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Abstract

We present a new adaptive higher-order finite element method (hp-FEM) for the solution of
boundary value problems formulated in terms of partial differential equations (PDEs). The method
does not use any information about the solved problem which makes it robust and equation-
independent. It employs a higher-order reconstruction scheme over local element patches which
makes it faster and easier to parallelize compared to hp-adaptive methods that are based on the
solution of a reference problem on a globally hp-refined mesh. The method can be used for the
solution of linear as well as nonlinear problems discretized by conforming or non-conforming finite
element methods, and it can be combined with arbitrary a posteriori error estimators.
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1. Introduction

Adaptive methods are an efficient tool for the numerical solution of PDEs. Automatic mesh
refinement or, more generally, an enhancement of the functional space where the approximate
solution is sought, can significantly reduce the computational cost. A prominent place among
adaptive methods has the hp-FEM which leads to unconditional exponential convergence [1–4].

Various approaches to automatic adaptivity include refining an element without increasing its
polynomial degree (h-refinement), increasing the polynomial degree of an element without spatial
subdivision (p-refinement), and performing refinements that combine spatial splitting of an element
with various distributions of the polynomial degrees in subelements (genuine hp-refinement [5, 6]).

To achieve exponential convergence, large higher-order elements must be used where the solu-
tion is smooth, and at the same time small low-order elements must be used where the solution
exhibits non-smooth features such as singularities or internal/boundary layers. Therefore it would
seem that looking at the smoothness of the solution is the best way to design a hp-adaptive
method. However, hp-adaptive strategies based on smoothness estimation usually can only de-
cide between h- and p-refinements because they do not have enough information to select optimal
genuine hp-refinements [7–9].

To take full advantage of genuine hp-refinements, one has to obtain a better information about
the error – not only as an error estimate in the form of a number per element, but about its shape
as a function that is defined inside an element. This can be done by solving a reference problem
on a globally hp-refined mesh [5, 6, 10]. It leads to superior convergence rates in terms of degrees
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Preprint submitted to Applied Mathematics and Computation June 19, 2015



of freedom, but the reference problem tends to be huge and therefore the convergence is rather
slow in terms of computing time.

In this paper we propose a novel method for automatic hp-adaptivity that is guided by the
approximation error, but it removes the tedious computation of the global reference solution.
Instead, it calculates a more accurate approximation on local element patches constructed for each
element separately. With the aid of weighted least square reconstruction, we construct piecewise
polynomial function which approximate the exact solution. The presented hp-adaptive strategy
is based on the comparing of the higher-order reconstruction with the approximate solution uh
and its L2-projections to lower-degrees polynomial spaces. Then, for each candidate, we directly
estimate the number of degrees of freedom necessary to achieve a local tolerance for each element
and propose a new (better) polynomial approximation degree and a new (better) element size.
Consequently, a new triangular grid is constructed.

Although we originally developed this technique for the discontinuous Galerkin method, it can
be simply modified to other types of finite element approximations including conforming finite
elements, mixed finite elements, etc. Moreover, since this approach is based on the reconstruction
of the approximate solution, we can employ it for arbitrary (linear as well as non-linear) boundary
value problems. Finally, its extension to 3D problems is straightforward.

The outline of the paper is as follows: In Section 2, we introduce the governing equations
and their discretization by the discontinuous Galerkin method. In Section 3, we introduce the
higher-order reconstruction technique and formulate the saturation assumption. Its validity is
numerically demonstrated in Section 4. The main novelty of this paper is presented in Section
5, where we present the hp-adaptive strategy. In Section 6, we present three numerical examples
that demonstrate the performance and robustness of the proposed method.

2. Problem description

2.1. Governing equations

We consider the nonlinear convection-diffusion problem

∇ · f(u)−∇ · (K(u)∇u) = g(x), (1a)

u |∂ΩD = uD, (1b)

K(u)
∂u

∂n
|∂ΩN = gN , (1c)

where u : Ω→ R is an unknown scalar function defined on Ω ∈ R2. We assume that Ω is polygonal
for simplicity. Moreover, f(u) = (f1(u), f2(u)) : R → R2 and K(u) = {Kij(u)}2i,j=1 : R → R2×2

are nonlinear functions of their arguments, n is the unit outer normal to ∂Ω and ∅ 6= ∂ΩD∪∂ΩN =
∂Ω are disjoint parts of the boundary of Ω. Symbols ∇ and ∇· mean the gradient and divergence
operators, respectively.

We assume that fs ∈ C1(R), fs(0) = 0, s = 1, 2, K is bounded and positively definite,
g ∈ L2(Ω), uD is the trace of some u∗ ∈ H1(Ω) ∩ L∞(Ω) on ∂ΩD and gN ∈ L2(∂ΩN ). We use
the standard notation for function spaces (see, e. g., [11]): Lp(Ω) denote the Lebesgue spaces,
W k,p(Ω), Hk(Ω) = W k,2(Ω) are the Sobolev spaces and P k(M) denotes the space of polynomial
functions of degree ≤ k defined on the domain M ⊂ R2. Let us note that any function from
P k(M) can be interpreted as a polynomial function defined on R2 restricted to M . By φ|M we
denote the restriction of a function φ on M .

In order to introduce the weak solution, we define the spaces

V := {v; v ∈ H1(Ω), v|∂ΩD = 0}, W := {v; v ∈ H1(Ω), v − u∗ ∈ V }. (2)

We say that function u is the weak solution of (1), if the following conditions are satisfied

u ∈W ∩ L∞(Ω), (3a)∫
Ω

[∇ · f(u) v + (K(u)∇u) · ∇v] dx =

∫
Ω

gv dx+

∫
∂ΩN

u v dS ∀v ∈ V. (3b)

2



The assumption u ∈ L∞(Ω) in (3) guarantees the boundedness of functions f(u) and K(u) and
therefore the existence of the integrals in (3a). This assumption can be weakened if functions f(u)
and K(u) satisfy some growth conditions.

2.2. Discretization of the problem

Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite number of triangles
K with mutually disjoint interiors. We call Th = {K}K∈Th a triangulation of Ω and for simplicity,
we assume that Th satisfies the conforming properties from the finite element method, see, e.g,
[12]. The diameter of K ∈ Th is denoted by hK .

