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Abstract

We deal with the numerical solution of time dependent problems with the aid of anisotropic hp-grids. We
present an algorithm which generates a sequence of anisotropic triangular grids and the corresponding
polynomial approximation degrees in such a way that the interpolation error measured in the discrete
L∞(0, T ;Lq(Ω))-norm (q ∈ [1,∞] and Ω ⊂ R2) is under a given tolerance and the number of degrees of
freedom is as small as possible. The efficiency of the algorithm is demonstrated by numerical experiments.
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1 Introduction

An automatic mesh adaptation is an efficient tool for the numerical solution of partial differential
equations (PDEs). In this paper we deal with a method which combines two approaches:

• (isotropic) hp-adaptive methods, which allow the adaptation in the element size h as well as
in the polynomial degree of approximation p. Under some assumptions, they converges at
an exponential rate in the number of degrees of freedom, see, e.g., [1, 2, 3, 4, 5, 6] and the
references cited therein.

• anisotropic mesh adaptation techniques, generating anisotropic elements (i.e., long and thin
triangles), which are suitable in computation of problems with boundary or internal layers,
see, e.g., [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. These works dealt mostly with a first order
approximation, thus the Hessian matrix (=matrix of the second order derivatives) is natu-
rally employed for the definition of the Riemann metric generating the anisotropy of grids.
Furthermore, in [17, 18], the Riemann metrics (defining the optimal anisotropic mesh in the
W k,q-norm) were derived for the higher polynomial approximations degree (> 1).

In [19] we developed an adaptive technique for steady problems, which employs both these
aspects, i.e., it generates the so-called anisotropic hp-grids, where each element is characterized
by its size, the orientation, the aspect ratio, and the local polynomial approximation degree. The
orientation of the anisotropic element is the direction, along which its shape is extended, the size of
the element corresponds to its diameter and the aspect ratio of the element is (roughly speaking)
to the ratio between the size of the element and its “width”.

A hp-mesh can be described by two functions: M : Ω → Sym (Ω ⊂ R2 is the computational
domain and Sym is the space of 2 × 2 symmetric, positively definite matrices) and P : Ω → R+

(= the set of positive real numbers). The function M represents the Riemann metric and thus
defines a triangular grid. The function P defines the polynomial approximation degree on each
triangle of this grid.

The algorithm developed in [19] constructs, for a given function u : Ω → R2, an anisotropic
hp-mesh such that
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2 Anisotropic hp-meshes 2

i) the interpolation error of a projection of u on Shp (= space of discontinuous piecewise poly-
nomial functions uniquely defined for each hp-grid) in the Lq-norm (q ∈ [1,∞]) is under a
given tolerance,

ii) the dimension of Shp (=number of degrees of freedom) is the smallest possible.

In this paper, we extend the technique from [19] to the numerical solution of time-dependent
PDEs. We develop an algorithm which generates a sequence of anisotropic hp-grids in such a
way that the interpolation error measured in the discrete L∞(0, T ;Lq(Ω))-norm is under a given
tolerance and the number of degrees of freedom is as small as possible. This algorithm involves
several re-meshing after each unsuccessful time step. The algorithm generating hp-meshes is
combined with the space-time discontinuous Galerkin method which simply deals with different
grids on different time levels. Moreover, a special modification is proposed to the numerical
solution of unsteady viscous compressible flows.

The content of the rest of the paper is the following. In Section 2, we introduce basic notations
and properties of anisotropic hp-meshes. In Section 3 we recall a theoretical background of the
presented hp-adaptation algorithm developed in [19]. Its application to steady problems is briefly
given in Section 4. The main novelty of this paper is presented in Section 5, where the algorithm for
the numerical solution of time dependent problems is developed. The efficiency of the algorithm
is demonstrated by experiments given in Section 6. The application of this technique to the
numerical solution of the compressible Navier-Stokes equations is given in Section 7. Finally, we
add several concluding remarks.

2 Anisotropic hp-meshes

In this section we introduce a basic notation for the anisotropic hp-meshes. Let Ω ⊂ R2 be a
bounded computational domain with a polygonal boundary ∂Ω. We denote by Th = {K} (h > 0)
a conforming triangulation of Ω and by Fh the set of edges of Th. The edges e ∈ Fh are considered
as vectors from R2 given by its endpoints, the orientation of e ∈ Fh is arbitrary.

2.1 Anisotropic triangle

In virtue of the papers cited above, the anisotropy of a triangle is described by a matrix M ∈ Sym,
where Sym is the space of 2× 2 symmetric positively definite matrices. Let the matrix M ∈ Sym
be given, it can be decomposed in the form

M = QT
φM

diag (λM,1, λM,2)QφM , (1)

where diag(a, b) denotes the diagonal matrix with the entries a and b, 0 < λM,1 ≤ λM,2 are the
eigenvalues of M, φM ∈ [0, π) and Qφ is the rotation through angle φ in the counter clockwise
direction. Moreover, the relation

ΣM :=
{
x ∈ R2; xTMx ≤ 1

}
, (2)

defines an ellipse whose semi-axes have lengths rM,i = (λM,i)−1/2, i = 1, 2 and its orientation is
φM (=angle between the major semi-axis and the axis x1 of the coordinate system), see Figure 1,
left.

Furthermore, let M ∈ Sym and ΣM be the ellipse given by (2). Let KM be an acute-angle
isosceles triangle which is inscribed into the ellipse ΣM and which has the maximal possible area,
see Figure 1, left. We call KM the anisotropic triangle corresponding to M. Hence, there is an
isomorphism between the matrix M, the corresponding ellipse ΣM and the corresponding triangle
KM.

Similarly as in [17, 18], we describe the anisotropy of a triangle by three parameters: the size,
the aspect ratio and the orientation.
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Fig. 1: The ellipse ΣM with the length of semi-axes rM,1, rM,2 and the orientation φM, and the
corresponding triangle KM with the anisotropy {rM,1, rM,1/rM,2, φM} (left). The acute-
angle and the obtuse-angle anisotropic triangles (right).

Definition 2.1. Let KM be the triangle corresponding to M ∈ Sym and λM,1, λM,2 and φM be
given by (1). Let rM,i = (λM,i)−1/2, i = 1, 2 be the lengths of semi-axes of ΣM. We say that

• rM,1 is the size of KM,

• σM :=
rM,1

rM,2
≥ 1 is the aspect ratio of KM,

• φM is the orientation of KM.

