ≤ τ ≤ T + 1 such that
‖vn(τ)‖L2(Ω) → ‖v(τ)‖L2(Ω) for n → ∞, and we would prove all convergencies on (0, τ), only to
restrict ourselves to (0, T ) in the end.

Define

In =

∫ 1

0
(1 + |D(s)|2)(r−2)/2|Dvn −Dv|2 ds, D(s) = Dv + s(Dvn −Dv).

With the strong convergence (143), the relation (9) implies

0 ≤ C lim sup
n→∞

∫
Q
In ≤ lim sup

n→∞
(Sn − S,D(vn − v))Q = lim sup

n→∞
(Sn,Dvn)Q − (S,Dv)Q

≤
5∑
i=1

lim sup
n→∞

Ii,

(153)

where, by (132) and (147), the terms Ii are are handled by convergencies (136)–(143) as follows:8

I1 = (F ,∇(vn − v))Q
n∼ 0

I2 = (pn,div vn)Q − (p, div v)Q = ε ‖∇p‖2L2(Q) − ε ‖∇p
n‖2L2(Q)

n∼ 0,

I3 = (vn ⊗ vnΦk(|vn|),∇vn)Q − (v ⊗ vΦk(|v|),∇v)Q
n∼ 0,

I4 =
1

2

∫ T

0

d

dt

(
‖v‖2L2(Ω) − ‖v

n‖2L2(Ω)

)
dt

=
1

2

(
‖v(T )‖2L2(Ω) − ‖v

n(T )‖2L2(Ω) + ‖vn(0)‖2L2(Ω) − ‖v(0)‖2L2(Ω)

) n∼ 0,

I5 = α(vΦk(|v|),v)Γ − α(vnΦk(|vn|),vn)Γ
n∼ 0.

Therefore (153) entails

lim
n→∞

∫
Q
In = 0 (154)

and now we are practically finished, for Hölder’s inequality yields∥∥D(vn − v)
∥∥r
Lr(Q)

≤
∫
Q

(∫ 1

0
(1 + |D(s)|2)(r−2)/2|D(vn − v)|2 ds

)r/2
(1 + |Dvn|2 + |Dv|2)r(2−r)/4 dx dt

≤
(∫

Q
In
)r/2(∫

Q
(1 + |Dvn|2 + |Dv|2)r/2

)(2−r)/2
, (155)

which tends to zero with n→∞ by (154).

6.1 Vanishing artificial compressibility (ε→ 0+)

Now we justify the limit ε→ 0+ for solutions yielded by Lemma 6.1, proving thus Lemma 5.1. Let us
again drop the index k and denote the solutions at hand simply (vε, pε).

8The symbol
n∼ has an analogical meaning to

k∼ introduced under (166).
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Uniform estimates Taking ϕ = pε in (130), ϕ = vε in (129) and summing up the resultant
identities, we obtain

1

2

d

dt
‖vε(t)‖2L2(Ω) − (vε ⊗ vεΦk(|vε|)(t),∇vε(t)) + (Sε(t),Dvε(t)) + α‖Φ1/2

k (|vε|)vε(t)‖2L2(∂Ω)

+ ε ‖∇pε(t)‖2L2(Ω) = (F (t),∇vε(t)),

where Sε(t) = S(pε(t),Dvε(t)). Following the same steps as in the proof of Lemma 6.1, we could
show

sup
t∈(0,T )

‖vε(t)‖2L2(Ω) + ‖vε‖rLr(0,T ;W 1,r(Ω)) + ‖Sε‖r
′

Lr′ (Ω)
+ ε ‖pε‖2L2(0,T ;W 1,2(Ω))

≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
, (156)

which can be combined with the weak formulation for the pressure (130) to obtain∫ T

0
‖div vε‖2

W−1,2
n (Ω)

≤
√
εC
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
.

As far as an ε-uniform estimate of pε is concerned, we still have (151). Combining (156) with (151)
and the starting equation (129) also yields the last estimate

‖∂tvε‖Lr′ (0,T ;W−1,r′
n (Ω))

≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
.

Limit ε→ 0+ The uniform bounds hitherto deduced allow us to pick a subsequence (vε, pε) satisfying

vε → v weakly in Lr(0, T ;W 1,r
n,div(Ω)), (157)

vε → v weakly∗ in L∞(0, T ;L2(Ω)), (158)

∂tv
ε → ∂tv weakly in Lr

′
(0, T ;W−1,r′

n (Ω)), (159)

vε → v strongly in L2(Q), (160)

vε → v strongly in Lr(Γ), (161)

vε → v a.e. in Q, (162)

pε → p weakly in Lr
′
(0, T ; L̊r

′
(Ω)), (163)

Sε → S weakly in Lr
′
(Q). (164)

Applying (157)–(164) to eq. (129), we get∫ T

0
〈∂tv,ϕ〉 dt− (v ⊗ vΦk(|v|),∇ϕ)Q + (S,Dϕ)Q + α(vΦk(|v|),ϕ)Γ − (p,divϕ)Q = (F ,∇ϕ)Q

for every ϕ ∈ Lr(0, T ;W 1,r
n (Ω)). As far as attainment of the initial condition is concerned, we could

proceed identically like in the Galerkin approximation (notice vε(0) = v0 for all ε > 0) and hence we
skip it.

Identification of the weak limit S is thus the only remaining issue of the ε-limit. Yearning to invoke
Vitali’s theorem again, we are in a slightly more problematic situation at this moment as we have lost
compactness of the pressure. The equality S = S (i.e. S(p,Dv)) now therefore demands showing not
only the pointwise convergence of Dvε but also of pε a.e. in Q.
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Convergence of pε We will deduce

pε → p strongly in L2(Q).