By Fh we denote the set of all open edges of all elements K ∈ Th. Further, the symbol F I
h

stands for the set of all Γ ∈ Fh that are contained in Ω (inner edges). Moreover, we introduce
notations FD

h and FN
h for the sets of all Γ ∈ Fh such that Γ ⊂ ∂ΩD and Γ ⊂ ∂ΩN , respectively.

In order to simplify the notation, we put F ID
h = F I

h ∪FD
h and FB

h = FD
h ∪FN

h (superscript B

as boundary). Finally, for each Γ ∈ Fh, we define a unit normal vector nΓ. We assume that for
Γ ∈ FB

h the vector nΓ has the same orientation as the outer normal of ∂Ω. For nΓ, Γ ∈ F I
h , the

orientation is arbitrary but fixed for each edge.
Over the triangulation Th we define the so-called broken Sobolev space Hs(Ω,Th) := {v; v|K ∈

Hs(K) ∀K ∈ Th}, s ≥ 0 with the seminorm |v|Hs(Ω,Th) :=
(∑

K∈Th
|v|2Hs(K)

)1/2

, where | · |Hs(K)

denotes the seminorm of the Sobolev space Hs(K), K ∈ Th.
Moreover, to each K ∈ Th, we assign a positive integer pK (=local polynomial degree). Then

we define the set p := {pK ,K ∈ Th} and the finite-dimensional subspace of H2(Ω,Th) which
consists of discontinuous piecewise polynomial functions associated with the vector p by

Sp
h = {v; v ∈ L2(Ω), v|K ∈ PpK (K) ∀K ∈ Th}, (4)

where PpK (K) denotes the space of all polynomials on K of degree ≤ pK , K ∈ Th. The dimension
of Sp

h is called the number of degrees of freedom (DOF) which satisfies

DOF := dimSp
h =

∑
K∈Th

(pK + 1)(pK + 2)/2. (5)

The pair {Th, p} is called the hp-mesh and we use the notation T p
h := {Th, p}. The hp-mesh

T p
h uniquely corresponds to the space Sp

h and vice-versa.
For the purpose of the presented hp-adaptation method, we also define the space

Sp+1
h := {vh ∈ L2(Ω); vh|K ∈ P pK+1(K) ∀K ∈ Th}. (6)

Obviously, Sp
h ⊂ S

p+1
h ⊂ H2(Ω,Th).

Furthermore, let Γ ∈ F I
h , v ∈ H2(Ω,Th), by v|(+)

Γ and v|(−)
Γ we denote the trace of v on Γ

from the direction and from the opposite direction of nΓ, respectively. Moreover, by 〈v〉Γ and
[[v]]Γ we denote the mean value and the jump of v on Γ , respectively. Finally, for Γ ∈ FB

h , we put

〈v〉Γ = [[v]]Γ := v|(+)
Γ . In case that nΓ, [[·]]Γ and 〈·〉Γ are arguments of

∫
Γ
. . . dS, Γ ∈ Fh, we omit

the subscript Γ and write simply n, [[·]] and 〈·〉, respectively.
We discretize equation (1a) with the aid of the interior penalty Galerkin (IPG) variant of the

discontinuous Galerkin (DG) method in the same way as in [13, 14]. For u, v ∈ H2(Ω,Th) we
define the form ah : H2(Ω,Th)×H2(Ω,Th)→ R by

ah(u, v) :=
∑

Γ∈Fh

∫
Γ

H(u|(+)
Γ , u|(−)

Γ ,n) [[v]] dS −
∑
K∈Th

∫
K

f(u) · ∇v dx (7)

+
∑
K∈Th

∫
K

K(u)∇u · ∇v dx+
∑

Γ∈FI
h

∫
Γ

(
−〈K(u)∇u〉 · n[[v]] + g 〈K(u)∇v〉 · n[[u]] + σ[[u]] [[v]]

)
dS

+
∑

Γ∈FD
h

∫
Γ

(
−K(u)∇u · n v + gK(u)∇v · n (u− uD) + σ(u− uD) v

)
dS − (g, v)− (gN , v)N ,
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where g = −1, 0 and 1 for SIPG, IIPG and NIPG variants of discontinuous Galerkin method,
respectively, the penalty parameter σ is chosen by σ|Γ = εCWh

−1
Γ , Γ ∈ Fh, where hΓ =

diam(Γ), Γ ∈ Fh, ε denotes the amount of diffusion (≈ K(·)) and CW > 0 is a suitable con-
stant which guarantees the convergence of the method. The function H in (7) is the numerical
flux, well-known from finite volume methods (see, e.g., [15], Section 3.2), which approximates

convective flux by f(u) · n ≈ H
(
u|(+)

Γ , u|(−)
Γ ,n

)
on an element edge. On ∂ΩD the value u|(−)

Γ

is taken from the boundary conditions (1b) and on ∂ΩN the value u
(−)
Γ is extrapolated from

the interior of Ω. We shall assume that the numerical flux is conservative and consistent, i.e.,
H(u, v,n) = −H(v, u,−n) and H(u, u,n) = f(u) · n, respectively, see [13] for details.

We say that function uh ∈ Sp
h is an approximate solution of (3), if

ah(uh, vh) = 0 ∀vh ∈ Sp
h. (8)

The problem (8) represents a system of nonlinear algebraic equations, which we solve by a damped
Newton-like method, where the Jacobi matrix is replaced by the flux matrix that arises by a partial
linearization of the form ah. More details, including the used stopping criteria, can be found in
[16].

The time-dependent variant of (1) was analysed in [17], see also [18], where quasilinear elliptic
boundary value problems were considered. Hence, the approximate solution satisfies the following
a priori error estimate

‖u− uh‖DG ≤ C
∑
K∈Th

h2µK−2
K

p2sK−3
K

‖u‖2HµK (K), (9)

where u and uh are the exact and the approximate solution, respectively, C > 0 is a constant
independent of h and pK , K ∈ Th, pK is the polynomial approximation degree on K, sk denotes
the local Sobolev regularity of the exact solution on K (i.e., u|K ∈ HsK (K), K ∈ Th), µK =
min(pK + 1, sK) and the DG-norm is defined by

‖v‖DG :=
(
|v|2H1(Ω,Th) + ‖v‖2J

)1/2

, where ‖v‖2J :=
∑

Γ∈FI
h

∫
Γ

σ[[v]]2 dS +
∑

Γ∈FD
h

∫
Γ

σv2 dS.