The triple {rM,1, σM, φM} is called the anisotropy of KM.

Obviously, the matrix M ∈ Sym defines a Riemann metric in R2, where the distance of x, y ∈ R2

is given by ‖x − y‖M :=
(
(x− y)TM(x− y)

)1/2
. For the purpose of the definition of an optimal

hp-mesh, we recall one result from [9, Section 3].

Lemma 2.2. Let M ∈ Sym and KM be the corresponding triangle. Let eKM
i , i = 1, 2, 3 denote the

edges of KM, which are considered as vectors from R2 given by their endpoints. Then

‖eKM
i ‖M :=

(
(eKM
i )TMeKM

i

)1/2

=
√

3, i = 1, 2, 3. (3)

Hence, KM is equilateral in the metric defined by M.

Finally, let is note that it would be possible to consider also the obtuse-angle triangle, see
Figure 1, right. This triangle has the same area as the acute-angle one and its edges satisfy the
assertion of Lemma 2.2, see [9, Section 3]. The in-house code ANGENER [20] used in this paper
does not distinguish between the acute-angle and the obtuse-angle triangles, hence it generates
also obtuse-angle triangles.

2.2 Anisotropic meshes

Similarly as in, e.g., [9, 10, 11, 12, 13, 15], we define an anisotropic triangular grid Th as a mesh
consisting of equilateral triangles with respect to a given Riemann metric. Let M : Ω→ Sym be
an integrable mapping, which we call the Riemann metric on Ω. Let v0,v1 ∈ Ω. We define the
distance between v0 and v1 by

‖v1 − v0‖M :=

∫ 1

0

(
(v1 − v0)TM(v0 + t(v1 − v0))(v1 − v0)

)1/2

dt. (4)

It is possible to prove that (4) defines a metric on Ω. In virtue of (3), it would be natural to define
a mesh Th such that

‖e‖M =
√

3 ∀e ∈ Fh, (5)
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Fig. 2: Example of an metric M represented by ellipses in selected nodes (left) and the corre-
sponding triangular grid (right).

where Fh is the set of edges of Th. However, for the given metricM, there does not exist (except
special cases) any triangulation satisfying this requirement. Therefore, we define the triangulation
generated by metricM such that the equalities (5) are satisfied approximately by the least square
technique, see [9, 10]. Hence:

Definition 2.3. Let M be the Riemann metric on Ω. We say that the triangulation Th is
generated by metric M if

Th = arg min
T ′h

∑
e∈F ′h

(
‖e‖M −

√
3
)2

, (6)

where the minimum is taken over all possible triangulations T ′h of Ω and F ′h is the set of edges
of T ′h .

Let us note that there exist algorithms and codes, e.g., [20], [21], which construct mesh Th for
the given metric M in the sense of Definition 2.3. Figure 2 shows an example of an metric M
represented by the ellipses in selected nodes and the corresponding triangular grid.

2.3 Anisotropic hp-mesh

Let Th = {K} be a triangulation of Ω. To each K ∈ Th, we assign a positive integer pK
(=local polynomial approximation degree on K). Then we define the polynomial degree vector
p := {pK ; K ∈ Th}. The pair Thp := {Th, p} is called the hp-mesh.

In Section 2.2, we showed that the mapping M : Ω → Sym defines a triangular grid. On the
other hand, the polynomial degree vector p = {pK ; K ∈ Th} can be defined in the following way.

Definition 2.4. Let P : Ω → R+ be a given integrable function, which we call the polynomial
degree distribution function. Let Th be a triangulation of Ω, using P, we define the polynomial
degree vector p = {pK ; K ∈ Th} by

pK := int

[
1

|K|

∫
K

P(x) dx

]
, K ∈ Th, (7)

where int[a] := ba+ 1/2c denotes the integer part of the number a+ 1/2, a ≥ 0.

Therefore, for the given Riemann metric M : Ω → Sym and for the given polynomial degree
distribution function P : Ω→ R+, we are able to construct the hp-mesh Thp = {Th, p} where Th
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and p are given by Definitions 2.3 and 2.4, respectively. Let us note that in practice, it is sufficient
to evaluate M and P only in a finite number of nodes x ∈ Ω.

3 Optimal anisotropic hp-mesh for a given function u : Ω→ R

This section exhibits a theoretical background of the presented hp-adaptation algorithm, which
was developed in [19]. We recall the construction of the optimal anisotropic hp-mesh for the given
function u : Ω→ R. The optimality is based on the minimization of number of degrees of freedom
provided that the interpolation error is under a given tolerance. For simplicity, we deal with
functions from V := C∞(Ω).

3.1 The main problem

For the given hp-mesh Thp = {Th, p}, we define the space of discontinuous piecewise polynomial
functions by

Shp := {v ∈ L2(Ω); v|K ∈ P pK (K) ∀K ∈ Th}, (8)

where P pK (K) is the space of polynomials of degree ≤ pK on K ∈ Th. The dimension of Shp is
equal to Nhp :=

∑
K∈Th

(pK + 1)(pK + 2)/2, which is called the number of degrees of freedom of
the hp-mesh Thp.

Let u ∈ V be a given function, x̄ ∈ Ω and p ∈ N be an integer. We define the projection
operator πx̄,p : V → P p(Ω̄) such that

∂kπx̄,pu(x̄)

∂xl1∂x
k−l
2

=
∂ku(x̄)

∂xl1∂x
k−l
2

∀l = 0, . . . , k ∀k = 0, . . . , p. (9)

Therefore, πx̄,pu is the polynomial function of degree p on Ω which has the same values of all
partial derivatives up to order p at x̄ as the function u. The existence and uniqueness of πx̄,pu is
obvious. Using the operator πx̄,p, we define the projection into the space Shp.

Definition 3.1. Let Thp = (Th, p) be a hp-mesh, xK , K ∈ Th be the barycentres of K ∈ Th and
Shp be the corresponding space of discontinuous piecewise polynomial functions given by (8). We
define the operator Πhp : V → Shp by

Πhpu|K := πxK ,pKu|K ∀K ∈ Th, (10)

where πxK ,pK is given by (9). The operator Πhpis defined separately for each K ∈ Th and it is
unique for the given hp-mesh.