Define ϕε = N (pε − p) and observe that by (15) and (163)

‖ϕε‖L2(0,T ;W 2,2(Ω)) ≤ Creg ‖p
ε − p‖L2(Q) , (165)

ϕε → 0 weakly in Lr
′
(0, T ;W 2,r′(Ω)). (166)

Let O(ε) signify a quantity satisfying lim supε→0+ O(ε) ≤ 0. For quantities Aε, Bε we write Aε
ε∼ Bε

if Aε ≤ Bε +O(ε). Then

‖pε − p‖2L2(Q) = (pε − p,∆ϕε)Q
ε∼ (pε,∆ϕε)Q = (Sε,∇2ϕε)Q +

5∑
i=1

Ii, (167)

where by the equation (129), convergences (157)–(162) and (166), the individual summands are dealt
with as

I1 = −(F ,∇2ϕε)Q
ε∼ 0,

I2 = α(vεΦk(|vε|),∇ϕε)Γ
ε∼ 0,

I3 = −(vε ⊗ vεΦk(|vε|),∇2ϕε)Q
ε∼ 0,

I4 = −
∫ T

0
〈∂tvε,∇N (p)〉 dt ε∼ −

∫ T

0
〈∂tv,∇N (p)〉 dt = 0,

I5 =

∫ T

0
〈∂tvε,∇N (pε)〉 dt ε∼ 0,

being a clone of I5 in (150) with r′ changed to 2. Hence the sum in (167) can be ignored and

‖pε − p‖2L2(Q)
ε∼ (Sε,∇2ϕε)Q

ε∼ (Sε − S,∇2ϕε)Q

≤ γ0

∫
Q
|pε − p||∇2ϕε| dx dt+ C2

∫
Q

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D(vε − v)||∇2ϕε| ds dx dt, (168)

by the property (10) with D(s) = Dv + s(Dvε −Dv). Denote

Iε =

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D(vε − v)|2ds.

Since (1 + |D(s)|2)(r−2)/2 ≤ (1 + |D(s)|2)(r−2)/4, Hölder’s inequality and bound (165) applied to (168)
yield

‖pε − p‖2L2(Q)
ε∼ γ0Creg ‖pε − p‖2L2(Q) + C2Creg

(∫
Q
Iε dx dt

)1/2
‖pε − p‖L2(Q)

entailing (note 1− γ0Creg > 0 by Assumption 2.2)

‖pε − p‖2L2(Q)
ε∼
(

C2Creg
1− γ0Creg

)2 ∫
Q
Iε dx dt. (169)
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Using (9), we can estimate the integral on the right as∫
Q
Iε dx dt ≤ 2

C1

(
Sε − S,D(vε − v)

)
Q

+
γ2

0

C2
1

‖pε − p‖2L2(Q)

ε∼ 2

C1

(
Sε,D(vε − v)

)
Q

+
γ2

0

C2
1

‖pε − p‖2L2(Q)
ε∼ γ2

0

C2
1

‖pε − p‖2L2(Q) , (170)

as long as

(Sε,D(vε − v))Q
ε∼ 0. (171)

Notice that (169) and (170) would then imply

lim
ε→0+

‖pε − p‖L2(Q) = 0 (172)

provided also
γ0C2Creg

C1(1− γ0Creg)
< 1,

which does hold, however, due to Assumption 2.2, namely

γ0 <
C1

Creg(C1 + C2)
.

We must therefore justify (171). Set ϕε = vε − v in the weak formulation (129), whence

(
Sε,D(vε − v)

)
Q

=

5∑
i=1

Ii,

where, exploiting convergences (157)–(162),

I1 = (F ,∇ϕε)Q
ε∼ 0,

I2 = −α(vεΦk(|vε|),ϕε)Γ
ε∼ 0,

I3 = (vε ⊗ vεΦk(|vε|),∇ϕε)Q
ε∼ 0,

I4 = (pε,divϕε)Q = −ε(∇pε,∇pε)Q
ε∼ 0,

I5 = −
∫ T

0
〈∂tvε,ϕε〉 dt = −1

2

∫ T

0

d

dt
‖vε − v‖2L2(Ω) dt−

∫ T

0
〈∂tv,ϕε〉 dt

ε∼ 0,

thus proving (171) and justifying (172).

Convergence of Dvε The inequality (155) in the current situation takes form

∥∥D(vε − v)
∥∥r
Lr(Q)

≤
(∫

Q
Iε
)r/2(∫

Q
(1 + |Dvε|2 + |Dv|2)r/2

)(2−r)/2 ε∼ 0,

by (170) and (172). Consequently, we may assume the pointwise convergence of both pε and Dvε a.e.
in Q, which proves S = S and thus concludes the entire ε-limit.
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[15] M. Franta, J. Málek, and K.R. Rajagopal. On steady flows of fluids with pressure- and shear-
dependent viscosities. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461(2055):651–670,
2005.

[16] G.P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Springer
Monographs in Mathematics. Springer, New York, second edition, 2011. Steady-state problems.

35



[17] F. Gazzola. A note on the evolution Navier-Stokes equations with a pressure-dependent viscosity.
Z. Angew. Math. Phys., 48(5):760–773, 1997.

[18] F. Gazzola and P. Secchi. Some results about stationary Navier-Stokes equations with a pressure-
dependent viscosity. In Navier-Stokes equations: theory and numerical methods (Varenna, 1997),
volume 388 of Pitman Res. Notes Math. Ser., pages 31–37. Longman, Harlow, 1998.

[19] P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in
Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.

[20] M. Lanzendörfer and J. Stebel. On pressure boundary conditions for steady flows of incompressible
fluids with pressure and shear rate dependent viscosities. Appl. Math., 56(3):265–285, 2011.
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