(10)

In the following we going to estimate the error in the brokenH1-seminorm, i.e., |u− uh|H1(Ω,Th).

It will be more rigorous to estimate the error in the DG-norm but since [[uh − u]]|Γ = [[uh]]|Γ, Γ ∈
F I
h and u|Γ = uD, Γ ∈ FD

h , we have

‖u− uh‖2DG = |u− uh|2H1(Ω,Th) + ‖u− uh‖2J = |u− uh|2H1(Ω,Th) +
∑

Γ∈FD
h

∫
Γ

σ(uD − uh)2 dS.

The last term can be evaluated directly.

3. Error estimates based on a higher-order reconstruction

In [19–21], authors compute a reference solution uref ∈ Sp+1
h/2 on a globally refined mesh with an

increased polynomial degree of elements, to guide automatic hp-adaptivity. The reference solution
is defined by

ah
2
(uref , vh) = 0 ∀vh ∈ Sp+1

h/2 , (11)

where ah
2

is defined by (7) on the triangular mesh Th/2, which arises by the refinement of Th,

where each K ∈ Th is split onto 4 sub-triangles by connecting the middles of its edges, and

Sp+1
h/2 := {vh ∈ L2(Ω); vh|K′ ∈ P pK+1(K ′) ∀K ′ ∈ Th/2}. (12)
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Then the error indicator is defined by

η̃K := ‖uh − uref‖K ∀K ∈ Th. (13)

However, the computation of the reference solution by the solution of (11) is time consuming.
Our idea is to obtain an analogue to the reference solution without the necessity to solve the

large global problem (11). We employ a high-order piecewise polynomial reconstruction for local
element patches.

3.1. Higher-order reconstruction

Let uh ∈ Sp
h be the approximate solution given by (8). Our aim is to construct for each K ∈ Th

a function ũK ∈ P pK+1(K) such that it approximate the exact solution on K better than uh, i.e.,

|ũK − u|K | � |uh|K − u|K | , K ∈ Th. (14)

In order to construct ũK , we use a weighted least square approximation from the elements
sharing at least a vertex with K. Let K ∈ Th, we denote by DK the patch

DK := K ∪ {K ′ ∈ Th; K ′ share at least a vertex with K} (15)

and wK′ > 0, K ′ ∈ DK be the weights. Then we define a function ŨK ∈ P pK+1(DK) by

ŨK := arg min
Uh∈PpK+1(DK)

∑
K′∈DK

wK′‖Uh − uh‖2H1(K′). (16)

The existence and uniqueness of ŨK follows from the fact that P pK+1(DK) is a complete finite-
dimensional space. Examples of patches DK corresponding to interior and boundary elements are
shown in Fig. 1.

Figure 1: Examples of patches DK corresponding to interior and boundary elements.

3.2. Higher-order reconstruction

Let ϕi, i = 1, . . . , dK be basis function of P pK+1(K) which can be extended as polynomials
to P pK+1(DK). Obviously, dK := dimP pK+1(DK) = (pK + 2)(pK + 3)/2. Then problem (16) is
equivalent to the linear algebraic system

Ax = b, A = {Ai,j}dKi,j=1, Ai,j =
∑

K′∈DK

wK′(ϕi, ϕj)1,K′ , i, j = 1, . . . , dK , (17)

b = {bi}dKi=1, bi =
∑

K′∈DK

wK′(uh, ϕi)1,K′ , i, j = 1, . . . , dK ,
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where (·, ·)1,K′ denotes the scalar product generating the H1-norm on K ′ ∈ DK defined by

(v, w)1,K′ =

∫
K′

(v w +∇v · ∇w) dx.

Let x = (x1, . . . , xdK )T be the solution of (17) then ŨK =
∑dK
i=1 xiϕi. Finally, we put

ũK := ŨK |K , (18)

where ŨK is given by (16). Concerning the weights wK′ , K
′ ∈ DK , we use the values

wK′ :=

{
1 if K ′ = K or K and K ′ are neighbours,
ε otherwise,

(19)

where ε > 0 is a small parameter. In the computations presented here, we use the value ε = 0.05.
Let us note that if pK′ = p ∀K ′ ∈ DK , then the numerical experiments shows that it is possible to
use ε = 0. However, when polynomial degrees are varying on DK it is better to add the influence
from the triangles sharing only a vertex. Otherwise, the reconstruction is not stable. However,
numerical experiments show that the results are not too sensitive to the choice of ε, e.g., the values
ε = 0.02 or ε = 0.1 give similar results.

Finally, we define the higher order reconstruction of uh ∈ Sp
h by an element-wise compositions

of the restrictions of ũK on K ∈ Th, i.e.,

ũh ∈ Sp+1
h : ũh|K := ũK ∀K ∈ Th, (20)

where ũK is given by (18).

3.3. Saturation assumption

By (20), we defined higher-order polynomial reconstruction ũh which should better approxi-
mate the exact solution than the approximate one uh. This property is formulated as the saturation
assumption, which will be verified numerically in Section 4 by two examples.

Assumption 1. Let u ∈ V be the exact solution of (3) and uh ∈ Sp
h be the approximate solution

given by (8). Let ũh ∈ Sp+1
h be the higher-order reconstruction defined by (20). Then we assume

that

eh := u− uh ≈ ũh − uh =: Eh in Ω, (21)

where eh denotes the discretization error and Eh its approximation by the higher-order reconstruc-
tion.

The quantity Eh is used for the definition of the presented hp-adaptation strategy. Moreover,
in this paper, we employ (21) also for the estimation of the error. Therefore, we define the global
and element error indicators by

η := |Eh|H1(Ω,Th) and ηK := |Eh|H1(K) ∀K ∈ Th. (22)

Obviously, η2 =
∑
K∈Th

η2
K . However, generally, η and ηK can be replaced by another error

estimators or indicators appearing in the literature.