Now, we are ready to formulate the following problem.

Problem 3.2. Let u ∈ V be a given function, q ∈ [1,∞] be a given degree of the Lebesgue norm
and ω > 0 be a given tolerance. We seek a hp-mesh Thp such that

(P1) ‖u−Πhpu‖Lq(Ω) ≤ ω, where Πhp : V → Shp is defined by (10),

(P2) the number of degrees of freedom Nhp of Thp is minimal.

The Problem 3.2 is complex and we are not able to solve it. Therefore, in [19] we developed
an algorithm, which generates an anisotropic hp-grid such that condition (P1) of Problem 3.2 is
satisfied up to the higher order terms and the corresponding number Nhp is small. Therefore, we
expect that this resulting hp-mesh is close to the (hypothetical) solution of Problem 3.2. The
algorithm from [19] consists from the following steps:

1. Let x̄ ∈ Ω be given.

2. For any polynomial degree p = 1, 2, . . . , we consider an auxiliary local problem whose solution
results the ratio and the orientation of the anisotropic triangle with the barycentre at x̄.
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3. With the aid condition (P1) of Problem 3.2, we fix the size of this triangle with the barycen-
tre at x̄.

4. Using a heuristic consideration, among all possible p, we choose the optimal polynomial
approximation degree (and the corresponding triangle represented by a matrix from Sym).

Performing these steps (theoretically) for all x̄ ∈ Ω, we derive the Riemann metric M : Ω→ Sym
and the polynomial degree distribution function P : Ω→ R+, which define the hp-mesh Thp. Let
us recall that in practice, it is sufficient to evaluate M and P only in a finite number of nodes
x̄ ∈ Ω.

In the rest of this section, we briefly describe these steps, all details can be found in [19].

3.2 Setting of the ratio and the orientation of a triangle for the given p

Let u ∈ V , x̄ = (x̄1, x̄2) ∈ Ω and p ∈ N be given. Let πx̄,pu be given by (9), then using the Taylor
expansion of degree p+ 1 at x̄, we have

u(x)− πx̄,pu(x) = eint
x̄,p(x) +O(|x− x̄|p+2), (11)

where

eint
x̄,p(x) :=

1

(p+ 1)!

p+1∑
l=0

(
p+ 1

l

)
∂p+1u(x̄)

∂xl1∂x
p+1−l
2

(x1 − x̄1)l(x2 − x̄2)p+1−l (12)

is the interpolation error function of degree p located at x̄. Let us note that the right-hand side
of (12) is the (p + 1)th-order scaled directional derivative of u at x̄ along the direction x − x̄.
Obviously, eint

x̄,p(x̄) = 0 and eint
x̄,p(x) ≈ u(x) − πx̄,pu(x) up to the higher order terms. Finally, (10)

and (11) give
(u−Πhpu) |K ≈ eint

xK ,pK |K ∀K ∈ Th, (13)

where xK is the barycentre of K ∈ Th.
Based on (13), we introduce the following auxiliary local problem.

Problem 3.3. Let u ∈ V , x̄ ∈ Ω, p ∈ N, q ∈ [1,∞] and ω̄ > 0 be given. We seek an anisotropic
triangle K (i.e., its anisotropy {hK , σK , φK}) having the barycentre at x̄ such that

(p1)
∥∥eint
x̄,p

∥∥
Lq(K)

≤ ω̄,

(p2) the area of K is the maximal possible.

The condition (p2) follows from the consideration that in order to minimize the number Nhp
of the hp-mesh, we have to construct triangles with the maximal possible area (for the given
polynomial approximation degree). The tolerance ω̄ will be specified later.

We simply observe that the interpolation error function eint
x̄,p depends in general on all partial

derivatives of order p + 1 of u. On the other hand, the anisotropy of a triangle is given by three
parameters. Therefore, in order to solve Problem 3.3, it is advantageous to estimate eint

x̄,p by an
expression depending on three parameters only. Motivated by [17, 18], we derived in [19] the
following estimate of the interpolation error functions

∣∣eint
x̄,p(x)

∣∣ ≤ Ap ((x− x̄)TQϕp
DρpQT

ϕp
(x− x̄)

) p+1
2 ∀ x ∈ Ω, (14)

where Ap > 0, Qϕp
is the rotation through angle ϕp and Dρp is the matrix given by

Dρ :=

(
1 0

0 ρ−
2

p+1

)
, ρ ≥ 1. (15)
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Fig. 3: The boundaries of domains F p and Gp for function (16).

The values Ap ≥ 0, ρp ≥ 1 and ϕp ∈ [0, 2π) represent the size, the aspect ratio and the orientation
of the interpolation error function eint

x̄,p, which are defined in such a way that the estimate (14) is
as sharp as possible in the following sense:

Obviously, both sides of (14) are (p + 1)-homogeneous functions of (x − x̄), i.e., f(x − x̄) =
|x− x̄|p+1f( x−x̄

|x−x̄| ). Moreover, both sides of (14) define bounded domains F p and Gp in R2, namely

F p and Gp are the interiors of the closed curves{
y ∈ R2; y =

∣∣eint
x̄,p(x)

∣∣ (x− x̄), |x− x̄| = 1
}

and {
y ∈ R2; y = Ap

(
(x− x̄)TQϕpDρpQT

ϕp
(x− x̄)

) p+1
2

(x− x̄), |x− x̄| = 1

}
,

respectively.
Obviously, if F p ⊂ Gp then estimate (14) is valid. Therefore, in order to guarantee a sharpness

of (14), we set parameters Ap ≥ 0, ρp ≥ 1 and ϕp ∈ [0, 2π) in such a way that F p ⊂ Gp and
the area of Gp is minimal. This triplet {Ap, ρp, ϕp} is called the anisotropy of the interpolation
error function eint

x̄,p. Let us note that in many situations, Ap is equal to the maximal value of the

(p+1)th-order scaled directional derivative of u at x̄, ϕp is the angle of the direction of the maximal
derivative and ρp is the ratio between Ap and the (p+1)th-order scaled directional derivative along
the perpendicular direction. For the detailed determination of {Ap, ρp, ϕp}, see [19, Section 3.2].

Figure 3 shows the sets F p and Gp for p = 1, 3, 5, x̄ = (1, 1) and u given by

u(x1, x2) = 0.01(6x7
1 + 4x6

1x2 − 3x5
1x

2
2 + 8x4

1x
3
2 + 12x3

1x
4
2 + 5x2

1x
5
2 + x1x

6
2 − x7

2). (16)

The estimate (14) is the base for the solution of Problem 3.3 formulated in the following
Lemma, for the proof see [19, Lemma 3.17].

Lemma 3.4. Let u ∈ V , x̄ ∈ Ω, p ∈ N, q ∈ [1,∞] and ω̄ > 0 be given. Let {Ap, ϕp, ρp} be the
anisotropy of the corresponding interpolation error function eint

x̄,p. We set νx̄,p by

νx̄,p :=
(
ω̄ρ

1
2
p /(cp,qAp)

) 2q
q(p+1)+2

for q ∈ [1,∞), νx̄,p :=
(
ω̄ρ

1
2
p /Ap

) 2
p+1

for q =∞ (17)

where cp,q :=

(
2(π)

−q(p+1)
2

q(p+1)+2

)1/q

and π = 3.1415 . . . . Then the triangle Kx̄,p with the anisotropy

{hE , σE, φE} given by

hE =

(
ρ

1
p+1
p νx̄,p/π

)1/2

, σE = ρ
1

p+1
p , φE = ϕp − π/2 (18)
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is (almost) the solution of Problem 3.3, namely we have∥∥eint
x̄,p

∥∥
Lq(Kx̄,p)

≤ cp,qApρ−
1
2

p (νx̄,p)
q(p+1)+2

2q = ω̄, q <∞ (19)

and
∥∥eint
x̄,p

∥∥
L∞(Kx̄,p)

≤ Apρ−
1
2

p (νx̄,p)
p+1

2 = ω̄.

Finally, let us note νx̄,p is equal to the area of element (up to a multiplicative constant) and
due to (17), it is related to the local tolerance ω̄. It will be specified in the following section.

3.3 Setting of the size of a triangle

Here, we present only the more complicated case q <∞. We need to set the area νx̄,p of a triangle,
i.e., its size since its ratio was already specified. The main Problem 3.2 requires the error bound
‖u−Πhpu‖Lq(Ω) ≤ ω, where ω > 0 is the given (global) tolerance. In order to set ω̄ in Problem

3.3, we use the implication

‖u−Πhpu‖Lq(Ω) ≤ ω ⇐= ‖u−Πhpu‖Lq(K) ≤ ω (|K|/|Ω|)1/q ∀K ∈ Th (20)

Although the equidistribution condition on the right-hand side of (20) does not guarantee that the
resulting grid is the globally optimal grid, we employ it for the setting of the local tolerance ω̄ in
(17), since we do know how to solve this complex problem in an effective way.

In virtue of (13) and the right-hand side of (20), we require that∥∥eint
x̄,p

∥∥
Lq(Kx̄,p)

≤ ω (νx̄,p/|Ω|)
1
q . (21)

Hence, in order to specify area νx̄,p, using (19) and (21), we set the condition

cp,qApρ
− 1

2
p (νx̄,p)

q(p+1)+2
2q = ω (νx̄,p/|Ω|)

1
q , (22)

which implies

νx̄,p = |Ω|− 2
q(p+1)

(
ωρ

1
2
p /(cp,qAp)

) 2
p+1

. (23)

3.4 Choice of the polynomial approximation degree

In previous sections, we have derived the anisotropy of the optimal triangle Kx̄,p, which minimizes
the norm of the interpolation error function eint

x̄,p on Kx̄,p for any x̄ ∈ Ω and for the arbitrary given
polynomial approximation degree p. In this section, we set the optimal polynomial degree p.

We introduced the so-called density of the number of degrees of freedom by

ηp(x̄) :=
(p+ 1)(p+ 2)

2νx̄,p
, p ∈ N, x̄ ∈ Ω (24)

representing the number of degree of freedom per unit area. Then, for each x̄ ∈ Ω, we choose the
polynomial degree p ∈ N such that the corresponding value ηx̄,p is minimal, i.e., we put

px̄ := arg min
p∈N

ηp(x̄). (25)

Let us note that in practical implementation, the degree p is bounded from above by the maximal
implemented polynomial approximation degree, hence the minimum in (25) always exists.
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3.5 Anisotropic hp-adaptation algorithm

Now we are ready to define the Riemann metricM and the polynomial degree distribution function
P, which generate the hp-mesh Thp by Definitions 2.3 and 2.4, such that Thp is close to the solution
of the main Problem 3.2. We define the following algorithm.
Algorithm (A) (Generation of M(x) and P(x) for x ∈ Ω)
Let u ∈ V , q ∈ [1,∞] and ω > 0 be given. Then

1. For each p = 1, 2, . . . ,

(a) We evaluate the anisotropy of the interpolation error function {Ap, ϕp, ρp} introduced
in Section 3.2.

(b) Using (23), we set the area νp(x) of the triangle Kx,p.

(c) Using relation (18), we define the optimal anisotropy ofKx,p by the triple {hE(x), σE(x), φE(x)}.
(d) Using Definition 2.1, we find matrix Mp(x) defining triangle with the anisotropy {hE(x), σE(x), φE(x)}.
(e) Using (24), we evaluate the quantity ηp(x) := (p+ 1)(p+ 2)/(2νp(x)).

2. We find px ∈ N minimizing ηp(x), i.e. px := arg minp∈N ηp(x).

3. We set M(x) := Mpx(x) and P(x) := px.

Theoretically, we can employ the previous algorithm for any x ∈ Ω. In practical application,
we evaluate M and P only for the finite number of x ∈ Ω and then we continuously interpolate
M and P on Ω.

4 Application of the anisotropic hp-adaptation to steady problems

In Section 3, we presented the algorithm, which generates, for a given function u, the anisotropic
hp-grid such that the interpolation error is under the given tolerance and the number of degrees
of freedom Nhp is small. We apply this algorithm for the numerical solution of a boundary value
problem (BVP).