4. Verification of assumption (21)

In this section we numerically verify the saturation assumption (21) by two (linear and nonlin-
ear) convection-diffusion equations: The first one gives a regular solution with two weak boundary
layers and the second one contains a corner singularity. For both problems, we carried out compu-
tations using P p, p = 1, . . . , 6 polynomial approximation on uniform triangular meshes with mesh
spacing h = 1/8, h = 1/16, h = 1/32 and h = 1/64.
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For each computation, we evaluate the error eh = u− uh and its estimate Eh = ũh − uh in the
broken H1-seminorm, and the effectivity index given by

ieff :=
|Eh|H1(Ω,Th)

|eh|H1(Ω,Th)

. (23)

We also plot the local distribution of the error |eh|H1(K), K ∈ Th and its estimator |Eh|H1(K), K ∈
Th for selected cases. Moreover, we evaluate the experimental order of convergence (EOC) with
respect to h according to the formulae |eh| ≈ c hEOC.

4.1. Regular problem

We consider the scalar linear convection-diffusion equation (similarly as in [22], [23])

−ε4u− ∂u

∂x1
− ∂u

∂x2
= g in Ω = (0, 1)2, (24)

where ε = 0.1 is a constant diffusion coefficient. We prescribe a Dirichlet boundary condition on
∂Ω and the source term g such that the exact solution has the form

u(x1, x2) =
(
c1 + c2(1− x1) + e−x1/ε

)(
c1 + c2(1− x2) + e−x2/ε

)
(25)

with c1 = −e−1/ε, c2 = −1 − c1. The solution contains two weak boundary layers along x1 = 0
and x2 = 0, whose width is proportional to ε.

Table 1 shows the achieved results. We observe that except the P6-approximation (caused
probably by the limits of the finite precision arithmetic), the index ieff is not far from 1. Moreover,
we detect something like asymptotic exactness. Furthermore, Fig. 2 shows the distribution of the
computational error in the broken H1-seminorm and its estimate in the computational domain
for selected computations. We observe that |eh|H1(K) and |Eh|H1(K) have similar distribution for
K ∈ Th. Therefore, Eh approximate eh well also locally.

h p |eh|H1(Ω,Th) EOC |Eh|H1(Ω,Th) EOC ieff

1/8 1 5.04E-01 – 3.58E-01 – 0.71
1/16 1 2.69E-01 0.91 2.25E-01 0.67 0.84
1/32 1 1.37E-01 0.97 1.27E-01 0.82 0.93
1/64 1 6.89E-02 0.99 6.78E-02 0.91 0.98
1/8 2 9.46E-02 – 8.14E-02 – 0.86
1/16 2 2.62E-02 1.85 2.44E-02 1.74 0.93
1/32 2 6.76E-03 1.96 6.56E-03 1.90 0.97
1/64 2 1.71E-03 1.99 1.69E-03 1.96 0.99
1/8 3 1.56E-02 – 1.89E-02 – 1.21
1/16 3 2.21E-03 2.82 2.67E-03 2.83 1.21
1/32 3 2.85E-04 2.95 3.19E-04 3.06 1.12
1/64 3 3.58E-05 2.99 3.75E-05 3.09 1.05

h p |eh|H1(Ω,Th) EOC |Eh|H1(Ω,Th) EOC ieff

1/8 4 2.29E-03 – 4.99E-03 – 2.18
1/16 4 1.64E-04 3.81 3.75E-04 3.73 2.29
1/32 4 1.05E-05 3.95 2.02E-05 4.22 1.91
1/64 4 6.62E-07 3.99 9.58E-07 4.40 1.45
1/8 5 2.78E-04 – 1.22E-03 – 4.40
1/16 5 9.97E-06 4.80 4.95E-05 4.63 4.97
1/32 5 3.21E-07 4.96 1.31E-06 5.24 4.08
1/64 5 1.01E-08 5.00 2.78E-08 5.56 2.76
1/8 6 2.83E-05 – 2.86E-04 – 10.09
1/16 6 5.09E-07 5.80 6.20E-06 5.53 12.17
1/32 6 8.20E-09 5.96 8.30E-08 6.22 10.13
1/64 6 1.28E-10 6.00 8.59E-10 6.59 6.69

Table 1: Regular problem (24) – (25): the computational errors in the broken H1-seminorm with their estimates
and the effectivity indexes.

4.2. Singular problem

We consider the scalar nonlinear convection-diffusion equation

−∇ · (K(u)∇u)− ∂u2

∂x1
− ∂u2

∂x2
= g in ω := (0, 1)2, (26)

u = uD on ∂Ω,
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P1, h = 1/8 P3, h = 1/32 P6, h = 1/64

    0.0Ε+00     5.0Ε−01     1.0Ε+00
  3.73E-03  3.73E-03

  6.65E-03  6.65E-03

  1.19E-02  1.19E-02

  2.11E-02  2.11E-02

  3.76E-02  3.76E-02

  6.71E-02  6.71E-02

  1.20E-01  1.20E-01

|eh|H1(K)

    0.0Ε+00     5.0Ε−01     1.0Ε+00
  4.13E-10  4.13E-10

  3.21E-09  3.21E-09

  2.49E-08  2.49E-08

  1.93E-07  1.93E-07

  1.50E-06  1.50E-06

  1.17E-05  1.17E-05

  9.06E-05  9.06E-05

|eh|H1(K)

    0.0Ε+00     5.0Ε−01     1.0Ε+00
  1.65E-17  1.65E-17

  1.77E-16  1.77E-16

  1.90E-15  1.90E-15

  2.04E-14  2.04E-14

  2.19E-13  2.19E-13

  2.36E-12  2.36E-12

  2.53E-11  2.53E-11

|eh|H1(K)

    0.0Ε+00     5.0Ε−01     1.0Ε+00
  2.53E-03  2.53E-03

  4.55E-03  4.55E-03

  8.20E-03  8.20E-03

  1.48E-02  1.48E-02

  2.66E-02  2.66E-02

  4.80E-02  4.80E-02

  8.64E-02  8.64E-02

|Eh|H1(K)

    0.0Ε+00     5.0Ε−01     1.0Ε+00
  4.63E-10  4.63E-10

  3.46E-09  3.46E-09
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Figure 2: Regular problem (24) – (25): local distribution of the computational error ‖eh‖H1(K), K ∈ Th (top)

and its estimate |Eh|H1(K), K ∈ Th (bottom) for the selected computations.

where K(u) is the nonsymmetric matrix given by

K(u) = ε

(
2 + arctan(u) (2− arctan(u))/4

0 (4 + arctan(u))/2

)
. (27)

The parameter ε > 0 plays a role of an amount of diffusion and we put ε = 10−3. We prescribe a
Dirichlet boundary condition uD on ∂Ω and set the source term g such that the exact solution is

u(x1, x2) = (x2
1 + x2

2)α/2x1x2(1− x1)(1− x2), α ∈ R. (28)

We put α = −3/2. It is possible to show (see [24]) that u ∈ Hκ(ω), κ ∈ (0, 3/2). where Hκ(ω)
denotes the Sobolev-Slobodetskii space of functions with ”non-integer derivatives”.

Table 2 shows the achieved results. We observe reasonable values of the indexes iL2 and iH1 ,
they indicate h-independence and a weak p-dependence. Moreover, Fig. 3 shows the distribution
of the computational error in the H1-seminorm and its estimate in the computational domain for
selected computations. Again, the distributions of |eh|H1(K) and |Eh|H1(K) are similar for K ∈ Th.
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Some exception is the case P6 and h = 1/64, when the error is many time underestimate in regions
far from the singularity. However, the errors arising in these regions contribute negligibly to the
total error.

h p |eh|H1(Ω,Th) EOC |Eh|H1(Ω,Th) EOC ieff

1/8 1 3.93E-01 – 2.93E-01 – 0.75
1/16 1 2.82E-01 0.48 2.20E-01 0.42 0.78
1/32 1 2.00E-01 0.49 1.60E-01 0.46 0.80
1/64 1 1.42E-01 0.50 1.14E-01 0.48 0.81
1/8 2 1.86E-01 – 2.37E-01 – 1.27
1/16 2 1.32E-01 0.50 1.72E-01 0.47 1.30
1/32 2 9.38E-02 0.49 1.23E-01 0.48 1.31
1/64 2 6.65E-02 0.50 8.78E-02 0.49 1.32
1/8 3 1.68E-01 – 2.50E-01 – 1.49
1/16 3 1.20E-01 0.49 1.82E-01 0.46 1.52
1/32 3 8.50E-02 0.49 1.30E-01 0.48 1.53
1/64 3 6.04E-02 0.49 9.31E-02 0.49 1.54

h p |eh|H1(Ω,Th) EOC |Eh|H1(Ω,Th) EOC ieff

1/8 4 1.29E-01 – 2.40E-01 – 1.85
1/16 4 9.24E-02 0.49 1.73E-01 0.47 1.87
1/32 4 6.58E-02 0.49 1.24E-01 0.48 1.89
1/64 4 4.67E-02 0.49 8.84E-02 0.49 1.89
1/8 5 1.23E-01 – 2.30E-01 – 1.87
1/16 5 8.77E-02 0.49 1.66E-01 0.47 1.89
1/32 5 6.25E-02 0.49 1.19E-01 0.48 1.90
1/64 5 4.44E-02 0.49 8.47E-02 0.49 1.91
1/8 6 1.27E-01 – 2.30E-01 – 1.81
1/16 6 9.10E-02 0.48 1.66E-01 0.47 1.82
1/32 6 6.49E-02 0.49 1.19E-01 0.48 1.83
1/64 6 4.62E-02 0.49 8.46E-02 0.49 1.83

Table 2: Singular problem (26) – (28): the computational errors in the broken H1-seminorm with their estimates
and the effectivity indexes.

5. hp-adaptive strategy

5.1. Isotropic mesh adaptation

The ultimate goal of the computation is to achieve the prescribed error tolerance with the
smallest possible number of degrees of freedom (DOF), cf. (5). More precisely, we need to minimize
DOF of the hp-mesh T p

h such that

η ≤ ω, (29)

where η is a posteriori error estimate given by (22) (or any other estimator) and ω > 0 is the given
tolerance. In order to fulfill (29), we require

ηK ≤ ωK := ω
√

1/#Th ∀K ∈ Th, (30)

where ηK is given by (22) and #Th denotes the number of elements of Th. Obviously, due to
(22),

ηK ≤ ωK ∀K ∈ Th =⇒ η ≤ ω,

hence, the local condition (30) is stronger than the global one (29). However, the great advantage
of (30) is the possibility to adapt the whole mesh at once (and not only the elements with the
highest error estimates) which saves the computational time. Let us note that in order to achieve
the faster convergence in practical computations, we set ωK := CFω

√
1/#Th where CF = 1/2 is

the security factor.
Based on the higher-order reconstruction ũh ∈ Sp+1

h introduced in Section 3, we define the
adaptive process which modifies the given hp-mesh and creates a new (better) one. Particularly,
let hK be the diameter of K ∈ Th and pK be the corresponding polynomial approximation degree.
Then we set the better degree pnew

K ∈ {pK − 1, pK , pK + 1} and the better diameter hnew
K > 0 in

such a way that a local tolerance condition (30) will be satisfied with the smallest possible number
of degrees of freedom.

Finally, when pnew
K and hnew

K are set for each K ∈ Th, we employ the framework of the
isotropic mesh adaptation, which is a simplification of technique developed in [25, 26]. We define
an isotropic Riemann metric (= Euclidean metric scaled by 1/hnew

K ). Then, with the aid of in-
house code ANGENER [27], we create new triangulation T new

h which is not nested in the relation
with Th. Moreover, from pnew

K , K ∈ Th, we define piecewise constant function on Th, which is
interpolated into the space of integer-valued piece-wise constant functions on T new

h .
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P1, h = 1/8 P3, h = 1/32 P6, h = 1/64
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Figure 3: Singular problem (26) – (28): local distribution of the computational error ‖eh‖H1(K), K ∈ Th (top)

and its estimate |Eh|H1(K), K ∈ Th (bottom) for the selected computations.
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5.2. Main idea of the hp-adaptation

In agreement with (20),

ũK = (ũh)|K , K ∈ Th (31)

denotes the restriction of the higher order reconstruction to the mesh elements. We define the
value

ϑK,0 := |ũK − uh|H1(K), K ∈ Th. (32)

Let us note that due to (22), we have ϑK,0 = ηK . However, we use this duplicity in the notation
since ηK represents the estimation of the error (which can be replaced by any other indicator)
whereas ϑK,0 is employed for a decision about p-adaptation.

Obviously, the quantity ϑK,0 approximate the discretization error achieved on K having the
diameter hK and the polynomial approximation degree pK . Now we are interested in the following
question:

(Q1) What happens if we locally decrease the polynomial approximation degree pK to pK−`, ` =
1, 2?