4.1 Definition of the adaptation process

Let u : Ω → R be the exact solution of the given BVP. The goal is to find a hp-mesh (and the
corresponding space Shp given by (8)) such that the approximate solution uhp ∈ Shp satisfies

‖ũhp −Πhpũhp‖Lq(Ω) ≤ ω, (26)

where ũhp is a higher order reconstruction of the approximate solution uhp, namely ũhp|K ∈
P pK+1(K), K ∈ Th (see Section 4.2 for the definition of this reconstruction). The final (op-
timal) hp-grid is obtained iteratively after several adaptations with the aid of Algorithm (A) from
Section 3.5. Particularly, if uhp is an approximate solution of BVP obtained on the given hp-mesh
Thp then we generate a new (better) mesh T N

hp where the more accurate approximate solution can
be obtained. In the following we describe the implementation of Algorithm (A) with the aid of
the software package ANGENER [20]. If a triangular grid Th is given together with the metric
M evaluated at the barycentres xK of all K ∈ Th, then ANGENER creates a new anisotropic
triangular grid in the sense of Definition 2.3. Therefore, for our purposes, it is sufficient to perform
Algorithm (A) only for xK , K ∈ Th.

4.2 Implementation of Algorithm (A)

Since the optimal mesh is sought iteratively, it makes no sense to test all possible polynomial
approximation degrees in the step (1) of Algorithm (A). Therefore, if K is an element from the
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initial mesh Thp and pK the corresponding polynomial approximation degree then we perform the
step (1) of Algorithm (A) only for p := pK − 1, p := pK and p := pK + 1.

Moreover, in the step (a) of Algorithm (A), we approximate the p+ 1 directional derivative of
uhp for p = pK − 1, pK , pK + 1 in the following way. For each K ∈ Th, we define the patch D(K)
which consists of all K ′ ∈ Th sharing a face with K. Then we define the polynomial function
ũK,p ∈ P p+1(D(K)) by

(ũK,p, φ)1,D(K) = (uhp, φ)1,D(K) ∀φ ∈ P p+1(D(K)), (27)

where P p+1(D(K)) is the space of polynomial functions of degree p+1 on D(K) and (·, ·)1,D(K) is

the H1-scalar product on D(K). Then the partial derivative of degree p+ 1 of ũK,p are constant
on K and in step (a) of Algorithm (A), where we evaluate Ap, ϕp and ρp, we replace u by ũK,p.

Hence, the output of the implemented algorithm are M(xK) ∈ Sym, P(xK) ∈ N ∀K ∈ Th.
The matrices M(xK), K ∈ Th are passed to ANGENER which generates a new mesh T N

h .
Finally, for each vertex xP of the old mesh Th, we set P(xP ) ∈ R+ as the average of P(xK) for
all K having xP as a vertex. Then, we obtain a continuous piecewise linear function P : Ω→ R+

on Th and using (7) we compute the polynomial approximation degrees on the new mesh T N
h .

Remark 4.1. Let us note that it is difficult to achieve the condition (26) in a reasonable small
number of adaptation levels by the applying Algorithm (A) since the algorithm tries to achieve
relation (26) with the equality. Moreover, not all operations in ANGENER are allowed in order
to ensure, e.g., the shape-regularity of the meshes. Therefore, in practice, for given ω we employ
Algorithm (A) with ω := zω where z = 0.1 or z = 0.2.

5 Application of the anisotropic hp-adaptation to time-dependent problems

In previous sections, we described the construction of an anisotropic hp-mesh for the numerical
solution of steady (boundary values) problems. In this section, we extend this approach to the
numerical solution of time-dependent problems given generally by

∂u

∂t
+ A u = 0 in QT := Ω× (0, T ), (28)

where u : Ω × (0, T ) → R is the sought solution, Ω ⊂ R2 is the computational domain, T > 0 is
the final time and A is a (non-linear) differential operator. This equation has to be accompanied
by suitable initial and boundary conditions.

5.1 Space-time discretization

It is advantageous to discretize problem (28) by a method, which simply employ different meshes
on different time levels. Therefore, we employ the space-time discontinuous Galerkin (STDG)
method, e.g., [22, 23, 24, 25, 26].

Let 0 = t0 < · · · < tr = T be a partition of (0, T ), r > 0 is integer and Im = (tm−1, tm),
m = 1, . . . , r. By {v}m we denote the jump of v :

⋃r
m=1 Im → R at tm given by

{v}m = v+
m − v−m, v±m = v(tm±) = lim

t→tm±
v(t) (29)

provided the one-sided limits lim
t→tm±

v(t) exist.

For each time instant tm, m = 0, . . . , r, and interval Im, m = 1, . . . , r, we consider a con-

forming hp-mesh T
(m)
hp . Let S

(m)
hp be the space of (space) piecewise polynomial functions on

T
(m)
hp , m = 0, . . . , r given by (8), we define the space of discontinuous piecewise-polynomial func-

tion on {T (m)
hp , m = 1, . . . , r} by

Sτkhp :=
{
v ∈ L2(QT ); v(x, t)

∣∣
Im

=

k∑
i=0

ti vm,i(x) with vm,i ∈ S(m)
hp , i = 0, . . . , k, m = 1, . . . , r

}
,

(30)
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where the integer k ≥ 0 denotes the polynomial approximation degree with respect to the time
coordinate.

Then, the STDG discretization of (28) reads: wee seek uh ∈ Sτkhp such that∫
Im

((
∂uh
∂t

, vh

)
+ a

(m)
h (uh, vh)

)
dt+

(
{uh}m−1, (vh)+

m−1

)
= 0 ∀vh ∈ Sτkhp , m = 1, . . . , r, (31)

where (·, ·) denotes the L2-scalar product over Ω and a
(m)
h : S

(m)
hp × S

(m)
hp → R represents the

(space) discontinuous Galerkin discretization of the differential operator A . The function (uh)−0
is given by the initial condition. For more details see, e.g., [27, 28].

The coupling between two time levels is performed by the second term in (31)(
{uh}m−1, (vh)+

m−1

)
=
(
(uh)+

m−1, (vh)+
m−1

)
−
(
(uh)−m−1, (vh)+

m−1

)
,

(uh)+
m−1, (vh)+

m−1 ∈ S
(m)
hp , (uh)−m−1 ∈ S

(m−1)
hp ,

where the last term is the integral of the product of a function from T
(m−1)
hp with a function from

T
(m)
hp . Obviously,(

(uh)−m−1, (vh)+
m−1

)
=
(
P

(m)
hp (uh)−m−1, (vh)+

m−1

)
, (vh)+

m−1 ∈ S
(m)
hp

where P
(m)
hp (uh)−m−1 ∈ S

(m)
hp is the L2-projection of (uh)−m−1 ∈ S

(m−1)
hp on the mesh T

(m)
hp . There-

fore, (31) can be replaced by∫
Im

((
∂uh
∂t

, vh

)
+ a

(m)
h (uh, vh)

)
dt+

(
(uh)+

m−1 − P
(m)
hp (uh)−m−1, (vh)+

m−1

)
= 0 (32)

∀vh ∈ Sτkhp , m = 1, . . . , r.

5.2 Implementation comments

The STDG formulation (31) represents a system on nonlinear algebraic equations, which are
solve by a Newton-like method. The Jacobian matrix is replaced by the so-called flux matrix
(see [29]) which can be derived analytically. The Newton-like iterative process is performed until
the algebraic error does not significantly influence the space discretization error. Moreover, the
time step is chosen adaptively is such a way that the discretization error arising from the time
discretization does not significantly influence the space discretization error. A detailed description
of these error estimates for the STDG method is the subject of the forthcoming paper [30].

Let us note that the discontinuous Galerkin discretization with respect to the time is rather
expensive since the size of the corresponding nonlinear algebraic system is proportional to k + 1
(in contrary to, e.g., the Runge-Kutta methods, the BDF schemes). On the other hand, it is very
accurate therefore significantly smaller number of time steps is sufficient, see Table 1 bellow.

5.3 Mesh adaptation

An efficient numerical solution of time-dependent problems requires several re-meshing of grids
during the computational process. However, each re-meshing requires some additional computa-
tional time. Taking into account the mesh adaptation method introduced in the previous sections,
we develop the anisotropic hp-adaptation technique, which control the interpolation error in the
“discrete L∞(0, T ;Lq(Ω))-norm”, namely∥∥∥E(m)

I

∥∥∥
Lq(Ω)

≤ ω ∀m = 0, . . . , r, with E
(m)
I := u−m −Π

(m)
hp u−m, (33)

where u : Ω×(0, T )→ R be the exact solution of (28) and Π
(m)
hp is the projection into S

(m)
hp defined

by (10).
Thus, we formulate the following problem.
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Σ
(m)
M

Σ
(m−1)
M

Σ
(m)
M

Σ
(m−1)
M

ΣM

Fig. 4: The ellipses Σ
(m−1)
M and Σ

(m)
M corresponding to functions P

(m)
hp (uh)−m−n and (uh)−m at a

given node (left) and the corresponding intersection ΣM (right).

Problem 5.1. Let u : Ω× (0, T ) → R be the exact solution of (28), q ∈ [1,∞] be a given degree

of the Lebesgue norm and ω > 0 be a given tolerance. We seek a sequence of hp-grids T
(m)
hp ,

m = 0, . . . , r such that

(P1?) ∥∥∥u−m −Π
(m)
hp u−m

∥∥∥
Lq(Ω)

≤ ω, m = 0, . . . , r, (34)

where Π
(m)
hp is the projection into S

(m)
hp defined by (10),

(P2?) the number of degrees of freedom N
(m)
hp of T

(m)
hp ,m = 0, . . . , r is as small as possible.

The resulting algorithm for the solution of problem (28) is based on the following steps:

(S1) let the inequality from condition (P1?) be satisfied for some m− 1 for a hp-mesh T
(m−1)
hp ,

(S2) we put T
(m)
hp := T

(m−1)
hp and perform the computation between time levels tm−1 and tm on

T
(m)
hp ,

(S3) if (P1?) is valid for m then we put m := m+ 1 proceed to the new step,

(S4) otherwise, we construct new (better) hp-mesh T
(m)
hp and repeat the computation from tm−1

to tm.

The most important aspect is the construction of the hp-mesh T
(m)
hp in step (S4) since we need

to approximate the solution between time levels tm−1 and tm sufficiently accurately. Therefore,

in virtue of (32), we construct T
(m)
hp using the functions P

(m)
hp (uh)−m−1 and (uh)−m. We employ

the technique of an intersection of metrics developed in [31]. At each node of consideration, we
construct two ellipses representing the metric generated by both functions. Then the resulting
metric corresponds to an ellipse having the maximal possible area and which is contained in the
intersection of both original ellipses, see Figure 4. This construction implies that the conditions∥∥∥P (m)

hp (uh)−m−1 −Π
(m)
hp (P

(m)
hp (uh)−m−1)

∥∥∥
Lq(Ω)

≤ ω and
∥∥∥u−m −Π

(m)
hp u−m

∥∥∥
Lq(Ω)

≤ ω

are satisfied for given m.
Figure 5 shows a typical situation in mesh adaptation for time-dependent problems. This

figure shows the value of the interpolation error with respect to the physical time t ∈ (0, T ).
In several steps, the interpolation error is over the tolerance ω and therefore a re-meshing (step
(S4)) is performed (typically accompanied by the decrease of the size of the time step). The node
corresponding to the accepted grids are highlighted.

In the following we present several numerical experiments demonstrating the efficiency of the
proposed algorithm. In all numerical experiments we measure the interpolation error in the L2-
norm (i.e., q = 2 in Problem 5.1).
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Fig. 5: Typical dependence of the interpolation error with respect to the physical time t ∈ (0, T )
during the adaptation process, the accepted grids are highlighted.