It is natural to expect that the decrease of the polynomial approximation degree leads to an
increase of the computational error as well as its estimate ϑK,0. (Obviously, the number of degrees
of freedom on K decreases.) Therefore, in order to keep the local error estimate ϑK,0, it is necessary
to refine the element K into several sub-elements, see Fig. 4.

Hence, we replace question (Q1) by a new one which is more quantitative:

(Q2) Let ϑK,0 be the estimate of the the discretization error achieved on K with the polynomial
approximation degree pK . If we replace pK by pK−`, ` = 1, 2, onto how many sub-elements
we need to split K such that the corresponding error will be again ϑK,0?

In order to find the answer to question (Q2), we define, similarly as in (6), the space of
piecewise-polynomial functions

Sp−`
h := {vh ∈ L2(Ω); vh|K ∈ P pK−`(K) ∀K ∈ Th}, ` = 1, 2, (33)

where P pK−`(K) denotes the space of polynomials of degree ≤ pK − ` on K (for simplicity we

assume that pK − ` ≥ 0). Obviously, Sp−`
h ⊂ Sp

h for ` = 1, 2. Moreover, we denote by Πp−`
h ,

` = 1, 2 the L2-projection from Sp
h to Sp−`

h , i.e.,

Πp−`
h uh ∈ Sp−`

h :
(

Πp−`
h uh, vh

)
0,Ω

= (uh, vh)0,Ω ∀vh ∈ Sp−`
h , ` = 1, 2 (34)

Let us note that if we consider a hierarchical basis of Sp
h then the projection (34) is straightforward,

we simply remove the basis coefficients corresponding to the basis functions of degree greater than
pK − ` for each K ∈ Th.

Now, for K ∈ Th, we define two additional quantities

ϑK,` :=
∣∣∣ũK −Πp−`

h uh

∣∣∣
H1(K)

, ` = 1, 2, K ∈ Th, (35)

which approximate the local discretization errors in the H1-seminorm for the used polynomial
approximation degrees pK − ` on K. Their evaluation is very simple since ũK is already available
due to (20) and (31).

Usually, the quantities ϑK,`, ` = 0, 1, 2 satisfy the inequalities

ϑK,0 ≤ ϑK,1 ≤ ϑK,2, K ∈ Th, (36)
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which corresponds to the fact that a higher degree polynomial approximation gives at most the
same error as a lower degree one.

Let us assume that the exact solution is sufficiently regular, the non-regular case is discussed
later. In agreement with (9), we have

ϑK,` ≈ ChpK−`K , ` = 0, 1, 2, (37)

where C is a unknown constant independent of hK . In order to find the answer to question (Q2),
we seek the diameter of sub-elements of K, denoted by hK,`, such that the resulting error will by
equal to ϑK,0, i.e.,

ϑK,0 ≈ C(hK,`)
pK−`, ` = 0, 1, 2. (38)

The above together with (37) gives the ratios

q` :=
hK
hK,`

=

(
ϑK,`
ϑK,0

) 1
pK−`

, ` = 0, 1, 2. (39)

Obviously, q0 = 1. Therefore, (theoretically), if we split K onto q2
` sub-triangles then the error

estimate ϑK,` reduces to ϑK,0, see Fig. 4 for an illustration. Generally, the ratios q1 and q2 are
non-integer but it does not exhibit any obstacle in the framework of the isotropic mesh adaptation.

hK hK,ℓ

K

Figure 4: Illustration of the element splitting for q` = 3 in (39).

If the element K is split onto q2
` sub-elements and on each of them the polynomial approxima-

tion degree pK − ` is used, then corresponding number of degrees of freedom is equal to

dK,` = q2
` (pK − `+ 1)(pK − `+ 2)/2, ` = 0, 1, 2. (40)

Therefore, we have three candidates, ` = 0, 1, 2, which achieve theoretically the level ϑK,0 with
dK,` degrees of freedom. Hence, we choose this one which has minimal value dK,`, i.e., let ¯̀ =
arg min`∈{0, 1, 2} dK,`, then

¯̀= 0 ⇒ pnew
K := pK + 1,

¯̀= 1 ⇒ pnew
K := pK ,

¯̀= 2 ⇒ pnew
K := pK − 1.

(41)

Finally, we consider the case when the exact solution is not regular, particularly when the local
polynomial approximation degree is greater than the local Sobolev regularity. Let u|K ∈ HsK (K)
such that sK < pK . In this case, instead of (36), the quantities ϑK,`, ` = 0, 1, 2 satisfy the
relations

ϑK,0 ≈ ϑK,1 ≈ ϑK,2, (42)
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which is in agreement with (9) and it corresponds to the observation than an increase of the
polynomial approximation degree does not bring any essential increase of the accuracy when the
solution is not regular. Therefore, relations (39) and (42) imply q1 ≈ 1 and q2 ≈ 1. Consequently,
relation (40) gives dK,2 < dK,1 < dK,0 and according (41), the algorithm automatically decreases
pK .

5.3. hp-adaptive algorithm

Based on the consideration formulated in Section 5.2, we formulate the hp-adaptive algorithm.
Let ω > 0 be the prescribed tolerance and ωK be the local error tolerance defined by (30). The
presented algorithm is based on the following two steps:

(S1) according (41), we set the better polynomial degree,

(S2) we propose new (more optimal) size of K according

hnew
K = hK/ρ, where ρ := (ηK/ωK)

1/pK . (43)

The formulas (43) follow from relations ηK ≈ ChpKK and ωK ≈ C(hnew
K )pK , cf. (37). In order

to avoid a strong refinement in one level of mesh adaptation, we restrict ρ ≤ 5. Furthermore,
the algorithm contains two branches depending if the local tolerance condition (30) is satisfied or
not. If (30) is violated and if we increase pK according (41) then we do not change element size
according to (43) since then we avoid a needless h-refinement at the beginning of mesh adaptations.
Hence, we define the following algorithm:

Algorithm 1 setting of hnew
K and pnew

K for K ∈ Th

let uh ∈ Sp
h be given

for all K ∈ Th do
let hK = diam(K) and pK be the corresponding polynomial approximation degree,
compute the higher-order reconstruction ũK by (16) and (18),
set ηK by (22) (or by another error estimate),
set ωK by (30),
set ϑK,`, ` = 0, 1, 2 by (35),
set dK,`, ` = 0, 1, 2 by (40),
set ¯̀ for which dK,` is the minimal
if ηK > ωK then

if ¯̀= 0 then
pnew
K := pK + 1, ρ := 1

else if ¯̀= 1 then
pnew
K := pK , ρ := (ηK/ωK)1/pK

else if ¯̀= 2 then
pnew
K := pK − 1, ρ := (ηK/ωK)1/(pK−1)

end if
else

if ¯̀= 0 then
pnew
K := pK + 1 , ρ := (ηK/ωK)1/(pK+1)

else if ¯̀= 1 then
pnew
K := pK , ρ := (ηK/ωK)1/pK

else if ¯̀= 2 then
pnew
K := pK − 1, ρ := (ηK/ωK)1/(pK−1)

end if
end if
hnew
K := hK

min(ρ,5)

end for
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This algorithm works locally for each K ∈ Th, hence it can be simply parallelized. However,
even for one computer core, the total computational time of the mesh adaptation including the
higher-order reconstruction and the creation of the new hp-grid is shorter than the computational
time necessary for the assembling ans solving the nonlinear algebraic system (8). Moreover, the
presented algorithm does not contain any empirical constant.

The use of Algorithm 1 is obvious: We start with an initial hp-mesh, solve the approximate
problem (8) and by Algorithm 1 we generate a new hp-mesh where we solve problem (8) again,
The combination of the problem solution and mesh adaptation is repeated until the condition (29)
is achieved.

6. Numerical examples

In this section we demonstrate the computational performance of the proposed hp-adaptive
algorithm. We present three examples which are (except the first one) modifications of problems
from [28] where a collection of 2D elliptic problems for testing adaptive grid refinement algorithms
was published. Our aim is to demonstrate the exponential rate of the convergence of the error with
respect to DOF and also to show a reasonable ability of the error estimator (22) to approximate
the error. Moreover, the selection of the examples (Laplace problem, linear convection-diffusion
equations, quasilinear elliptic equation) indicate the robustness of this approach.

For each case, we present the convergence of the adaptive process, namely the values of triangles
#Th of the generated grids, the corresponding DOF given by (5), the computational errors in the
broken H1-seminorm, their estimates |Eh|H1(Ω,Th) and the effectivity index ieff given by (23).

Moreover, we investigate the experimental order of convergence (EOC) with respect to DOF
according to the formulae eh ≈ cDOF−EOC. In some situation, the EOC may be negative, namely
when the algorithm decreases DOF as well es the error and its estimates. This is in fact the
advantage of our approach.

6.1. Case 1: re-entrant corner singularity

We consider the Poisson problem

−∆u = 0 in Ω := (−1, 1)2 \ {(x1, x2); −2x1 < x2 < 0}, (44)

u = uD on ∂Ω,

where uD is chosen such that the exact solution is

u(r, ϕ) = r2/3 sin(2ϕ/3). (45)

Here (r, ϕ) are the polar coordinates. This problems has a corner singularity at the origin.
We applied Algorithm 1 with ω = 10−4. Table 3 shows the convergence of the adaptive process.

We observe that Algorithm 1 gives exponential order of convergence, which that the decrease of
the error is faster than any linear decrease in logarithmic scale, see the corresponding figure of
data from Table 3. Moreover, the effectivity index ieff is very close to 1 which means that the
used “naive” error estimator η defined by (22) approximate error very well.

Furthermore, Fig. 5 shows the hp-grids with several details for selected levels of adaptations.
We observed a strong h-refinement in a small neighbourhood of the corner, which is necessary for
a decrease of the error under the given tolerance.

6.2. Case 2: Wave front

We consider the convection diffusion equation

−2ε
∂2u

∂x2
1

− ε

2

∂2u

∂x2
2

− x2
∂u

∂x1
+ x1

∂u

∂x2
= g in Ω := (−1, 1)2, (46)

u = uD on ∂Ω, (47)
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lev #Th DOF |eh|H1(Ω,Th) EOC |Eh|H1(Ω,Th) EOC ieff

0 135 810 7.26E-02 – 1.01E-01 – 1.39
1 144 1424 5.26E-02 0.57 7.67E-02 0.48 1.46
2 158 2300 2.32E-02 1.71 4.14E-02 1.29 1.79
3 218 3821 1.82E-02 0.47 2.29E-02 1.17 1.25
4 272 5406 9.59E-03 1.85 1.79E-02 0.71 1.86
5 335 6920 7.37E-03 1.07 9.85E-03 2.41 1.34
6 341 7250 4.13E-03 12.40 7.18E-03 6.78 1.74
7 415 8436 3.03E-03 2.05 3.70E-03 4.37 1.22
8 452 9336 1.93E-03 4.44 2.72E-03 3.06 1.41
9 498 10247 1.61E-03 1.98 1.68E-03 5.19 1.04
10 503 10666 7.95E-04 17.55 1.53E-03 2.32 1.92
11 516 10870 6.59E-04 9.88 8.31E-04 32.13 1.26
12 543 11483 3.27E-04 12.77 6.61E-04 4.16 2.02
13 562 11691 3.15E-04 2.16 3.75E-04 31.65 1.19
14 579 12098 1.50E-04 21.68 2.48E-04 12.09 1.65
15 578 12072 1.29E-04 -68.55 1.73E-04 -166.98 1.34
16 608 12679 7.83E-05 10.24 1.45E-04 3.55 1.86
17 602 12588 8.24E-05 7.11 1.14E-04 -34.13 1.38
18 602 12678 5.61E-05 53.79 9.51E-05 25.04 1.69

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100  1000  10000  100000

error

estimate

Table 3: Case 1, hp-adaptive computation: the errors in the broken H1-seminorm, their estimates and corresponding
EOC and ieff , numerical values (left) and the corresponding plot (right).

lev #Th DOF |eh|H1(Ω,Th) EOC |Eh|H1(Ω,Th) EOC ieff

0 276 1656 6.21E+00 – 4.23E+00 – 0.68
1 418 3760 2.93E+00 0.91 3.89E+00 0.10 1.33
2 811 8404 1.11E+00 1.21 1.88E+00 0.91 1.69
3 1265 16002 1.91E-01 2.74 5.18E-01 2.00 2.71
4 2836 38551 1.61E-02 2.81 5.78E-02 2.49 3.60
5 3263 58093 1.11E-03 6.52 9.95E-03 4.29 8.98

 0.001

 0.01

 0.1

 1

 10

 1000  10000  100000

error

estimate

Table 4: Case 2, hp-adaptive computation: the errors in the broken H1-seminorm, their estimates and corresponding
EOC and ieff , numerical values (left) and the corresponding plot (right).

where the right-hand side g and the boundary condition uD are prescribed such that the exact
solution is

u(x1, x2) = tan−1(m(r − r0)), (48)

where r = (x2
1 + x2

2)1/2, m = 50 and r0 = 0.25. Moreover, we put The solution that has a steep
wave front in the interior of the domain. Due to tan−1 function, there is a also mild singularity
at the center of the circle.