6 Numerical verification

We consider the nonlinear convection-diffusion (viscous Burgers) equation

∂u

∂t
+ u

∂u

∂x1
+ u

∂u

∂x2
− ε∆u = 0 in Ω× (0, T ) (35)

with Ω = (−1, 1) × (−1, 1), T = 1, ε = 10−2. The initial and boundary condition are chosen in
such a way that the exact solution has the form

u(x1, x2, t) = (1 + exp ((x1 + x2 + 1− t)/2ε))−1
. (36)

This function contains an interior layer propagating in the direction (1, 1) and its width is propor-
tional to ε. We carried out numerical experiments for piecewise linear and quadratic approximation
with respect to the time (k = 1 and k = 2 in (30)) and with the tolerances ω = 10−3, ω = 10−4

and ω = 10−5.
The results are shown in Table 1, which contains the number of time steps #τm, the number

of different hp-meshes #T
(m)
hp , the maximal used polynomial degree pmax

K , the average size of

the time step τm, the minimal, average and maximal number of degree of freedom N
(m)
hp for all

T
(m)
hp , m = 0, . . . , r, the average and the maximal value of the interpolation error ‖E(m)

I ‖L2(Ω) for

m = 0, . . . , r, the computational errors measured in the L∞(0, T ;L2(Ω))- , L2(0, T ;L2(Ω))-norms
and the L2(0, T ;H1(Ω))-seminorm and the total computational time (CPU) in seconds. Let us

note that N
(m)
hp =

∑
K∈T

(m)
hp

(k + 1)(pK + 1)(pK + 2)/2.

We observe that all computations fulfil condition (P1?) from Problem 5.1 and the ratios

maxm=0,...,r ‖E(m)
I ‖L2(Ω)

‖eh‖L∞(0,T ;L2(Ω))
,

maxm=0,...,r ‖E(m)
I ‖L2(Ω)

‖eh‖L2(0,T ;L2(Ω))
and

maxm=0,...,r ‖E(m)
I ‖L2(Ω)

‖eh‖L2(0,T ;H1(Ω))

are practically independent of ω and k. Moreover, comparing results for k = 1 and k = 2 we find
that both give approximately the same computational errors (for the same ω) but the higher order
method (k = 2) is faster although it employs the higher number of DOF. It is caused by the fact
that the due to its high accuracy, the time steps can be chosen longer.

Furthermore, Figure 6 shows the development of the computational error in the L2(Ω)- and

L∞(0, tm;L2(Ω))-norms and the value of the interpolation error E
(m)
I during the computation.

We observe that the computational as well as interpolation errors decrease after each re-meshing
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N
(m)
hp ‖E(m)

I ‖L2(Ω) ‖u− uh‖ comput.

k ω #τm #T
(m)

hp pmax
K τm min aver max aver max L∞(L2) L2(L2) L2(H1) time(s)

1 10−3 316 22 4 3.16E-03 786 1214 1706 5.04E-04 9.96E-04 2.98E-03 1.75E-03 1.35E-01 157.9

1 10−4 882 28 5 1.13E-03 1696 2615 6058 5.10E-05 9.98E-05 3.39E-04 1.92E-04 1.57E-02 1004.8
(EOC) ( 5.67) ( 5.76) ( 5.60)

1 10−5 3222 37 7 3.10E-04 2458 4420 37026 5.87E-06 1.00E-05 3.73E-05 1.61E-05 1.39E-03 7843.6
(EOC) ( 8.41) ( 9.46) ( 9.23)

2 10−3 152 21 4 6.57E-03 1377 1793 2544 3.67E-04 9.90E-04 2.24E-03 1.07E-03 9.19E-02 133.5

2 10−4 239 25 6 4.17E-03 2313 3880 12822 4.15E-05 9.99E-05 2.94E-04 1.41E-04 1.15E-02 621.5
(EOC) ( 5.26) ( 5.26) ( 5.38)

2 10−5 429 36 7 2.33E-03 3333 5800 44772 6.21E-06 9.99E-06 2.70E-05 1.29E-05 1.15E-03 2620.6
(EOC) ( 11.86) ( 11.87) ( 11.45)

Tab. 1: Example (35) – (36), characteristics of the mesh adaptation processes and the correspond-
ing computational errors.

and each mesh can be employed for several time steps which save the total computational time.
This effect is a consequence of the choice of tolerance mentioned in Remark 4.1.

Finally, Figure 7 shows the anisotropic hp-grids generated by the algorithm for k = 2 with
the tolerances ω = 10−3 and ω = 10−5 at time levels t = 0, t = 0.5 and t = 1. Each triangle
is highlighted by the colour corresponding to the polynomial approximation degree. A strong
anisotropic refinement along the moving front is obvious.

7 Application to the numerical solution of the compressible Navier-Stokes
equations

7.1 Modification of the algorithm

Our aim is to extend the technique introduced in Section 5 to more challenging problems, namely to
simulation of viscous compressible flows described by the Navier-Stokes equations. For their form,
see, e.g., [32] and for their DG discretization, e.g., [33, 29]. These problems are more complicated
since they can involve several physical features. A typical example is the shock-vortex interaction
presented in Section 7.2. The problem contains the shock wave and an isotropic vortex. The
shock wave is (almost) discontinuous and thus a numerical approximation of the corresponding
directional derivatives gives very large values. On the other hand, the directional derivatives
corresponding to the vortex are significantly smaller. Therefore, a direct application of Algorithm
(A) causes (based on the prescribed tolerance) either adaptation only along the shock wave or
enormous large number of triangles. Hence, we develop the following limitation.

We prescribe the minimal edge of the element `min and require that all edges of all triangles
are longer then `min. Namely, after the step (d) of Algorithm (A) we perform the following steps:

h⊥ := max(`min, hE(x)/σE(x)), hE(x) := h⊥σE(x), x ∈ Ω. (37)

It means that the aspect ratio σE is unchanged in the limitation. Concerning the choice of `min

we use the following heuristic consideration. We expect that the numerical capturing of the shock
wave should have the width ≈ Re−1, where Re is the Reynolds number. Moreover, taking into
account that the DG discretization has p + 1 degrees of freedom in one direction, then we put
`min := (pE + 1)/Re, where pE is the tested polynomial degree in Algorithm (A). Numerical
experiments shows that this limitations avoids the drawback mentioned above. Finally, let us
not that in order to ensure the convergence of the adaptation algorithm for the time dependent
problems, the condition (33) is weaken, namely we replace Ω by Ω \ Ω′, where Ω′ ⊂ Ω and Ω′

contains elements where the limitation (37) was non-trivially performed.
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Fig. 7: Example (35) – (36), k = 2, ω = 10−3 (top) and ω = 10−5 (bottom), the hp-grids at t = 0
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N
(m)
hp ‖E(m)

I ‖L2(Ω) comput.