We applied Algorithm (1) with ω = 10−2. Table 4 shows the exponential convergence of the
adaptive process, the EOC is increasing with respect to levels of adaptation. On the other hand,
the effectivity index ieff is increasing for decreasing error. This is caused by the fact that patches
DK , K ∈ Th are much larger in comparison with the width of the interior layer and then the
higher-order reconstruction is smeared. Moreover, Fig. 6 shows the hp-grids with several details
for selected levels of adaptations. We observe a strong h-refinement along the steep wave front
and also around the singularity at the center of the circle. On the other hand, the effectivity index
iH1 is increasing.

15



level = 1 level = 5 level = 18
to

ta
l

v
ie

w

   −1.0Ε+00     0.0Ε+00     1.0Ε+00   −1.0Ε+00     0.0Ε+00     1.0Ε+00   −1.0Ε+00     0.0Ε+00     1.0Ε+00

P
2

P
2

P
3

P
3

P
4

P
4

P
5

P
5

P
6

P
6

P
7

P
7

hp

level = 5 level = 8 level = 12

zo
om

10
0x

   −1.0Ε−02     0.0Ε+00     1.0Ε−02   −1.0Ε−02     0.0Ε+00     1.0Ε−02   −1.0Ε−02     0.0Ε+00     1.0Ε−02

P
2

P
2

P
3

P
3

P
4

P
4

P
5

P
5

P
6

P
6

P
7

P
7

hp

level = 12 level = 16 level = 18

zo
om

10
00

0x

   −1.0Ε−04     0.0Ε+00     1.0Ε−04   −1.0Ε−04     0.0Ε+00     1.0Ε−04   −1.0Ε−04     0.0Ε+00     1.0Ε−04

P
2

P
2

P
3

P
3

P
4

P
4

P
5

P
5

P
6

P
6

P
7

P
7

hp

Figure 5: Case 1: hp-grids with details around origin for selected levels of adaptations.

6.3. Case 3: Interior line singularity

We consider the scalar nonlinear diffusion equation

−∇ · (K(u)∇u) = g in Ω := (−1, 1)2, (49)

u = uD on ∂Ω,

where K(u) is given by (27) with ε = 1. We prescribe a Dirichlet boundary condition uD on ∂Ω
and set the source term g such that the exact solution is

u(x1, x2) =

{
cos(πx2/2) for x1 ≤ β(x2 − 1),
cos(πx2/2) + (x1 − β(x2 − 1))α for x1 > β(x2 − 1),

(50)

where we put α = 2 and β = 0.6. The solution satisfies u ∈ Hα+1/2−ε(Ω) and posses a weak
singularity along the line x1− β(x2− 1) = 0. This line singularity is difficult to capture since it is
very weak. However, without a sufficient refinement along this line, it is not possible to decrease
the computational error under the given tolerance.
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Figure 6: Case 2: hp-grids with details containing the origin singularity and the part of the wave front for selected
levels of adaptations.

lev #Th DOF |eh|H1(Ω,Th) EOC |Eh|H1(Ω,Th) EOC ieff

0 586 3516 7.06E-03 – 8.30E-03 – 1.17
1 589 5890 2.99E-03 1.67 5.15E-03 0.92 1.72
2 764 10480 1.28E-03 1.48 2.05E-03 1.60 1.61
3 792 10992 5.05E-04 19.43 8.54E-04 18.39 1.69
4 1344 17021 1.82E-04 2.33 3.26E-04 2.20 1.79
5 2051 25172 7.93E-05 2.12 1.41E-04 2.14 1.78
6 2774 32959 4.31E-05 2.26 7.57E-05 2.31 1.75

 1e-05

 0.0001

 0.001

 0.01

 1000  10000  100000

error

estimate

Table 5: Case 3, hp-adaptive computation: the errors in the broken H1-seminorm, their estimates and corresponding
EOC and ieff , numerical values (left) and the corresponding plot (right).

We applied Algorithm (1) with ω = 10−4. Table 5 shows the convergence of the adaptive
process, however, it is not exponential but the given tolerance is achieved within few adaptive
levels. On the other hand, the effectivity index ieff indicates an accurate estimation of the error.
Moreover, Fig. 7 shows the hp-grids with several details for selected levels of adaptations. We
observe a h-refinement along the line singularity, which is spread only to few elements in the
direction perpendicular to this line.

7. Conclusion

We presented a new hp-adaptive technique for the numerical solution of boundary value prob-
lems. The method is based on higher-order reconstruction over local element patches which makes
it faster and easy to parallelize. The presented algorithm is free of user-defined parameters, it can
be generalized for any numerical method using polynomial approximation, and combined with any
a posteriori error estimator. Several numerical experiments were performed to demonstrate the
outstanding performance and robustness of the presented method.
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Figure 7: Case 3: hp-grids with details containing detail along the interior layer for selected levels of adaptations.
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[3] I. Babuška, T. Strouboulis, The finite element methods and its reliability., Clarendon Press,
Oxford, 2001.

[4] C. Schwab, p- and hp-finite element methods: Theory and applications in solid and fluid
mechanics, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford,
1998.

[5] L. F. Demkowicz, Computing with hp-adaptive finite elements. Vol. 1: One- and two-
dimensional elliptic and Maxwell problems. With CD-ROM., Applied Mathematics and Non-
linear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.
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[26] V. Doleǰśı, Anisotropic mesh adaptation technique for viscous flow simulation, East-West J.
Numer. Math. 9 (1) (2001) 1–24.
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