ω #τm #T
(m)

hp pmax
K τm min aver max aver max time(s)

8 · 10−4 16 6 5 4.12E-02 29076 47093 69528 5.48E-04 7.89E-04 1387.2
4 · 10−4 31 7 5 2.23E-02 42816 84916 101160 2.21E-04 3.86E-04 3783.1
2 · 10−4 30 9 6 2.32E-02 51024 88407 105948 1.33E-04 1.98E-04 4900.1
1 · 10−4 37 12 7 1.88E-02 70536 100744 122436 5.58E-05 9.86E-05 8051.1

Tab. 2: Viscous shock-vortex interaction, characteristics of the mesh adaptation processes and the
corresponding computational errors.

7.2 Numerical simulation of viscous shock-vortex interaction

Similarly as in [34, 35, 36, 29], we consider the viscous interaction of a plane weak shock wave
with a single isentropic vortex. During the interaction, acoustic waves are produced, and we
investigate the ability of the numerical scheme to capture these waves. The computational domain
is Ω = (0, 2) × (0, 2) with the periodic extension in the x2-direction. A stationary plane shock
wave is located at x1 = 1. The prescribed pressure jump through the shock is pR − pL = 0.4,
where pL and pR are the pressure values from the left and right of the shock wave, respectively,
corresponding to the inlet (left) Mach number ML = 1.1588. The reference density and velocity are
those of the free uniform flow at infinity. In particular, we define the initial density, x1-component
of velocity and pressure by

ρL = 1, uL = MLγ
1/2, pL = 1, ρR = ρLK1, uR = uLK

−1
1 , pR = p1K2,

where

K1 =
γ + 1

2

M2
L

1 + γ−1
2 M2

L

, K2 =
2

γ + 1

(
γM2

L −
γ − 1

2

)
.

Here, the subscripts L and R denote the quantities at x < 1 and x > 1, respectively, γ = 1.4 is the
Poisson constant. The Reynolds number is 2000. An isolated isentropic vortex centered at (0.5, 1)
is added to the basic flow. The angular velocity in the vortex is given by

vθ = c1r exp(−c2r2), c1 = uc/rc, c2 = r−2
c /2, r = ((x1 − 0.5)2 − (x2 − 1)2)1/2,

where we set rc = 0.075 and uc = 0.5. The computations are stopped at the dimensionless time
T = 0.7.

We solved this problem with the aid of Algorithm (A) with the modification presented in
Section 7.1. The density ρ is used as the quantity u in (33) and in condition (P1?) of Problem 5.1
We carried out the computations with quadratic approximation with respect to the time (k = 2
in (30)) and with the tolerances ω = 8 · 10−4, ω = 4 · 10−4, ω = 2 · 10−4 and ω = 10−4.

The results are shown in Table 2, which contains the number of time steps #τm, the number

of different hp-meshes #T
(m)
hp , the maximal used polynomial degree pmax

K , the average size of

the time step τm, the minimal, average and maximal number of degree of freedom N
(m)
hp for all

T
(m)
hp , m = 0, . . . , r, the average and the maximal value of the interpolation error ‖E(m)

I ‖L2(Ω)

for m = 0, . . . , r and the total computational time (CPU) in seconds. Let us note that N
(m)
hp =∑

K∈T
(m)

hp

4(k + 1)(pK + 1)(pK + 2)/2. We observe that all computations fulfil condition (P1?)

from Problem 5.1.
Furthermore, Figure 8 shows the anisotropic hp-grids generated by the algorithm for at the

final time level t = 0.7. Each triangle is highlighted by the colour corresponding to the polynomial
approximation degree. A strong anisotropic refinement along the shock wave is obvious. Finally,
Figure 9 shows the pressure isolines at several time levels simulating the interaction of the vortex
with the stationary shock wave.
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Fig. 8: Viscous shock-vortex interaction: hp-grids, total view (left) and a zoom (right).
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t = 0.2 t = 0.3 t = 0.4

t = 0.5 t = 0.6 t = 0.7

Fig. 9: Viscous shock-vortex interaction: ω = 10−4, pressure isolines at t = 0.2, t = 0.3, t = 0.4,
t = 0.5, t = 0.6 and t = 0.7.

Conclusion and outlook

We developed the technique for the numerical solution of time dependent partial differential equa-
tions, which generates anisotropic hp-grids based on the interpolation error estimates in the dis-
crete L∞(0, T ;Lq(Ω))-norm, q ∈ [1,∞]. These grids can be employed for the numerical solution
with the aid of the space-time discontinuous Galerkin method. Although the presented numerical
examples show the efficiency of this approach, we have no information about the computational
error. We suppose that it will be possible to combine this approach with some a posteriori error
estimation technique. Particularly, we expect that a posteriori error estimate gives us the informa-
tion about the size of the error and the presented technique about the anisotropy of the elements.
This is the subject of the future research.
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[9] V. Doleǰśı, Anisotropic mesh adaptation for finite volume and finite element methods on
triangular meshes, Comput. Vis. Sci. 1 (3) (1998) 165–178.
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[14] A. Loseille, R. Löhner, Boundary layer mesh generation and adaptivity, in: 49th AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,
2011.

[15] R. B. Simpson, Anisotropic mesh transformations and optimal error control, Applied Numer.
Math. 14 (1994) 183–198.

[16] O. C. Zienkiewicz, J. Wu, Automatic directional refinement in adaptive analysis of compress-
ible flows, Int. J. Numer. Methods Engrg. 37 (13) (1994) 2189–2210.

[17] W. Cao, Anisotropic measures of third order derivatives and the quadratic interpolation error
on triangular elements, SIAM J. Sci. Comput. 29 (2) (2007) 756–781.

[18] W. Cao, An interpolation error estimate in R2 based on the anisotropic measures of higher
order derivatives, Math. Comp. 77 (261) (2008) 265–286.
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ENO, Ph.D. thesis, Universite Mediterranee, Marseille and Czech Technical University Prague
(2001).

[36] C. Tenaud, E. Garnier, P. Sagaut, Evaluation of some high-order shock capturing schemes
for direct numerical simulation of unsteady two-dimensional free flows, Int. J. Numer. Meth.
Fluids 126 (2000) 202–228.




